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2and bound the error in the ith eigenvector in terms of the relative gap,minj 6=i j�i � �j jj�i�j j1=2 :In general, this theory usually restricts H to be nonsingular andM to be positivede�nite.We relax this restriction by allowing H to be singular. For our results oneigenvalues we allow M to be positive semi-de�nite and for a few results we allowit to be more general. For these problems, for eigenvalues that are not zero orin�nity under perturbation, it is possible to obtain local relative error bounds.Thus, a wider class of problems may be characterized by this theory.Although it is impossible to give meaningful relative error bounds on eigenval-ues that are not bounded away from zero, we show that the error in the subspaceassociated with those eigenvalues can be characterized meaningfully.1. IntroductionWe consider the eigenvalue problemHx = �Mx; H;M 2 Cn�n; x 2 Cn; � 2 C; (1.1)where H and M are Hermitian matrices. We assume that there exists anonsingular matrix X 2 Cn�n such thatX�HX = 
; X�MX = J; (1.2)where 
 = diag(!1; : : : ; !n); J = diag(j1; : : : ; jn);and !i 2 R; ji 2 fei� : � 2 [0; 2�]g [ f0g; i = 1; 2; : : : ; n:If we restrict J to be nonsingular, then (1.1) is a statement of eigen-problem for the matrix A = HM�1. If we impose the restriction!i 2 R; ji 2 f0; 1g;then M is positive semi-de�nite, and (1.1) is the generalized Hermitianeigenvalue problem. Most of the results in this paper concern this class ofeigenvalue problems.We compare (1.1) to the perturbed problem(H +�H)~x = ~�(M +�M)~x (1.3)



3where �H and �M are \small" Hermitian perturbations. Let �1 � �2 �: : : � �n be the eigenvalues of the pencil (1.1) and let ~�1 � : : : � ~�n beeigenvalues of the perturbed pencil (1.3). Starting from the theory of Kato[12], we obtain meaningful bounds onj�i � ~�ijj�ij : (1.4)Moreover, for the case when M is positive de�nite, we give conditionsunder which we can bound the error in the subspaces in terms of a gener-alization of the relative gaprelgap(�i) = minj6=i j�i � �jjj�i�jj 12 :This theory generalizes that in papers by Barlow and Demmel [1], Demmeland Veseli�c [5], Veseli�c and Slapni�car [18], and some of the results by Guand Eisenstat [11], Li [13, 14], and Eisenstat and Ipsen [7].We make the following improvements to the theory given in the abovepapers:� The bounds on eigenvalues allow for H and M to be singular. Thesebounds are used to obtain bounds on the singular value decomposition(SVD).� The bounds given are local in the sense that each eigenvalue has itsown condition number.� The bounds given are optimal and show clearly the role of structuredperturbations.� The bounds on eigenvectors include bounds on the error in the sub-space associated with eigenvalues that are not bounded away fromzero.In x2, we give simple bounds for the relative error of the form (1.4)under weaker assumptions than have been given in previous works [1, 18,11, 10] and show how this theory can be applied to the singular valuedecomposition. In x3, we show how this theory accounts for the e�ect ofstructured perturbation on the problem (1.1). In x4, we give bounds onerror in subspaces for scaled perturbations. Some examples are given in x5and our conclusions are in x6.2. Locally optimal perturbation bounds on Hermitian pencilsIn this section we �rst give local condition numbers for eigenvalues. Wethen derive the perturbation bounds for the singular value decomposition.



42.1. Local condition numbers of eigenvaluesConsider the perturbed pair~H � H +�H = H + �E; ~M �M +�M =M + �F; (2.1)where � is a positive real number, E = �H=� and F = �M=�. For � 2 [0; �]let H(�) = H + �E; M(�) =M + �F: (2.2)Now consider the family of generalized eigenproblemsH(�)x(�) = �(�)M(�)x(�); � 2 [0; �]: (2.3)We assume that (1.2) holds for each � 2 [0; �] and some X(�), 
(�) andJ(�). Let (�i(�); xi(�)) be the ith eigenpair of (2.3). De�ne S to be theset of indices given byS = fi:H(�)xi(�) 6= 0;M(�)xi(�) 6= 0 for all � 2 [0; �]g: (2.4)The set S is the set of eigenvalues for which relative error bounds can befound. The next theorem gives such a bound. Its proof follows that ofTheorem 4 in [1, p.773].Theorem 2.1. Let (�i(�); xi(�)) be the ith eigenpair of the Hermitianpencil in (2.3). Let S be de�ned by (2.4). If i 2 S, then�i(�)� �i(0)�i(0) = exp Z �0 �i(�)d�! ; (2.5)where �i(�) = x�i (�)Exi(�)x�i (�)H(�)xi(�) � x�i (�)Fxi(�)x�i (�)M(�)xi(�) : (2.6)Proof. Assume that �i(�) is simple at the point �. Then from theclassical eigenvalue perturbation theory, we have the �rst order expansion�i(� + �) = �i(�) + � _�i(�) +O(�2): (2.7)Let us compute _�(�). By di�erentiating the equation[H + (� + �)E]xi(� + �) = �i(� + �)[M + (� + �)F ]xi(� + �)with respect to �, and setting � = 0 in the result, we obtainExi(�) +H(�) _xi(�) = _�i(�)M(�)xi(�) + �i(�)Fxi(�) + �i(�)M(�) _xi(�):



5Applying x�i (�) to the left side of this equation, using (2.3), and rearranginggives _�i(�) = x�i (�)Exi(�)x�i (�)M(�)xi(�) � �i(�)x�i (�)Fxi(�)x�i (�)M(�)xi(�) :Since �i(�) 6= 0 for all �, dividing by �i(�) givesd(ln�i(�))d� = _�i(�)�i(�) = x�i (�)Exi(�)x�i (�)H(�)xi(�) � x�i (�)Fxi(�)x�i (�)M(�)xi(�) = �i(�); (2.8)where ln is the complex version of the natural logarithm function.If �i(�) is simple for all � 2 [0; �], then the bound (2.5) follows byintegrating from 0 to �. In Kato [12, Theorem II.6.1,p.139], it is shown thatthe eigenvalues of H(�) in S are real analytic, even when they are multiple.Moreover, Kato goes on to point out that there are only a �nite number of� where �i(�) is multiple, so that �i(�) is continuous and piecewise analyticthroughout the interval [0; �]. Thus we can obtain (2.5) by integrating (2.8)over each of the intervals in which �i(�) is analytic.Our usual way of interpreting this bound comes from the followingcorollary.Corollary 2.1. Assume the hypothesis and terminology of Theorem2.1. For all i 2 S we have�����i(�)� �i(0)�i(0) ���� � j exp(��i)� 1j;where �i = max�2[0;�] jRe(�i(�)j+ i max�2[0;�] jIm(�i(�))j:Neither the exact expression Theorem 2.1 nor the bound in Corollary2.1 is computable. We can only hope to compute the function �i(�) at onepoint, � = 0.Thus we will always use the computable �rst order approximationz�̂i = jRe(�i(0))j+ ijIm(�i(0))j:If this value is large, then the corresponding eigenvalue is sensitive. More-over, if � is su�ciently small, then this approximation will give us appro-priate qualitative information.zThis approximation can be computed by switching the roles of the perturbed andunperturbed problem. The backward errors E and F simply change signs, and the\original" vector xi(0) becomes the computed one.



6A very important issue in this paper is whether or not an index i is inthe set S. From the proof of Theorem 2.1, it can easily be inferred thati 2 S if and only if �i(�) in (2.6) is bounded for each �. That, of course,is not possible to verify since we cannot compute �i(�) for every value of�. We will give a heuristic criterion for membership in this set, justi�edbelow. The discussion below assumes that �i(�) is simple and that we canuse an argument like that in Theorem 2.1 to consider the case where �i(�)is not simple.First, consider the case whereH(�)xi(�) = 0 for some �, butM(�)xi(�) 6=0 for all �. Then �i(�) = 0 for some �. By the mean value theorem forsome � 2 [0; �], we have�i(�) = �i(0) + � _�i(�) = 0:Thus �i(0) = �� _�i(�):If j�i(0)j > � max�2[0;�] j _�i(�)j;then i 2 S. Of course, this is not veri�able either. Thus a good heuristic isj�i(0)j � �j _�i(0)j ) i 2 S:or equivalently, �j�̂ij = �j�i(0)j � 1) i 2 S: (2.9)If we assume that M(�)xi(�) = 0 for some �, but H(�)xi(�) 6= 0 for all �,similar reasoning arrives again at the heuristic (2.9). The only way to knowfor certain if i 2 Sc, the complement of S, is to discover a perturbation inthe class of interest that makes either H(�)xi(�) = 0 or M(�)xi(�) = 0.It is entirely possible that H(�)xi(�) = M(�)xi(�) = 0 and that �i(�)is de�ned in the limit and bounded for all �. This is the so-called (0; 0)-eigenvalue case. To exclude this case as well, we may wish to impose theslightly stricter criterion�� jx�i (0)Exi(0)jjx�i (0)H(0)xi(0)j + jx�i (0)Fxi(0)jjx�i (0)M(0)xi(0)j�� 1: (2.10)If (2.10) is not true, then it is unlikely that reasonable relative error boundon �i is obtainable. Absolute error bounds are unlikely to be improvedupon for such eigenvalues. If (2.10) holds, then the estimate�����i(�)� �i(0)�i(0) ���� � j exp(��̂i)� 1j+O(�2)



7is accurate and computable. We demonstrate this point with an example.Example 2.1. We take M = I and H = DAD whereD = diag(1; 108; 104; 106)and A = 0BB@ 1 �1 0 0�1 2 �1 00 �1 2 �10 0 �1 1 1CCAThe matrix H has exactly one zero eigenvalue. We then takeE = jH j:To the digits displayed, MATLAB computes the eigenvalues� = diag(2 � 1016; 1:0001 � 1012; 4:9995 � 107; 3:05062 � 10�17):The last eigenvalue should be zero, but is not. The clue here is that thecorresponding values of �̂i; i = 1; 2; 3; 4, are�̂ = (1; 1; 13; 3:93 � 1017):If we choose � = 2:2204 � 10�16, the relative distance between two 
oatingpoint numbers in IEEE double precision, we see that��̂4 = 87 > 1;thus the last eigenvalue cannot be reliably separated from zero, and thesmall componentwise perturbation ~H = H � �jH j makes this eigenvaluenegative. However, all of the other eigenvalues are well-separated fromzero. The non-zero eigenvalues of H are all well-behaved under componen-twise perturbations. We will show later (Example 5.5) that the subspaceassociated with the zero eigenvalue is also well-behaved.Since for Hermitian eigenvalue problems, the eigenvalues will be real,we can will use the following simpli�cation of Corollary 2.1.Corollary 2.2. Assume the hypothesis and terminology of Theorem2.1. If �i(�) 2 R for all � 2 [0; �] and i 2 S thenexp(���i) � �i(�)�i(0) � exp(��i); (2.11)where �i = max�2[0;�] ���� x�i (�)Exi(�)x�i (�)H(�)xi(�) � x�i (�)Fxi(�)x�i (�)M(�)xi(�) ���� :



8Our bound improves similar results from [1, 5, 6, 18] since it is applicableto the larger class of matrix pairs, accommodates the case when one or bothmatrices are singular, and gives nearly optimal local condition number foreach non-zero eigenvalue.If the perturbations E and F are not structured in any particular waywith regard to xi(�), then the bound from Theorem 2.1 will not be muchbetter than classical normwise bounds [19, 17, 9]. For structured pertur-bations the �rst order approximation of our bound can be much sharperthan the classical bounds and relative bounds from [1, 5, 6, 18], as shownin the examples of x5.2.2. The singular value decompositionThe singular value decomposition (SVD) of a matrix A 2 Cm�n is givenby A = U�V �;where U and V are unitary, and � = diag(�i) diagonal and nonnegative.For simplicity, we assume m � n, for m < n, analogous results follow byconsidering A�.Corollary 2.3. Let ~A = A + �A = A + �E, where E = �A=�.De�ne A(�) = A + �E for � 2 [0; �]. Let A(�) have the singular valuedecomposition A(�) = U(�)�(�)V (�)�; � 2 [0; �];where U(�) 2 Cm�m and V (�) 2 Cn�n are unitary and�(�) = diag(�1(�); : : : ; �n(�));U(�) = (u1(�); : : : ; um(�));V (�) = (v1(�); : : : ; vn(�)):Then for each index i such that �i(�) 6= 0 for all � 2 [0; �] we haveexp(���i) � �i(�)�i(0) � exp(��i); (2.12)where �i = max�2[0;�] ����Re(u�i (�)Evi(�))u�i (�)A(�)vi(�) ���� : (2.13)Proof. We note that �i(�) is the ith eigenvalue of (1.1) with M = Iand H(�) given by H(�) = � 0 A(�)A(�)� 0 � :



9The corresponding eigenvector isxi(�) = 1p2 � ui(�)vi(�) � :If we evaluate �i(�) in (2.6) we obtain�i(�) = x�i (�)� 0 EE� 0 �x(�)x�i (�)H(�)xi(�) = Re(u�i (�)Evi(�))u�i (�)A(�)vi(�) :If we then apply Corollary 2.2, we have (2.13).3. E�ect of structured perturbationsIn this section, we discuss the e�ect of common structured errors. Forthis part of the theory we state the results for the SVD and the Hermitianpencil (H;M). Similar bounds which can be derived for generalizations ofthe SVD are given in [2].If we had exact expressions for the perturbation matrices E and F from(2.1), then Theorem 2.1 and Corollary 2.1 could always be used to give agood bound. However, it is extremely rare that a perturbation resultingfrom either data or an algorithm is known exactly. Usually, we just havea bound for it, and with some luck, we have a structured bound. In thissection, we discuss what can be determined from such a bound.Two structures of perturbations are discussed, although there are oth-ers. The �rst structure discussed are scaled perturbations, that is, when Ehas the form (and analogously F )E = D�ESD; kESk � 1:Such perturbations are common in the discussion of Jacobi-type methods[5]. When discussing the SVD, we may discuss the two-sided perturbationE = D�LESDR; kESk � 1:However, for simplicity, we will just simply discuss the perturbationE = ESD; kESk � 1:Our results are easy to generalize to the two-sided perturbations.The other structure discussed here are componentwise perturbations.Here we assume that jEj � jH j; jF j � jM j;where both the inequality and the absolute value are componentwise. Suchperturbations are common for highly structured eigenvalue problems andfor data perturbations.



103.1. Structured perturbations of the SVDWe suppose that~A = A+�A = A+ �E; E = ESD; (3.1)whereD is some right grading matrix and kESk � 1. An important contextfor this class of perturbations is the analysis of Jacobi-type methods [5]where D = diag(kA(: ; 1)k; kA(: ; 2)k; : : : ; kA(: ; n)k):However, the results here allow D to be any matrix.For � 2 [0; �] let A(�) and its SVD be de�ned as in Corollary 2.3. Asbefore, let S be the set of indices for which �i(�) 6= 0 for all � 2 [0; �]. Wenow introduce the notion of a truncated SVD. In this case, we truncatewith respect to the index set S.Definition 3.1. Let k = jSj, and let the singular values of A(�)whose indices are in S correspond to singular values �1(�); : : : ; �k(�) innon-increasing order. The truncated SVD of A(�) with respect to S isde�ned as A(�;S) = U(�)�(�;S)V �(�);where �(�;S) = diag(�1(�); �2(�); : : : ; �k(�); 0; : : : ; 0):It is also appropriate to de�ne the Moore-Penrose pseudoinverse ofA(�;S). For a �xed matrix A 2 Cm�n, the Moore-Penrose pseudoinverseis the unique matrix Ay 2 Cn�m satisfying the four Penrose conditions1: AAyA = A; 3: (AAy)� = AAy;2: AyAAy = Ay; 4: (AyA)� = AyA:It is easily veri�ed that the Moore-Penrose pseudoinverse of A(�;S) is givenby Ay(�;S) = V (�)�y(�;S)U�(�);where �y(�;S) = diag(��11 (�); : : : ; ��1k (�); 0; : : : ; 0);and k is as speci�ed in De�nition 3.1. We now use this form to establishglobal error bounds for all �i; i 2 S.



11Proposition 3.1. For � 2 [0; �] let A(�) = A + �ESD, where ES andD are de�ned by (3.1), have the singular value decomposition assumed inCorollary 2.3. Then (2.12) holds for each i 2 S with �i bounded by�i � max�2[0;�] kDAy(�;S)ui(�)k � max�2[0;�] kDAy(�;S)k:Proof. From (2.13), for each i 2 S we have�i = max�2[0;�] jRe(u�i (�)ESDvi(�))jju�i (�)A(�)vi(�)j : (3.2)Using the fact that ku�i (�)ESk � 1 with (3.2) yields�i � max�2[0;�] kDvi(�)k�i(�) : (3.3)By the de�nition of Ay(�;S) we havevi(�) = Ay(�;S)ui(�)�i(�): (3.4)Combining (3.3) with (3.4) yields the desired result.The following corollary is a componentwise error bound that we mightexpect from singular value improvement procedures. Its proof is very sim-ilar to the scaled case.Corollary 3.1. Let~A = A+�A = A+ �E; jEj � jAj:Here both the inequality and the absolute value are componentwise. For� 2 [0; �] let A(�) = A+�E, have the singular value decomposition assumedin Corollary 2.3. Then (2.12) holds for each i 2 S with �i bounded by�i � max�2[0;�] k jAj jAy(�;S)ui(�)j k � max�2[0;�] k jAj jAy(�;S)j k:Proposition 3.1 and Corollary 3.1 generalize the corresponding results byDemmel and Veseli�c [5] and Li [13] to matrices which do not necessarilyhave full rank. Corollary 3.1 is illustrated by Example 5.1 in x5.3.2. Structured perturbations for the Hermitian generalized eigenvalue prob-lemWe consider the Hermitian pencil H � �M , where M is positive semi-de�nite, and the perturbed pencil ~H�� ~M , where ~H and ~M are de�ned by



12(2.1). Suppose that the family of pencils H(�)� �M(�); � 2 [0; �], de�nedby (2.2), has the formH(�) = X��(�)�(�)X�1(�); M(�) = X��(�)J(�)X�1(�); (3.5)where X(�) = (x1(�); : : : ; xn(�));�(�) = diag(�1(�); : : : ; �n(�));J(�) = diag(j1(�); : : : ; jn(�)):Here ji(�) = � 0 if xi(�) 2 Null(M(�)) ;1 otherwise.As done in Veseli�c and Slapni�car [18], we relate our problem to a positivede�nite eigenvalue problem. To do so, we �rst de�ne the spectral absolutevalue of the matrix H(�) with respect to M(�).Definition 3.2. Let For � 2 [0; �] let the pair (H(�);M(�)) have thegeneralized eigendecomposition in (3.5). The spectral absolute value ofH(�) with respect to M(�) is the matrix H(�) M given byH(�) M = X��(�)j�(�)jX�1(�);where j�(�)j = diag(j�1(�)j; : : : ; j�n(�)j). If M(�) = I for all �, then wede�ne H(�) = H(�) I .If we let X�1(�) have the factorizationX�1(�) = Q(�)R(�);where Q(�) is unitary, then it is easily seen thatH(�) M = R�(�) R��(�)H(�)R�1(�) R(�):This is the de�nition given by Veseli�c and Slapni�car [18] for the case whereM is nonsingular. We also note that for the case M = I , we haveH(�) =pH2(�);where p� denotes matrix square root, that is, H(�) is the positive semi-de�nite polar factor of H(�).We will now de�ne a truncated version of H(�) M . De�ne S as in (2.4).



13Definition 3.3. The truncated spectral absolute value of H(�) withrespect to M(�) is the matrix H(�;S) M such thatH(�;S) M = X��(�)j�(�;S)jX�1(�);where �(�;S) = diag(�1(�;S); : : : ; �n(�;S))and �i(�;S) = � �i(�); i 2 S;0; otherwise.We de�ne M(�;S) and J(�;S) conformally.Clearly, H(�;S) M is positive semi-de�nite. We can factor both H(�;S) Mand M(�;S) into the formH(�;S) M = C�(�;S)C(�;S); (3.6)M(�;S) = G�(�;S)G(�;S);respectively, whereC(�;S) = U(�)�(�;S)X�1(�) 2 Cm�n; m � n; (3.7)G(�;S) = V (�)J(�;S)X�1(�) 2 Cp�n; p � n:Here �(�;S) = diag(�i(�;S)) = diag(pj�i(�;S)j);and U(�) and V (�) are matrices with orthonormal rows and orthonormalnontrivial columns. That is, columns of U(�) which correspond to i 2 Sare orthonormal, and columns of V (�) for which ji(�) = 1 are orthonormal.Note that the form (3.7) describes the quotient singular value decomposi-tion (QSVD) of the pair (C(�;S); G(�;S)) [15, 16]. The G(�;S)-weightedpseudoinverse of C(�;S) [3, 8] is given byCyG(�;S) � X(�)�y(�;S)U�(�): (3.8)Likewise, the C(�;S)-weighted psuedoinverse of G(�;S) isGyC(�;S) � X(�)Jy(�;S)V �(�):Using this structure, we can establish bounds on all of the eigenvaluesthat do not change sign under the perturbation.



14Theorem 3.1. Let the pair ( ~H; ~M) be de�ned by (2.1). For � 2 [0; �]let (�i(�); xi(�)) be the ith eigenpair of the pair (H(�);M(�)), de�ned by(2.2). Let C(�;S) and G(�;S) be de�ned by (3.6), and let the QSVD of(C(�;S); G(�;S)) be given by (3.7). De�ne S as in (2.4). Then each�i(�); i 2 S, satis�es (2.11), where�i � max�2[0;�] jx�i (�)Exi(�)jx�i (�) H(�;S) Mxi(�) + max�2[0;�] jx�i (�)Fxi(�)jx�i (�)M(�)xi(�) (3.9)= max�2[0;�] ju�i (�)[CyG(�;S)]�ECyG(�;S)ui(�)j+ max�2[0;�] jv�i (�)[GyC(�;S)]�FGyC(�;S)vi(�)j� max�2[0;�] k[CyG(�;S)]�ECyG(�;S)k + max�2[0;�] k[GyC(�;S)]�FGyC(�;S)k:Proof. For each i 2 S considering (2.11) as in Corollary 2.2 yields�i = max�2[0;�] jx�i (�)Exi(�)jjx�i (�)H(�)xi(�)j + max�2[0;�] jx�i (�)Fxi(�)jjx�i (�)M(�)xi(�)j= max�2[0;�] jx�i (�)Exi(�)j�i(�)2 + max�2[0;�] jx�i (�)Fxi(�)jji(�)2 :By (3.6) and (3.7) this is just the �rst equality in (3.9). Sincexi(�) = �i(�)CyG(�;S)ui(�) = ji(�)GyC(�;S)vi(�);we have �i = max�2[0;�] ju�i (�)[Cy(�;S)]�ECy(�;S)ui(�)j+ max�2[0;�] jv�i (�)[GyC(�;S)]�FGyC(�;S)vi(�)j:which is the second equality in (3.9). Classical norm inequalities yield theinequality in (3.9).The following corollary yields a bound for the case of scaled perturba-tions discussed by Barlow and Demmel [1].Corollary 3.2. Assume the hypothesis and terminology of Theorem3.1. Assume that E and F have the formE = D�HESDH ; kESk � 1; F = D�MFSDM ; kFSk � 1:



15Then for each i 2 S�i � max�2[0;�] kDHCyG(�;S)ui(�)k2 + max�2[0;�] kDMGyC(�;S)vi(�)k2:� max�2[0;�] kDHCyG(�;S)k2 + max�2[0;�] kDMGyC(�;S)k2:The componentwise version of Theorem 3.1 is obtained similarly as inx3.1 and x3.2.Corollary 3.3. Assume the hypothesis and terminology of Theorem3.1. Assume that jEj � jH j and jF j � jM j. Then�i � max�2[0;�] ju�i (�)[CyG(�;S)]�j jH j jCy(�;S)ui(�)j+ max�2[0;�] jv�i (�)[GyC(�;S)]�j jM j jGyG(�;S)vi(�)j� max�2[0;�] k j[CyG(�;S)]�j jH j jCyG(�;S)j k+ max�2[0;�] k j[GyC(�;S)]�j jM j jGyC(�;S)j k:Corollary 3.3 is illustrated by Examples 5.2, 5.3 and 5.4 in x5. It generalizesbounds in Veseli�c and Slapni�car [18] to pencils that are singular and asshown in the examples, often allows us to improve upon them.4. Error bounds on subspacesWe now consider the e�ect of structured perturbations on the eigenvec-tors of H . We con�ne our attention to the perturbed problem(H +�H)~x = ~�~x;where �H = �E. Consider the family of Hermitian eigenproblemsH(�)x(�) = �(�)x(�); H(�) = H + �E; � 2 [0; �]: (4.1)De�ne the set S by S = fi:�i(�) 6= 0; � 2 [0; �]g; (4.2)in which case its set complement isSc = fi:�i(�) = 0; for some � 2 [0; �]g: (4.3)



16Suppose that S has k elements and that Sc has n � k elements. LetX1; ~X1 2 Cn�k be the eigenvectors of H and H +�H associated with Sand let X2; ~X2 2 Cn�(n�k) be the matrix of eigenvectors associated withSc. Thus we have HXj = Xj�j ; j = 1; 2; (4.4)(H +�H) ~Xj = ~Xj ~�j ; j = 1; 2:We now de�ne two separate types of relative gaps:relgap(�; �) = j�� �jj��j1=2 ; �; � 6= 0;relgap0(�; �) = j�� �jj�j :The �rst de�nition is just that from Barlow and Demmel [1], and the secondde�nition allows � (but not �) to be zero. This allows to bound the error inthe \zero" subspaces, that is, the eigenvectors in Sc. These straightforwardextensions to sets of eigenvalues will be used: for � = diag(�i) and � =diag(
j) relgap(�;�) = min(i;j) relgap(�i; 
j);relgap0(�;�) = min(i;j) relgap0(�i; 
j):We will bound kX�1 ~X2kFwhich is \sin �" bound for the error in the zero subspace X2 from Davisand Kahan [4].We will also partition X1 (conformally ~X1) intoX1 = ( X11 X12 );where X11 and X12 are the eigenvectors associated with the eigenvaluematrices �11 and �12 such that�1 = diag(�11;�12):We also bound kX�11 ~X12kFwhich is \sin �" bound for the error in two subspaces within the non-zerosubspace X1. There can be no meaningful bound within the zero subspaceX2.We can write down the following theorem on the perturbations of thesesubspaces.



17Theorem 4.1. Let H;�H 2 Cn�n be Hermitian and let S and Sc bede�ned by (4.2) and (4.3), respectively. Let Xj ; ~Xj and �j , ~�j , j = 1; 2satisfy (4.4). Furthermore, let �1 be partitioned into �1 = diag(�11;�12),and let ~�1 be partitioned conformally. De�ne X1i, i = 1; 2 such thatHX1i = X1i�1i;and de�ne ~X1i; i = 1; 2 conformally as well. For � 2 [0; �] let X(�) be theeigenvector matrix of the H(�) from (4.1), and let �(�;S) be de�ned as inDe�nition 3.3 with M = I and X�1(�) = X�(�). LetH(�;S) = X(�)�(�;S)X�(�); C(�;S) = j�(�;S)j1=2X�(�):Then kX�11 ~X12kF � k[Cy(0;S)]��HCy(�;S)kFrelgap(�11; ~�12) (4.5)and kX�1 ~X2kF � kHy(0;S)�HX2kFrelgap0(�1; ~�2) : (4.6)Proof. For any �i 6= ~�j and i 6= j, we havex�i ~xj = x�i�H~xj~�j � �i : (4.7)If xi is a column of X11 and ~xj is a column of X12, then i; j 2 S, thusjx�i ~xj j � jx�i�H~xj j j�i~�j j1=2j~�j � �ij j�i~�j j1=2 = jx�i�H~xj j j�i~�j j1=2j~�j � �ij kC(0;S)xik kC(�;S)~xjk= ju�i [Cy(0;S)]��HCy(�;S)~uj jrelgap(�i; ~�j) :Summing these up and using standard norm inequalities yieldskX�11 ~X12kF � kU�11[Cy(0;S)]��HCy(�;S) ~U12kFrelgap(�11; ~�12) ;where U11 = C(0;S)X11j�11j1=2 and ~U12 = C(�;S)X12j�12j1=2. Since U11and ~U12 have orthonormal columns, the bound (4.5) follows.To obtain (4.6), simply assume that i 2 S and j 2 Sc in (4.7). Thenjx�i ~xj j � jx�i�H~xj j j�ijj~�j � �ij j�ij = jx�i�H~xj jrelgap0(�i; ~�j) kH(0;S)xik= jx�iHy(0;S)�H~xj jrelgap0(�i; ~�j) :



18A similar argument to that above produces (4.6).This theorem can be generalized to (1.3) with M positive de�nite if wesubstitute an M -weighted norm for the Euclidean and Frobenius norms.Bounds on the perturbed subspaces for structured perturbations areeasy to derive from Theorem 4.1. For instance, let�H = D��AD; k�AkF = �F :Then short arguments from (4.5) and (4.6) lead tokX�11 ~X12kF � �F max0���� kDCy(�;S)k2relgap(�11; ~�12) ;kX�1 ~X2kF � �F kDHy(0;S)k kD ~X2krelgap0(�1; ~�2) :If we instead assume that j�H j � �jH j;then kX�11 ~X12kF � � k jCy(0;S)jT jH j jCy(�;S)j kFrelgap(�11; ~�12) ;kX�1 ~X2kF � � k jHy(0;S)j jH j kFrelgap0(�1; ~�2) :We note that the error in the zero subspace X2, given by kX�1 ~X2kF ismodest if k jHy(0;S)j jH j kF or kDHy(0;S)k kD ~X2k is modest and �1 hasa good relative separation from the near zero eigenvalues.5. ExamplesIn this section we illustrate our results on several examples. We giveexamples for structured perturbations of x3, in particular for the relativecomponentwise perturbations of the type�H = �E; jEj � jH j:Such perturbations are highly interesting since they appear during variousnumerical algorithms for eigenvalue and singular value problems [1, 5, 9,17, 18, 19]. Such perturbations are sometimes called 
oating-point pertur-bations [18]. In all examples we compute the �rst order approximations ofour bounds, thus we cannot expect optimality in all cases.



19The �rst example deals with the singular value decomposition and il-lustrates Corollary 3.1.Example 5.1. LetA = 0@�2 � 1040 7 � 1020 7�8 � 1040 �6:0001 � 1020 �6�7 � 1040 2 � 1020 2 1A :Note that the last two column vectors of A are nearly parallel. Let �A =�E where � = 10�6 andE = 0@ 7 � 1039 �1 � 1020 3�3 � 1040 1 � 1020 �1�9 � 1039 3 � 1019 0:41A :Also, both A and D are strongly scaled from the right. Let ��i = �i(A +�A)� �i(A). The singular values of A are (properly rounded)(�1; �2; �3) = (1:08 � 1041; 9:25 � 1020; 0:45);and the relative changes in the singular values are� j��1j�1 ; j��2j�2 ; j��3j�3 � = (2:5 � 10�7; 1:6 � 10�7; 3:0 � 10�2):Both singular value decompositions, of A and A + �A, are computed bythe one-sided Jacobi method whose su�ciently high accuracy is guaranteedby the analysis of Demmel and Veseli�c [5].Since jEj � 0:42857jAj, we can apply Corollary 3.1. We compute the�rst order approximations of the corresponding bounds, that is,j��ij�i � �Ak jAj jAyuij k � �Ak jAj jAyj k; �A = 0:42857: (5.1)Note that we can use the fact that A is strongly scaled from the right tocompute inverse much more accurately. The bounds obtained by the �rstinequality in (5.1) are� j��1j�1 ; j��2j�2 ; j��3j�3 � � (4:3 � 10�7; 5 � 10�7; 1:8 � 10�1):This shows that our bounds are local and even the �rst order approxima-tions can be nearly optimal. Note that our relative bound for �1 is slightlyworse than the the bound k�Ek=�1 = 2:97 � 10�7 which is derived fromthe classical normwise perturbation theory. This is to be expected for the



20largest singular value since it is always perfectly conditioned in the rela-tive sense (unless it is 0) and our bounds have an extra condition number.However, the classical bound is meaningless for other singular values.The simpli�ed bounds, that is, the second inequality in (5.1)maxi=1;2;3 j��ij�i � 1:8 � 10�1and the Demmel-Veseli�c bound,maxi=1;2;3 j��ij�i � n�Ak [A �1diag(kA:ik)]�1k � 3:8 � 10�1;respectively, both cover only the worst case.The following two examples illustrate Corollary 3.3. Both exampleswere also analyzed in [18].Example 5.2. Let H = 0@ 1 1 11 0 01 0 10�81A :Let �H = �E, where � = 0:5 � 10�5 andE = 0@ 0:6 �1 0:8�1 0 00:8 0 �1:2 � 10�111A :Thus, jEj � jH j. Let ��i = �i(H +�H) � �i(H). The eigenvalues of Hare (properly rounded)(�1; �2; �3) = (2;�1; 5 � 10�9);and the relative changes in the eigenvalues are� j��1jj�1j ; j��2jj�2j ; j��3jj�3j � = (6:7 � 10�7; 1:7 � 10�6; 9:0 � 10�6):We want to apply Corollary 3.3 with M = I . Since the eigenvector matrixX(�) is itself unitary, we can take U(�) = V (�) = X��(�) = X(�) in(3.7), which implies C(�;S) = H(�;S) 1=2; G(�) = I . The �rst orderapproximations of the bounds from Corollary 3.3 arej��ijj�ij � �ju�i H �1=2j jH j j H �1=2uij� �k j H �1=2j jH j j H �1=2j k: (5.2)



21The bounds obtained by the �rst inequality in (5.2) are� j��1jj�1j ; j��2jj�2j ; j��3jj�3j � � (5 � 10�6; 8:3 � 10�6; 1:5 � 10�5);which is again nearly optimal. The heuristic (2.9) implies that even thetiniest eigenvalue �3 does not cross zero for any � 2 [0; �], even though �3is in magnitude much less that �. On the other hand, the simpli�ed bound,that is, the bound obtained from the second inequality in (5.2), ismaxi=1;2;3 j��ijj�ij � 0:095:The bound from Veseli�c and Slapni�car [18],maxi=1;2;3 j��ijj�ij � n�k(D�1 H D�1)�1k � 2 � 103; (5.3)where D = diag(p H ii), is useless.Example 5.3. Another interesting example is the following: let H =DAD, whereA = 0BB@ 1 �1 �1 �1�1 1 �1 �1�1 �1 1 �1�1 �1 �1 1 1CCA ; D = 0B@ 108 1 1 1081CA :The eigenvector matrix of H isX = 0B@ 1=p2 1=2 1=2 00 �1=2 1=2 1=p20 �1=2 1=2 �1=p2�1=p2 1=2 1=2 0 1CA :Let �H = �E, where � = 0:5 � 10�6, E = DESD, ES = wwT , w =( 1 1 �1 1 )T . The eigenvalues of H are(�1; �2; �3; �4) = (2 � 1016; 2 � 108;�2 � 108; 2);and the relative changes in the eigenvalues are� j��1jj�1j ; j��2jj�2j ; j��3jj�3j ; j��4jj�4j � = (0; 49; 0:98; 5 � 10�7):



22There is no change in �1 because its eigenvector satis�es Ex1 = 0. Unlesswe use the exact perturbation E with Theorem 2.1, or incorporate this intothe structure of our bound, we will not detect this. We see that �2 and �3are very sensitive. The bounds obtained by the �rst inequality in (5.2) are� j��1jj�1j ; j��2jj�2j ; j��3jj�3j ; j��4jj�4j � � (5 � 10�7; 25; 25; 5 � 10�7);and clearly show the sensitivity of �2 and �3. The bound on �2 is toooptimistic because this is a �rst order theory and value of �̂i is now toolarge (> 1) for it to be relevant. All eigenvalues are in the set S since all ofthe eigenvectors retain their sign pattern under the perturbation, but twoof them are not well-behaved and can only be meaningfully bounded byexactly computing the integral in Theorem 2.1 or in absolute error terms.For �2 the absolute boundj�2 � ~�2j � �kEk = 1010is a good estimate, but does not tell us whether the eigenvalue crosses zeroor not. Theorem 2.1 would tell us that, but at great expense.The bounds (the �rst order approximations) for �1 and �4 are goodin the sense that they show that these eigenvalues are well-behaved. Thebound for �1 is not optimal since it only uses the information that jEj �jH j.The bounds obtained from the second inequality in (5.2) and (5.3),maxi=1;2;3;4 j��ijj�ij � 50; and maxi=1;2;3;4 j��ijj�ij � 100;respectively, as well as the bound for �4 obtained by the classical normwiseperturbation theory, are useless.The next example illustrates Corollary 3.3 on a matrix pair (H;M).Example 5.4. Let H = DHAT�ADH and M = DMBTBDM , whereDH = diag(108; 104; 10; 10; 1); � = diag(�1;�1; 1; 1);DM = diag(10�4; 10�2; 10�2; 10�1; 1);andA = 0B@�3 �5 �5 0 24 2 �2 �4 �5�1 �1 1 1 11 5 3 1 3 1CA ; B = 0@ 3 �2 �4 �4 �2�3 4 4 4 0�1 1 2 0 �21A :



23Thus, H is inde�nite singular of rank four,M is semi-de�nite of rank three,and H and M are scaled in opposite directions. Altogether,H = 0BB@�2:3 � 1017 �1:7 � 1013 �5:0 � 109 1:6 � 1010 2:8 � 109�1:7 � 1013 �3:0 � 108 �7:0 � 105 1:2 � 106 3:4 � 105�5:0 � 109 �7:0 � 105 �1:9 � 103 �4:0 � 102 1:0 � 1021:6 � 1010 1:2 � 106 �4:0 � 102 �1:4 � 103 �1:6 � 1022:8 � 109 3:4 � 105 1:0 � 102 �1:6 � 102 �1:9 � 1011CCA ;
M = 0BB@ 1:9 � 10�7 �1:9 � 10�5 �2:6 � 10�5 �2:4 � 10�4 �4:0 � 10�4�1:9 � 10�5 2:1 � 10�3 2:6 � 10�3 2:4 � 10�2 2:0 � 10�2�2:6 � 10�5 2:6 � 10�3 3:6 � 10�3 3:2 � 10�2 4:0 � 10�2�2:4 � 10�4 2:4 � 10�2 3:2 � 10�2 3:2 � 10�1 8:0 � 10�1�4:0 � 10�4 2:0 � 10�2 4:0 � 10�2 8:0 � 10�1 8:0 � 100 1CCA :The eigenvector matrix of the pair (H;M) is (properly rounded)X =0BB@ 1:00 �7:40 � 10�5 �4:80 � 10�6 1:86 � 10�7 2:18 � 10�8�2:52 � 10�3 1:00 3:01 � 10�2 �2:96 � 10�4 �6:72 � 10�53:74 � 10�3 5:00 � 10�1 8:66 � 101 �8:41 � 10�1 �5:04 � 10�26:29 � 10�4 �1:50 � 10�1 �1:01 � 101 2:13 1:68 � 10�1�2:53 � 10�5 1:00 � 10�2 5:76 � 10�1 �2:37 � 10�1 3:36 � 10�1 1CCA :We haveX�HX = diag(�2:3 � 1017; 9:57 � 108;�1:3019 � 107; 7:7388; 2:6 � 10�15);X�MX = diag(�3:6 � 10�23; 1:1 � 10�18; 1; 1; 1):We conclude that S = f3; 4g,�(0;S) = diag(0; 0;�1:3019 � 107; 7:7388; 0); J(�) = diag(0; 0; 1; 1; 1);where �(0;S) and J(�) are de�ned by De�nition 3.3 and (3.5), respectively.We can arrive to this conclusion in two ways, by using heuristic (2.9), orby observing that the null subspaces of of H and M have only the trivialintersection.Let us perturb H to H +�H with �H = �E, where � = 10�6 andE =0BB@�1 � 1017 3 � 1012 9 � 108 7 � 109 �3 � 1083 � 1012 �4 � 106 2 � 105 �3 � 105 1 � 1059 � 108 2 � 105 9 � 102 8 � 101 �4 � 1017 � 109 �3 � 105 8 � 101 4 � 102 2 � 101�3 � 108 1 � 105 �5 � 101 2 � 101 �6 1CCA :Thus, jEH j � jH j. The relative changes in the eigenvalues �i, i 2 S, are� j��3jj�3j ; j��4jj�4j � = (3:5 � 10�7; 5:3 � 10�4):



24The �rst order approximations of the bounds from Corollary 3.3 arej��ijj�ij � �ju�i (0)[Cy(0;S)]�j jH j jCy(0;S)ui(0)j (5.4)� �k j[Cy(0;S)]�j jH j jCy(0;S)j k;where Cy(0;S) and U(0) are de�ned by (3.6) and (3.7), respectively. Wecan take U = � 0 0 1 0 00 0 0 1 0� ;in which case Cy(0;S) = 0BBB@�1:331 � 10�9 6:675 � 10�88:341 � 10�6 �1:065 � 10�42:400 � 10�2 �3:024 � 10�1�2:796 � 10�3 7:667 � 10�11:595 � 10�4 �8:525 � 10�21CCCA :The bounds obtained from the �rst inequality in (5.4) are� j��3jj�3j ; j��4jj�4j � � (2:7 � 10�6; 4:6 � 10�3);and the bound obtained from the second inequality in (5.4) ismaxi=3;4 j��ijj�ij � 4:6 � 10�3:Note that choosing Cy(0;S) with another U(0) in (3.8) would yield thesame bounds.Our last example deals with subspace bounds of x5.Example 5.5. Let us reconsider the matrix in Example 2.1. If wechoose � = 2:2204 � 10�16 then the bound in the perturbation of its zerosubspace is kX�1 ~X2kF � � k jHy(0;S)j jH j kFrelgap0(�1; ~�2) :The truncated psuedoinverse of H isHy(0;S) =0B@ 2:0004 � 10�16 �1:0001 � 10�16 �2:0002 � 10�12 �2:0003 � 10�14�1:0001 � 10�16 1 � 10�16 1 � 10�12 1 � 10�14�2:0002 � 10�12 1 � 10�12 2 � 10�8 2 � 10�10�2:0003 � 10�14 1 � 10�14 2 � 10�10 3 � 10�12 1CA ;



25the associated condition number isk jHy(0;S)j jH j kF = 4:0004 � 104;and we have that relgap0(�1; ~�2) � 1. ThuskX�1 ~X2kF � � k jHy(0;S)j jH j kFrelgap0(�1; ~�2) = 8:8827 � 10�12Actually, this bound is very pessimistic. The scaled bound is muchbetter. If we have jEj � jH j;then �F � �kAkF = 8:8818 � 10�16:We have that kDHy(0;S)k = 3:0002 � 10�4; kD ~X2k = 2;thus kX�1 ~X2kF � �F kDHy(0;S)k kD ~X2krelgap0(�1; ~�2) = 5:3295 � 10�19:Thus it is reasonable to expect the zero subspace of this matrix to becomputed accurately.The standard absolute gap bound iskX�1X2kF � � kEkFgap(�1; ~�2) = 8:8827 � 10�8:This is far too pessimistic.6. ConclusionAs a general conclusion based on our bounds and the above exampleswe note that the error bounds on individual eigenvalues and vectors tendto be tighter, sometimes much tighter, than the global error bounds for allof the eigenvalues of the matrix given in [1] or [18]. Moreover, they areeasier to generalize to large classes of eigenvalue problems. We also notethat we obtain structured perturbation results on Hermitian pencils whenone or both of the matrices are singular (see Proposition 3.1, Corollaries3.1 and 3.3).



26The above examples also lead us to observation that we can often obtainmeaningful relative error bounds on eigenvalues of numerically singularmatrices as long as those eigenvalues have good local condition numbers.If these \non-zero" eigenvalues are well-behaved, it is possible that thesubspace associated with the \zero" eigenvalues is also well-behaved (seecomments after Theorem 4.1 and Example 5.5).Thus, we expand the de�nition of well-behaved matrices to include ma-trices whose non-zero eigenvalues have modest local condition numbers andwhose zero subspace is well-behaved. This de�nition includes the matricesin Examples 5.2 and 5.5, but does not include Example 5.3 because of itstwo badly behaved eigenvalues. Examples 5.1 and 5.2 have eigenvalues (andsingular values) that are much better behaved than the normwise theorywould tell us, but we would not expect any numerical method to computeall of the digits of the smallest eigenvalues (or singular values) correctly.We would like to thank the referee for very helpful comments.REFERENCES1 J.L. Barlow and J.W. Demmel, Computing accurate eigensystems of scaleddiagonally dominant matrices, SIAM J. Numer. Anal., 27:762{791, 1990.2 J.L. Barlow and I. Slapni�car, Optimal perturbation bounds for the Hermitianeigenvalue problem, Technical report, The Pennsylvania State University,1999.3 S.L. Campbell and Jr. C.D. Meyer, Generalized Inverses of Linear Transfor-mations, Pitman, London, 1979. Reprint by Dover, New York, 1991.4 C. Davis and W.M. Kahan, The rotation of eigenvectors by a perturbationIII, SIAM J. Num. Anal., 7:1{46, 1970.5 J.W. Demmel and K. Veseli�c, Jacobi's method is more accurate than QR,SIAM J. Matrix Anal. Appl., 13:1204{1243, 1992.6 F.M. Dopico, J. Moro, and J.M. Molera, Weyl-type perturbation bounds foreigenvalues of Hermitian matrices, preprint, 1998.7 S.C. Eisenstat and I.C.F. Ipsen, Relative perturbation techniques for singularvalue problems, SIAM J. Numer. Anal., 32:1972{1988, 1995.8 L. Eld�en, Error analysis of direct method of matrix inversion, J. Assoc.Comput. Mach., 8:281{330, 1961.9 G.H. Golub and C.F. Van Loan, Matrix Computations, Second Edition, TheJohns Hopkins Press, Baltimore, 1989.



2710 M. Gu, Studies in Numerical Linear Algebra, PhD thesis, Yale University,New Haven, CT, 1994.11 M. Gu and S.C. Eisenstat, Relative perturbation theory for eigenproblems,Research Report YALEU/DCS/RR-934, Department of Computer Science,Yale University, New Haven, CT, February 1993.12 T. Kato, A Short Introduction to Perturbation Theory for Linear Operators,Springer-Verlag, New York, 1982.13 R.-C. Li, Relative perturbation theory: (i) eigenvalue and singular valuevariations, SIAM J. Matrix Anal. Appl., 19:956{982, 1998.14 R.-C. Li, Relative perturbation theory: (ii) eigenspace ans singular subspacevariations, SIAM J. Matrix Anal. Appl., 20:471{492, 1998.15 C.F. Van Loan, Generalizing the singular value decomposition, SIAM J.Num. Anal., 13:76{83, 1976.16 C.C. Paige and M.A. Saunders, Towards a generalized singular value decom-position, SIAM J. Num. Anal., 18:398{405, 1981.17 B.N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, EnglewoodCli�s, N.J., 1980.18 K. Veseli�c and I. Slapni�car, Floating-point perturbations of Hermitian ma-trices, Linear Algebra and Its Applications, 195:81{116, 1993.19 J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press,London, 1965.


