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Abstract

We prove several residual bounds for relative perturbations of the
eigenvalues of indefinite Hermitian matrix. The bounds fall into two
categories  the Weyl-type bounds and the Hofmann Wielandt-type
bounds. The bounds are expressed in terms of sines of acute prin-
cipal angles between certain subspaces associated with the indefinite
decomposition of the given matrix. The bounds are never worse than
the classical residual bounds and can be much sharper in some cases.
The bounds generalize the existing relative residual bounds for posi-
tive definite matrices to indefinite case.

1 Introduction

Let H € C"" be a Hermitian matrix, and let X € C"*” where n > m, be
an orthonormal matrix, and

M=X"HX, R=HX — XM, X =R(X), (1)
where X = R(X) denote the column space of X. Furthermore, let

M>ee> A and g > > g,
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be the eigenvalues of H and M, respectively.

The eigenvalues of M are sometimes called Ritz values or Rayleigh-Ritz
approximations of the eigenvalues of H. Ritz values are optimal in the sense
that ||R]| is minimized for M = X*H X that is, if we replace M by another
matrix (' we can only increase the spectral norm of R,

[B| = |HX = XM|| < [[HX = X,

for all matrices C' of order m (see [10, Theorem 1.15.1V] or [5, Theorem
11-4-5]). Moreover, one can always find m eigenvalues of H that are within
absolute distance || R|| of the Ritz values [5, Theorem 11-5-1]

My — 1] < |IR 2
max [Ary — il < A (2)

for some permutation 7. There is a similar residual bound given in the

Frobenius norm [10, Corollary 4.15.1V]

\/Z ) < Rl 3)

The above bounds measure absolute distance between eigenvalues, thus they
belong to classical or absolute perturbation theory.

Drmac [1, Theorem 6] derived a relative residual error bound for positive
definite Hermitian matrix H = LL* of the following form:

MNorn g
Aoy =il sinw .
Al 1 —siny

m, (4)

where 1 is the maximal acute principal angle between R(1L*X') and R(L'X).

We present two relative residual bounds for the eigenvalues of indefinite
Hermitian matrices. The first one is similar to (4) and represents the relative
version of the Weyl-type residual bound (2). The second one is the relative
version of the Hofmann Wielandt type residual bound (3).

The paper is organized as follows: in the next section we give some pre-
liminary results, in Section 3 we prove our relative residual bounds, in Section
4 we discuss some differences between the positive definite and the indefinite
case, and in Section 5 we give a numerical example.



2 Preliminaries

In this section we present some definitions and auxiliary results on the Hermi-
tian eigenvalue problem, Hermitian indefinite decomposition and subspaces

and angles between them.
Let H be indefinite Hermitian matrix and let H = UAU* be its eigenvalue
decomposition. The spectral absolute value of H is defined as

|1 |s = UJA|U* = VT2, (5)

Let H = LJL* be the indefinite Hermitian decomposition of H where I
is non-singular and .J is diagonal with +1 on its diagonal such that .J; =
sign(Ay;) (see e.g. [7] for more details). The eigenvalue problem for H is
closely related to the hyperbolic eigenvalue problem for the pair (L*L,.J)
(see e.g. [9]) there exists non-singular J-orthogonal matrix V such that

VLIV = A, VIV = (6)

By inverting V*JV = J we have V.JV* = .J. Now, from V*J = JV ' it
follows that'

V=11V (7)
Thus, for the spectral condition number of V we have
(V) = VIV = V.
Further,
U =TLV|A7Y2 (8)
Tndeed,

FHU = (N2 L) (LIL) (LVIA|Y?)
— ATV IV (VAL LV) A2
AP IALTAJA]TT2 = A

/From (8) and (5) we also have

|H|s = UIA|U* = LVIA|TV2A|ATY2V L = LVVELS, (9)

"Even more, one can easily show that the singular values of V come in the pairs of
reciprocals.



lLet Y = LX and 7 = L' X, further let
Y, =JL"X =Y, Z=L"'X = 7. (10)

Let Py denote the orthogonal projector onto the indicated subspace.
It is easy to show that

(PzPy)l =Y 7~

where | denotes the generalized or pseudo-inverse (for the proof see [1, Proof

of Theorem 3]). By using (10), we obtain

(Pz, JPy )t = (Z 2L aviyht = (zz2tvvint = j(zz2tvyht
= JYZ =V, 7. (11)

We shall use the angle function Z(Y, Z) between arbitrary subspaces )
and Z of C" defined by (see [14]):

(Y. 2) = sin~ " min{|[(T — Pz) Pyl I(T — Py) P=|[}. (12)

As we shall see later (see Remark 1) for some perturbation § H, we shall
need to derive

L-'SHL *||. Thus, we shall need the following representation
of the pair of orthogonal projectors Py, and Pz, in C", also due to Wedin
[14].
Theorem 1 (Wedin) let Yy, , Z;, be subspaces in C". Assume that

((1’) ra,nk(Py,‘ PZ/') =k+1

(b) Py, Pz, has k singular values equal to one.

Then there exist an orthogonal basis of C" such that, with respect to this
basis, Py, and Pz, are represented by block diagonal matrices Py and Py,
respectively, where

I I
Py = ®£®7(Py7) ) Py = @:\T/7(PZ,) )
AP)’L APZL
10 cos? 0; cos ; sin B;
Pi(Py,) = {0 0} ’ Wi(Pz,) = cos 8, sin 0; sin? 9,

Here Iy is the k x k identity matriv, Ap, , Ap_ —are diagonal matrices with
entries from {0,1} and Apy, Ap, =0. The numbers

0<O <--- <O <72

are the acute principal angles between Yy, and Zy,.



3 Residual bounds

First we prove the Weyl-type relative residual bound for the eigenvalues of
non-singular indefinite Hermitian matrix H.

Theorem 2 let H = LJL*, where I and J are non-singular and J is diag-
onal with £1 on its diagonal and let

§H = RX* + XR*, (13)

where X is an n x m orthonormal matriz. Then there are at least m eigen-

k=1,....m, of H for which

values A;,

| Aoy — pk

< w(V)

L7VSHL™|, k=1

A (14)

Here, uy are eigenvalues of matriz M defined by (1) and V' is J-unitary
matriz which diagonalizes the pair (L*L,.J) as in (6).

Proof. First, notice that the Hermitian matrix H=H—3§H has X as an
invariant subspace. Indeed, using the fact that X*R = R*X = 0 we can
write

(H—6H)X = HX — RX"X + XR*X
HX —(HX — XM)— XR*X = XM .

This means that the eigenvalues of M coincide with at least m eigenvalues of
H. By applying a result of Veseli¢ and Slapnicar [13, Theorem 2.1] we know
that if

2" 0Hx| < na*|H|sz, YV x, n<I1,

then

By (7) we have (V) = [|[V]| ||Vl = ]V "||*. Using (9) it can be written

|6 H x| le* L SHL | < ||[L7'WSHL || 2" L L
LVSHL || 2" LVV 'V TV L*x

L'SHL || s(V) 2™ H|s,

IA A
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which means that there are at least m eigenvalues A, of H such that (14)

holds. ]

Now we need to hound

ffWHff*H. Notice that

LVOHL™ = LTV[(HX — XM)X* 4+ X(X*H — MX*)| "
JIIX XL — XX LI X XL
FLXXU LS — L XX LI X X L
= (I =2, DY 75+ 2o Yr (T — IV 7).

Using (11) we have

L7V6HL™ = [li(PyLJPZL)T']] (PZL']PyL)T
+(Py/'"]PZL)T [[ - '](PZL']PyL)T] .

The following remark is due to Drmac [1, Remark 8].

Remark 1 Using canonical representation of the pair Py, and Pz, we can
see that, in a suitably chosen orthonormal basis, the matrix L™'6H L™ is

block diagonal with diagonal blocks of the form

_ 0 tan ; _ sin ),
Fi=+ [ta,n r Qta,nQL/JJ ’ Il = 1 —siny;’

with acute principal angles ¥; between ), and Zj.

Now we can formulate Theorem 2 in terms of acute principal angles.

Theorem 3 let H = LJL*, where [ and J are non-singular and J is diag-
onal with £1 on its diagonal. Let

V.= JI*X, Z =1'4A,

and let b be the maximal acute principal angle between Yy, and Zj. Then
k=1,....m, of H for which

there are at least m eigenvalues X;

sin

A, —
1 —siny

k=1
|)‘71<| N

m, (15)

PURETRPIY

provided that right hand side in (15) is less than one. Here V is a J-unitary
matriz which diagonalizes the pair (L*L,.J) as in (6).
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Proof. From Theorem 2 it follows that there are at least m eigenvalues A;,

of H such that (14) holds. This, together with Remark 1, yields (15). [ |

In order to prove our second result, a Hofmann Wielandt type relative
residual bound, we need some results on doubly stochastic matrices. A real
n x n matrix YV is doubly stochastic if ¥;; > 0 and >0, Vi = >0 Vi =1
for k = 1,2,--- .n. By Birkhoff’s theorem [3, Theorem 8.7.1], a matrix is
doubly stochastic if and only if it Ties in the convex hull of all permutation
maftrices. This result has lead to the following lemma by R.-C. Ii [6, Lemma

5.1].

Lemma 1 (Li) Let Y be a n x n doubly stochastic matriz, and let M be a
n X n complex matriz. Then there exists a permutation 7 of {1,2,... ,n}
such that

Z | M |*Yi; > Z | Mir |-
=1

i,j=1

The following theorem gives Hofmann Wielandt type relative residual
bound for nonsingular indefinite Hermitian matrix.

Theorem 4 Let H = LJL*, where I and .J are non-singular and .J is di-
agonal with £1 on its diagonal. Let H = H — 6H, where 6 H is defined by
(13), and let H be decomposed as H = LJL*. Set N = —L " '"6HIL *. Then
k=1,....m, of H for which

there are at least m eigenvalues X;

> (M> < WAL (16)
= \ Vi ] T— [Nl

provided that the right hand side in (16) is positive. Here V and V are
J-unitary matrices which simultaneously diagonalize the pairs (L*1,J) and
(L*L,J) as in (6), respectively.

Proof. Positivity of the right hand side in (16) implies || N|| < 1. Therefore,
J, J+N, H=TLJL*and H = L(J4+ N)L* have the same inertia. Therefore,

the eigenvalue decompositions of H and H can be written as

H =UN"2JIA"20",  H = UAY2J|A|20" (17)



The assumption | N|| < 1 implies [[NJ|| < 1T which means that T+ N.J is
nonsingular. According to [4, Theorem 6.4.12 (a)], the square roots of T+ N.J
are well defined, and can be expressed as a polynomial in N.J.

Since ([—I—NJ)U2 = J[([—I—NJ)UQ]*.L the matrix J+ N can be decomposed

as
J+N=(I+N)2I(T+ NI (18)

Thus, we can write H as
H =TT+ N2+ NP =1L, (19)

where I, = LI+ NJ)”2
Further, (8) implies

L =UA'?V . (20)
Similarly, (17), (19) and (8) imply
L=UAI'"?V. (21)
Now (19) and (18) imply that
H—H = LI+ NI+ NP — LI
= LI+ N =121, (22)
where

==J[(T+ N~ (I +NJ)Y V2] = (I + NJ)'/2N. (23)

Pre- and post-multiplication of (22) by U* and U, respectively, together with
eigenvalue decompositions (17), and relations (20) and (21), gives

AU*U — U*UA =[NPV 2V =|A]'/2

By interpreting this equality component-wise we have

XA ~
£ : Spq = [Vﬁ1 Evi*]pqv

(VARTIRE



where § = [/*U and p,qg € {1,... ,n}. By taking the Frobenius norm we

have
2

- |)‘p *)‘q|

Pyg=1 \V |)‘p||)‘q|

=7 =V

Since (|S,,]?) is a doubly stochastic matrix, by applying Lemma 1 we obtain
_ 2
" Ay — A; ~
Pr el ) <z 1)
p=1 |)‘p||)‘7(p)|
for some permutation 7 of {1,2,... ,n}. Further,
IVIEV e < IVIHIV I IEI- (25)
Relation (23) implies
— _ 1
IEI < I+ TN IN| < ——=—==IIN]-

1[IV

In the proof of Theorem 2 we have shown that H has X as its invariant

subspace. Thus, there are there are at least m eigenvalues A\, , kE=1,... m,
of H such that
2
NPy A
3] (AR of {1
<\ VPl = \ /Il
The theorem follows by combining this with (24), (25) and (23). [ |

Now we can formulate Theorem 4 in terms of acute principal angles.
Theorem 5 Assume the notation of Theorem 4. Let
YVi,=JL"X, Zr=L"'X,

and let b be the maximal acute principal angle between Yy, and Zj. Then
k=1,....m, of H for which

there are at least m eigenvalues X;

|Ai, — ’ ~ | sin |
=) <||V V , 26
§;<\Aaﬂma> S v Ty S

provided that the right hand side in (26) is positive.

9



Proof. The proof follows from ||[N]| =

L 'SHL ||, Remark T and (16). m

If we wish to avoid existence of unperturbed and perturbed quantities
V and ‘77 respectively, on the right-hand side of (16) and (26), we need to
bound ||‘7|| in terms of ||V||. For this purpose we need the following theorem
by the authors [9, Theorem 5].

Theorem 6 Let [, = LI+ F) let V and V be nonsingular J-unitary ma-

trices which simultaneously diagonalize the pairs (L*1,.J) and (7/*7/7 J) asin

(6), respectively. If

K
1

" 1
Ell v

(27)

(8]

then

1) < ——1Y (28)

V1 — 4oV

Combining previous results gives our final theorem.

Theorem 7 Assume the notation of Theorem 4. Let
YVi,=JL"X, Zr=L"'X,

and let b be the maximal acute principal angle between Yy and Zjy. Lel
N = L7 '"6HL " be such that

IVlp
2/T=INT = [N~ ATVIP

g (29)

k=1,....m, of H for which

Then there are at least m eigenvalues A;_,

S ( A m) - _VIelv] | sin ¢ o)
o\ VPl ) 148V V(T sin ) (T 2sin )
Proof. In (19) we have defined

L= 1(I+NJ)",

10



The assumption ||N|| < 1 ensures the existence of (14 N.J)'/? defined by the
following series [4, Theorem 6.2.8]

I+ FE = (I+NJ)'?
= on — 1!
N S UL
n=1

2npl

Here 2n — ) =1-1-3-5---(2n — 1). Tt is easy to see that

||E||<]_ﬂ
-2

VI—INT

Using the fact that g from (29) is the upper bound for a from (27), we can
apply bound (28) for |[V|| with 5 in role of a. This together with (26) gives
(30). u

4 Comparison of the positive definite and the
indefinite case

First, notice that our bound (15) is a proper generalization of the bound (4)
to indefinite Hermitian matrices. Indeed, in the positive definite case the
matrix V' is unitary and the bound (15) is equal to (4).

Further, it is easy to show that in the positive definite case the angle
function Z(Yr,, Z;,) defined by (12) does not depend on I, but only on H (see
[2]). However, in indefinite case this is not true in general. If we decompose
matrix H as

H - L].]L] - LQ.]LQ (3])
then we can write

Vi, =JLX,  Z, =I7'X
Vi, =JIX, Z,=1,'X.

If o, = Z2(Vr,, Zr,), 1 = 1,2, it is of our interest to find out is there any
connection between the angles ¥y and .

11



iFrom (31) it follows that there exists nonsingular J-unitary matrix W
such that I, = L;W. ;From Remark 1 it follows that

sin ¥,

LSHL ™ _ L =1,2.
2 2 || ] o Sin 77Z)7:7 ! 9
This, together with fact that Ly, = LiW, gives
sin g sin
— < WP
1 —sin )y 1 — siny

Therefore, for ¥ and 5 small enough, we have
sin iy 2 ||W])% sin .

We conclude that if the matrix W has moderate norm and if the subspaces
Yy and 1y are sufficiently close, then the angle functions will be close, too.
The bounds of Section 3 depend on the spectral condition number or
the norm of the J-unitary matrix V' which diagonalizes the pair (1*L,.J).
Although these quantities can be large, x(V') is bounded by [8, Theorem 3]:

(V) <min/r(A*L*LA),

where the minimum is taken over all matrices which commute with .J. Appro-
priate bounds for £(V') exist for some other classes of “well-behaved matrices”
such as scaled diagonal dominant matrices, block scaled diagonally dominant
(BSDD) matrices and quasi-definite matrices. Details of these bounds can
be found in e.g. [12, Section 3.1] and [11].

5 Numerical example

Let H = D*(J 4+ N)D be the nonsingular Hermitian matrix with

2-10* 8-10* 0 0 0 0.08 0.01 0.03

D_ 2-10° 4-10* 0 0 N — 0.08 0.06 0.05 0.03
0 0 1T 05" 0.01 0.05 0.08 0.04| °

0 0 0.6 0.8 0.03 0.03 0.04 0.04

and J = diag(1,1,—1,—1). All subsequent quantities are displayed properly
rounded to the given number of decimal places. The spectrum of H is

M H) = {8.9705 - 10°,4.8108 - 107, —1.9227, —0.11514}.

12



et

0.19962 0
0.97987 0
0 0.78274
0 0.62235

X =

be the orthonormal matrix. From (1) it follows that

8.9705-10° 6.6073 - 10°

M= 166073-10°  _1.9149 |

with the spectrum
MM) = {8.9704 - 10°, —1.9198}.
The residual R is

1.7432 -107 —352.92

~3.4906 - 10° 71.795
R=HX XM= —172.67 1.3242 - 10~
217.16 —1.6214-10~4

with [|R|| ~ 1.8 -107. Therefore, the residual bounds from the classical
perturbation theory (2) and (3) are useless. Further, for §H from (13) we
have [[§HH'|| = 2.3-10%, so the relative perturbation bounds which use the
factor [[6H H'||, like those from [1, Theorem 3], are also useless.

On the other hand, consider two decompositions of H: H = [4JL7,
where L is obtained using Gaussian elimination, and H = Ly J L}, where L
is obtained from the eigenvalue decomposition of the matrix .J + N. More
precisely,

2.0264 - 10* 0 0 0

[ 8.6931 - 10* 3.2418 - 10* 0 0

e 0.03435 0.0609 —1.1057 0

0.03346 0.04231 —0.79638 —0.42555
and
1.3743 - 10* 1.4896 - 10*  2.7393-10%2 —2.0233 - 102
[ 8.2797 - 10* 4.1918 - 10* 1.9839-10° —7.8674 - 10?
9 =

3.7731-107%  —8.2197-107%  —1.1041 —1.2542 1072 °
2.9716 - 1072 —2.2666 - 10~*  —0.79993 0.41642

13



where Ly = D*U,,,|/\,,,|1/2 and J+ N = U,|\,|JU* is the eigenvalue decompo-
sition of J + N. We have [,y = LW, where W*JW = J and |W|| = 1.029.

For the matrices Vi and V5 which diagonalize the pairs (141J1L7) and
(Lo 1L3) as in (6) we have

r(Vi) ~ 1, k(Vay) = 1.059,
respectively. For the matrix § H defined by (13) we have

LVSHEL™|| = 0.0498,

Ly ' SHL*|| = 0.0475.

Therefore, Theorems 2 and 3 bound well the relative perturbation

() M) () — MM
m{ Nl DA }”‘0(”5‘

Finally, Theorems 4, 5 and 7 bound equally well the relative perturbation

\/(MH) “ N alH) — da(M))?
XN ()X ()

= 0.0015.
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