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ases.The bounds generalize the existing relative residual bounds for posi-tive de�nite matri
es to inde�nite 
ase.1 Introdu
tionLet H 2 C n�n be a Hermitian matrix, and let X 2 C n�m where n � m, bean orthonormal matrix, andM = X�HX; R = HX �XM; X = R(X); (1)where X = R(X) denote the 
olumn spa
e of X. Furthermore, let�1 � � � � � �n and �1 � � � � � �m;�This work was supported by the grant 0023002 from the Croatian Ministry of S
ien
eand Te
hnology.yUniversity Josip Juraj Strossmayer, Fa
ulty of Civil Engineering, Drinska 16 a, 31000Osijek, Croatia, truhar�most.gfos.hr.zUniversity of Split, Fa
ulty of Ele
tri
al Engineering, Me
hani
al, Engineering andNaval Ar
hite
ture, R. Bo�skovi�
a b.b, 21000 Split, Croatia, ivan.slapni
ar�fesb.hr.1



be the eigenvalues of H and M , respe
tively.The eigenvalues of M are sometimes 
alled Ritz values or Rayleigh-Ritzapproximations of the eigenvalues of H. Ritz values are optimal in the sensethat kRk is minimized for M = X�HX, that is, if we repla
e M by anothermatrix C we 
an only in
rease the spe
tral norm of R,kRk = kHX �XMk � kHX �XCk;for all matri
es C of order m (see [10, Theorem 1.15.IV℄ or [5, Theorem11-4-5℄). Moreover, one 
an always �nd m eigenvalues of H that are withinabsolute distan
e kRk of the Ritz values [5, Theorem 11-5-1℄max1�j�m j��(j) � �j j � kRk; (2)for some permutation � . There is a similar residual bound given in theFrobenius norm [10, Corollary 4.15.IV℄sXj (��(j) � �j)2 � kRkF : (3)The above bounds measure absolute distan
e between eigenvalues, thus theybelong to 
lassi
al or absolute perturbation theory.Drma�
 [1, Theorem 6℄ derived a relative residual error bound for positivede�nite Hermitian matrix H = LL� of the following form:j��(j) � �jjj��(j)j � sin 1� sin j = 1; : : : ;m; (4)where  is the maximal a
ute prin
ipal angle betweenR(L�X ) andR(L�1X ).We present two relative residual bounds for the eigenvalues of inde�niteHermitian matri
es. The �rst one is similar to (4) and represents the relativeversion of the Weyl-type residual bound (2). The se
ond one is the relativeversion of the Hofmann{Wielandt type residual bound (3).The paper is organized as follows: in the next se
tion we give some pre-liminary results, in Se
tion 3 we prove our relative residual bounds, in Se
tion4 we dis
uss some di�eren
es between the positive de�nite and the inde�nite
ase, and in Se
tion 5 we give a numeri
al example.2



2 PreliminariesIn this se
tion we present some de�nitions and auxiliary results on the Hermi-tian eigenvalue problem, Hermitian inde�nite de
omposition and subspa
esand angles between them.LetH be inde�nite Hermitianmatrix and letH = U�U� be its eigenvaluede
omposition. The spe
tral absolute value of H is de�ned asjHjS = U j�jU� = pH2: (5)Let H = LJL� be the inde�nite Hermitian de
omposition of H where Lis non-singular and J is diagonal with �1 on its diagonal su
h that Jii =sign(�ii) (see e.g. [7℄ for more details). The eigenvalue problem for H is
losely related to the hyperboli
 eigenvalue problem for the pair (L�L; J)(see e.g. [9℄) { there exists non-singular J -orthogonal matrix V su
h thatV �L�LV = j�j; V �JV = J: (6)By inverting V �JV = J we have V JV � = J . Now, from V �J = JV �1 itfollows that1 kV k = kV �1k: (7)Thus, for the spe
tral 
ondition number of V we have�(V ) = kV k kV �1k = kV k2:Further, U = LV j�j�1=2: (8)Indeed, U�HU = (j�j�1=2V �L�) (LJL�) (LV j�j�1=2)= j�j�1=2(V �L�LV )J(V �L�LV )j�j�1=2= j�j�1=2j�jJ j�jj�j�1=2 = �:>From (8) and (5) we also havejHjS = U j�jU� = LV j�j�1=2j�jj�j�1=2V �L� = LV V �L�: (9)1Even more, one 
an easily show that the singular values of V 
ome in the pairs ofre
ipro
als. 3



Let Y = LX and Z = L�1X, further letYL = JL�X = JY; ZL = L�1X = Z: (10)Let P(�) denote the orthogonal proje
tor onto the indi
ated subspa
e.It is easy to show that (PZPY)y = Y Z� ;where y denotes the generalized or pseudo-inverse (for the proof see [1, Proofof Theorem 3℄). By using (10), we obtain(PZLJPYL)y = (ZLZyLJYLY yL)y = (ZZyY Y yJ)y = J(ZZyY Y y)y= JY Z� = YLZ�L : (11)We shall use the angle fun
tion \(Y;Z) between arbitrary subspa
es Yand Z of C n de�ned by (see [14℄):\(Y;Z) = sin�1minfk(I � PZ)PYk; k(I � PY)PZkg : (12)As we shall see later (see Remark 1) for some perturbation ÆH, we shallneed to derive kL�1ÆHL��k. Thus, we shall need the following representationof the pair of orthogonal proje
tors PYL and PZL in C n , also due to Wedin[14℄.Theorem 1 (Wedin) Let YL , ZL be subspa
es in C n . Assume that(a) rank(PYLPZL) = k + l(b) PYLPZL has k singular values equal to one.Then there exist an orthogonal basis of C n su
h that, with respe
t to thisbasis, PYL and PZL are represented by blo
k diagonal matri
es P1 and P2,respe
tively, whereP1 = 24Ik �li�i(PYL) �PYL35 ; P2 = 24Ik �li	i(PZL) �PZL35 ;�i(PYL) = �1 00 0� ; 	i(PZL) = � 
os2 �i 
os �i sin �i
os �i sin �i sin2 �i � :Here Ik is the k � k identity matrix, �PYL , �PZL are diagonal matri
es withentries from f0; 1g and �PYL�PZL = 0. The numbers0 < �1 � � � � � �l < �=2are the a
ute prin
ipal angles between YL and ZL.4



3 Residual boundsFirst we prove the Weyl-type relative residual bound for the eigenvalues ofnon-singular inde�nite Hermitian matrix H.Theorem 2 Let H = LJL�, where L and J are non-singular and J is diag-onal with �1 on its diagonal and letÆH = RX� +XR� ; (13)where X is an n �m orthonormal matrix. Then there are at least m eigen-values �ik , k = 1; : : : ;m, of H for whi
hj�ik � �kjj�ik j � �(V )kL�1ÆHL��k; k = 1; : : : ;m : (14)Here, �k are eigenvalues of matrix M de�ned by (1) and V is J-unitarymatrix whi
h diagonalizes the pair (L�L; J) as in (6).Proof. First, noti
e that the Hermitian matrix eH = H � ÆH has X as aninvariant subspa
e. Indeed, using the fa
t that X�R = R�X = 0 we 
anwrite (H � ÆH)X = HX �RX�X +XR�X= HX � (HX �XM) �XR�X = XM :This means that the eigenvalues ofM 
oin
ide with at least m eigenvalues ofeH. By applying a result of Veseli�
 and Slapni�
ar [13, Theorem 2.1℄ we knowthat if jx�ÆHxj � �x�jHjSx; 8 x; � < 1;then 1� � � e�i�i � 1 + �:By (7) we have �(V ) = kV k kV �1k = kV �1k2. Using (9) it 
an be writtenjx�ÆHxj = jx�LL�1ÆHL��L�xj � kL�1ÆHL��kx�LL�x� kL�1ÆHL��kx�LV V �1V ��V �L�x� kL�1ÆHL��k�(V )x�jHjSx ;5



whi
h means that there are at least m eigenvalues �ik of H su
h that (14)holds.Now we need to bound kL�1ÆHL��k. Noti
e thatL�1ÆHL�� = L�1 [(HX �XM)X� +X(X�H �MX�)℄L��= JL�XX�L�� � L�1XX�LJL�XX�L��+L�1XX�LJ � L�1XX�LJL�XX�L��= (I � ZLY �LJ)YLZ�L + ZLY �L (I � JYLZ�L):Using (11) we haveL�1ÆHL�� = �I � (PYLJPZL)yJ� (PZLJPYL)y+(PYLJPZL)y �I � J(PZLJPYL)y� :The following remark is due to Drma�
 [1, Remark 8℄.Remark 1 Using 
anoni
al representation of the pair PYL and PZL we 
ansee that, in a suitably 
hosen orthonormal basis, the matrix L�1ÆHL�� isblo
k diagonal with diagonal blo
ks of the form�i = � � 0 tan itan i 2 tan2  i� ; k�ik = sin i1� sin i ;with a
ute prin
ipal angles  i between YL and ZL.Now we 
an formulate Theorem 2 in terms of a
ute prin
ipal angles.Theorem 3 Let H = LJL�, where L and J are non-singular and J is diag-onal with �1 on its diagonal. LetYL = JL�X ; ZL = L�1X ;and let  be the maximal a
ute prin
ipal angle between YL and ZL. Thenthere are at least m eigenvalues �ik , k = 1; : : : ;m, of H for whi
hj�ik � �kjj�ik j � �(V ) sin 1� sin ; k = 1; : : : ;m; (15)provided that right hand side in (15) is less than one. Here V is a J-unitarymatrix whi
h diagonalizes the pair (L�L; J) as in (6).6



Proof. From Theorem 2 it follows that there are at least m eigenvalues �ikof H su
h that (14) holds. This, together with Remark 1, yields (15).In order to prove our se
ond result, a Hofmann{Wielandt type relativeresidual bound, we need some results on doubly sto
hasti
 matri
es. A realn� n matrix Y is doubly sto
hasti
 if Yij � 0 and Pni=1 Yik =Pni=1 Yki = 1for k = 1; 2; � � � ; n. By Birkho�'s theorem [3, Theorem 8.7.1℄, a matrix isdoubly sto
hasti
 if and only if it lies in the 
onvex hull of all permutationmatri
es. This result has lead to the following lemma by R.-C. Li [6, Lemma5.1℄.Lemma 1 (Li) Let Y be a n � n doubly sto
hasti
 matrix, and let M be an � n 
omplex matrix. Then there exists a permutation � of f1; 2; : : : ; ngsu
h that nXi;j=1 jMij j2Yij � nXi=1 jMi�(i)j2:The following theorem gives Hofmann{Wielandt type relative residualbound for nonsingular inde�nite Hermitian matrix.Theorem 4 Let H = LJL�, where L and J are non-singular and J is di-agonal with �1 on its diagonal. Let eH = H � ÆH, where ÆH is de�ned by(13), and let eH be de
omposed as eH = eLJ eL�. Set N = �L�1ÆHL��. Thenthere are at least m eigenvalues �ik , k = 1; : : : ;m; of H for whi
hvuut mXk=1  j�ik � �kjpj�ik jj�kj!2 � kV kF keV k kNkp1 � kNk ; (16)provided that the right hand side in (16) is positive. Here V and eV areJ-unitary matri
es whi
h simultaneously diagonalize the pairs (L�L; J) and(eL�eL; J) as in (6), respe
tively.Proof. Positivity of the right hand side in (16) implies kNk < 1. Therefore,J , J+N , H = LJL� and eH = L(J+N)L� have the same inertia. Therefore,the eigenvalue de
ompositions of H and eH 
an be written asH = U j�j1=2J j�j1=2U�; eH = eU je�j1=2J je�j1=2eU�: (17)7



The assumption kNk < 1 implies kNJk < 1 whi
h means that I + NJ isnonsingular. A

ording to [4, Theorem 6.4.12 (a)℄, the square roots of I+NJare well de�ned, and 
an be expressed as a polynomial in NJ .Sin
e (I+NJ)1=2 = J [(I+NJ)1=2℄�J , the matrix J+N 
an be de
omposedas J +N = (I +NJ)1=2J [(I +NJ)1=2℄�: (18)Thus, we 
an write eH aseH = L(I +NJ)1=2J [(I +NJ)1=2℄�L� � eLJ eL� ; (19)where eL = L(I +NJ)1=2Further, (8) implies L = U j�j1=2V �1: (20)Similarly, (17), (19) and (8) implyeL = eU je�j1=2eV �1: (21)Now (19) and (18) imply thateH �H = L(I +NJ)1=2J [(I +NJ)1=2℄�L� � LJL�= L(I +NJ)1=2 �L� = eL�L�; (22)where � = J [(I +NJ)1=2℄� � (I +NJ)�1=2J = (I +NJ)�1=2N: (23)Pre- and post-multipli
ation of (22) by eU� and U , respe
tively, together witheigenvalue de
ompositions (17), and relations (20) and (21), givese�eU�U � eU�U� = je�j1=2eV �1 �V ��j�j1=2:By interpreting this equality 
omponent-wise we havee�p � �qqje�pjj�qj Spq = [eV �1 �V ��℄pq;8



where S = eU�U and p; q 2 f1; : : : ; ng. By taking the Frobenius norm wehave nXp;q=10� j e�p � �qjqj e�pjj�qj1A2 jSpqj2 = keV �1 �V ��k2F :Sin
e (jSpqj2) is a doubly sto
hasti
 matrix, by applying Lemma 1 we obtainnXp=10� j e�p � ��(p)jqj e�pjj��(p)j1A2 � keV �1 �V ��k2F (24)for some permutation � of f1; 2; : : : ; ng. Further,keV �1 �V ��kF � keV k kV kF k�k: (25)Relation (23) impliesk�k � k(I + JN)�1=2k kNk � 1p1� kNkkNk :In the proof of Theorem 2 we have shown that eH has X as its invariantsubspa
e. Thus, there are there are at least m eigenvalues �ik , k = 1; : : : ;m;of H su
h that mXk=1  j�ik � �kjpj�ik jj�kj!2 � nXp=10� j e�p � ��(p)jqj e�pjj��(p)j1A2 :The theorem follows by 
ombining this with (24), (25) and (23).Now we 
an formulate Theorem 4 in terms of a
ute prin
ipal angles.Theorem 5 Assume the notation of Theorem 4. LetYL = JL�X ; ZL = L�1X ;and let  be the maximal a
ute prin
ipal angle between YL and ZL. Thenthere are at least m eigenvalues �ik , k = 1; : : : ;m; of H for whi
hvuut mXk=1  j�ik � �kjpj�ik jj�kj!2 � kV kF keV k j sin jp(1 � sin ) (1� 2 sin ) ; (26)provided that the right hand side in (26) is positive.9



Proof. The proof follows from kNk = kL�1ÆHL��k, Remark 1 and (16).If we wish to avoid existen
e of unperturbed and perturbed quantitiesV and eV , respe
tively, on the right-hand side of (16) and (26), we need tobound keV k in terms of kV k. For this purpose we need the following theoremby the authors [9, Theorem 5℄.Theorem 6 Let eL = L(I + E) let V and eV be nonsingular J-unitary ma-tri
es whi
h simultaneously diagonalize the pairs (L�L; J) and (eL�eL; J) as in(6), respe
tively. If � � kEkF1� kEk < 14kV k2 ; (27)then keV k � kV kp1 � 4�kV k2 : (28)Combining previous results gives our �nal theorem.Theorem 7 Assume the notation of Theorem 4. LetYL = JL�X ; ZL = L�1X ;and let  be the maximal a
ute prin
ipal angle between YL and ZL. LetN = �L�1ÆHL�� be su
h that� � kNkF2p1 � kNk � kNk < 14kV k2 : (29)Then there are at least m eigenvalues �ik , k = 1; : : : ;m, of H for whi
hvuut mXk=1  j�ik � �kjpj�ik jj�kj!2 � kV kF kV kp1 � 4�kV k2 k sin kp(1� sin ) (1� 2 sin ): (30)Proof. In (19) we have de�nedeL = L(I +NJ)1=2:10



The assumption kNk < 1 ensures the existen
e of (I+NJ)1=2 de�ned by thefollowing series [4, Theorem 6.2.8℄I + E � (I +NJ)1=2= I + 1Xn=1(�1)n�1 (2n� 1)!!2nn! (NJ)n:Here (2n � 1)!! = 1 � 1 � 3 � 5 � � � (2n� 1). It is easy to see thatkEk � 12 kNkp1 � kNk :Using the fa
t that � from (29) is the upper bound for � from (27), we 
anapply bound (28) for keV k with � in role of �. This together with (26) gives(30).4 Comparison of the positive de�nite and theinde�nite 
aseFirst, noti
e that our bound (15) is a proper generalization of the bound (4)to inde�nite Hermitian matri
es. Indeed, in the positive de�nite 
ase thematrix V is unitary and the bound (15) is equal to (4).Further, it is easy to show that in the positive de�nite 
ase the anglefun
tion \(YL;ZL) de�ned by (12) does not depend on L but only on H (see[2℄). However, in inde�nite 
ase this is not true in general. If we de
omposematrix H as H = L1JL1 = L2JL2 (31)then we 
an write YL1 = JL�1X ; ZL1 = L�11 XYL2 = JL�2X ; ZL2 = L�12 X :If  i = \(YLi ;ZLi), i = 1; 2, it is of our interest to �nd out is there any
onne
tion between the angles  1 and  2.11



>From (31) it follows that there exists nonsingular J -unitary matrix Wsu
h that L2 = L1W . >From Remark 1 it follows thatkL�1i ÆHL��i k = sin i1 � sin i ; i = 1; 2 :This, together with fa
t that L2 = L1W , givessin 21 � sin 2 � kWk2 sin 11� sin 1 :Therefore, for  1 and  2 small enough, we havesin 2 - kWk2 sin 1:We 
on
lude that if the matrix W has moderate norm and if the subspa
es 1 and  2 are suÆ
iently 
lose, then the angle fun
tions will be 
lose, too.The bounds of Se
tion 3 depend on the spe
tral 
ondition number orthe norm of the J -unitary matrix V whi
h diagonalizes the pair (L�L; J).Although these quantities 
an be large, �(V ) is bounded by [8, Theorem 3℄:�(V ) � minp�(��L�L�);where the minimumis taken over all matri
es whi
h 
ommute with J . Appro-priate bounds for �(V ) exist for some other 
lasses of \well-behavedmatri
es"su
h as s
aled diagonal dominant matri
es, blo
k s
aled diagonally dominant(BSDD) matri
es and quasi-de�nite matri
es. Details of these bounds 
anbe found in e.g. [12, Se
tion 3.1℄ and [11℄.5 Numeri
al exampleLet H = D�(J +N)D be the nonsingular Hermitian matrix withD = 26642 � 104 8 � 104 0 02 � 103 4 � 104 0 00 0 1 0:50 0 0:6 0:83775 ; N = 2664 0 0:08 0:01 0:030:08 0:06 0:05 0:030:01 0:05 0:08 0:040:03 0:03 0:04 0:043775 ;and J = diag(1; 1;�1;�1). All subsequent quantities are displayed properlyrounded to the given number of de
imal pla
es. The spe
trum of H is�(H) = f8:9705 � 109; 4:8108 � 107;�1:9227;�0:11514g:12



Let X = 26640:19962 00:97987 00 0:782740 0:622353775be the orthonormal matrix. From (1) it follows thatM = �8:9705 � 109 6:6073 � 1036:6073 � 103 �1:9149 � ;with the spe
trum �(M) = f8:9704 � 109;�1:9198g:The residual R isR = HX �XM = 2664 1:7432 � 107 �352:2�3:4906 � 106 71:795�172:67 1:3242 � 10�4217:16 �1:6214 � 10�43775with kRk � 1:8 � 107. Therefore, the residual bounds from the 
lassi
alperturbation theory (2) and (3) are useless. Further, for ÆH from (13) wehave kÆHH�1k = 2:3 �103, so the relative perturbation bounds whi
h use thefa
tor kÆHH�1k, like those from [1, Theorem 3℄, are also useless.On the other hand, 
onsider two de
ompositions of H: H = L1JL�1,where L1 is obtained using Gaussian elimination, and H = L2JL�2, where L2is obtained from the eigenvalue de
omposition of the matrix J + N . Morepre
isely, L1 = 26642:0264 � 104 0 0 08:6931 � 104 3:2418 � 104 0 00:03435 0:0609 �1:1057 00:03346 0:04231 �0:79638 �0:425553775andL2 = 2664 1:3743 � 104 1:4896 � 104 2:7393 � 102 �2:0233 � 1028:2797 � 104 4:1918 � 104 1:9839 � 103 �7:8674 � 1023:7731 � 10�2 �8:2197 � 10�3 �1:1041 �1:2542 � 10�22:9716 � 10�2 �2:2666 � 10�3 �0:79993 0:41642 3775 ;13



where L2 = D�Uaj�aj1=2 and J +N = Uaj�ajJU�a is the eigenvalue de
ompo-sition of J +N . We have L1 = L2W , where W �JW = J and kWk = 1:029.For the matri
es V1 and V2 whi
h diagonalize the pairs (L1JL�1) and(L2JL�2) as in (6) we have�(V1) � 1; �(V2) = 1:059;respe
tively. For the matrix ÆH de�ned by (13) we havekL�11 ÆHL��1 k = 0:0498; kL�12 ÆHL��2 k = 0:0475 :Therefore, Theorems 2 and 3 bound well the relative perturbationmax� j�1(H) � �1(M)jj�1(H)j ; j�3(H) � �2(M)jj�3(H)j � = 0:0015:Finally, Theorems 4, 5 and 7 bound equally well the relative perturbations(�1(H)� �1(M))2j�1(H)�1(M)j + (�3(H)� �2(M))2j�3(H)�2(M)j = 0:0015:Referen
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