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ABSTRACT

There is now a large literature on structured perturbation bounds for eigen-
value problems of the form
Hz =AMz,

where H and M are Hermitian. These results give relative error bounds on the
ith eigenvalue, A;, of the form
IAi = Al
|Ail 7
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and bound the error in the ith eigenvector in terms of the relative gap,

min Li 'l
iz [N [/

In general, this theory usually restricts H to be nonsingular and M to be positive
definite.

We relax this restriction by allowing H to be singular. For our results on
eigenvalues we allow M to be positive semi-definite and for a few results we allow
it to be more general. For these problems, for eigenvalues that are not zero or
infinity under perturbation, it is possible to obtain local relative error bounds.
Thus, a wider class of problems may be characterized by this theory.

Although it is impossible to give meaningful relative error bounds on eigenval-
ues that are not bounded away from zero, we show that the error in the subspace
associated with those eigenvalues can be characterized meaningfully.

1. Introduction

We consider the eigenvalue problem
Hx=MMz, HMeC"™ zeC" MeC, (1.1)

where H and M are Hermitian matrices. We assume that there exists a
nonsingular matrix X € C"*" such that

X*HX =Q, X*MX =J, (1.2)
where
O = diag(wy,...,wn), J =diag(ji,...,jn);

and '
wi€R, jie{e:0¢c[0,27]}uU{0},i=1,2,...,n.

If we restrict J to be nonsingular, then (1.1) is a statement of eigen-
problem for the matrix A = HM . If we impose the restriction

then M is positive semi-definite, and (1.1) is the generalized Hermitian
eigenvalue problem. Most of the results in this paper concern this class of
eigenvalue problems.

We compare (1.1) to the perturbed problem

(H+ AH)iE = X(M + AM)z (1.3)



where AH and AM are “small” Hermitian perturbations. Let Ay > Ay >
... > A, be the eigenvalues of the pencil (1.1) and let A > ...> )\, be
eigenvalues of the perturbed pencil (1.3). Starting from the theory of Kato
[12], we obtain meaningful bounds on

i = il
|Adl
Moreover, for the case when M is positive definite, we give conditions

under which we can bound the error in the subspaces in terms of a gener-
alization of the relative gap

(1.4)

A= A

relgap(\;) = min ————.

gap(X) = mi ERNE:
This theory generalizes that in papers by Barlow and Demmel [1], Demmel
and Veseli¢ [5], Veseli¢ and Slapnicar [18], and some of the results by Gu
and Eisenstat [11], Li [13, 14], and Eisenstat and Ipsen [7].

We make the following improvements to the theory given in the above
papers:

e The bounds on eigenvalues allow for H and M to be singular. These
bounds are used to obtain bounds on the singular value decomposition
(SVD).

e The bounds given are local in the sense that each eigenvalue has its
own condition number.

e The bounds given are optimal and show clearly the role of structured
perturbations.

e The bounds on eigenvectors include bounds on the error in the sub-
space associated with eigenvalues that are not bounded away from
7€ero.

In §2, we give simple bounds for the relative error of the form (1.4)
under weaker assumptions than have been given in previous works [1, 18,
11, 10] and show how this theory can be applied to the singular value
decomposition. In §3, we show how this theory accounts for the effect of
structured perturbation on the problem (1.1). In §4, we give bounds on
error in subspaces for scaled perturbations. Some examples are given in §5
and our conclusions are in §6.

2. Locally optimal perturbation bounds on Hermitian pencils

In this section we first give local condition numbers for eigenvalues. We
then derive the perturbation bounds for the singular value decomposition.



2.1.  Local condition numbers of eigenvalues

Consider the perturbed pair
H=H+AH=H+6E, M=M+AM=M +4F, (2.1)

where ¢ is a positive real number, E = AH/d and F = AM/§. For ¢ € [0, ]
let
H()=H+(E, M() =M+ (F. (2.2)

Now consider the family of generalized eigenproblems
H(Q)z(C) = AMOM(Q)z(¢), ¢ €10,4]. (2.3)

We assume that (1.2) holds for each ¢ € [0,d] and some X (¢), Q(¢) and
J(C¢). Let (X;(€),z:(¢)) be the ith eigenpair of (2.3). Define S to be the
set of indices given by

8 = {is H(Qi(¢) # 0, M(Q)zi(¢) £ 0 for all C € [0,8]}.  (2.4)

The set S is the set of eigenvalues for which relative error bounds can be
found. The next theorem gives such a bound. Its proof follows that of
Theorem 4 in [1, p.773].

THEOREM 2.1. Let (A;(C),zi(C)) be the ith eigenpair of the Hermitian
pencil in (2.3). Let S be defined by (2.4). Ifi € S, then

S YL 5
O o ( / m(<)d<> , (2.5)
where O\ (\F

xr

F(QH(Qzi(C) 27 (MO (C)

Proof. Assume that \;(¢) is simple at the point (. Then from the
classical eigenvalue perturbation theory, we have the first order expansion

Xi(C+ &) = Xi(Q) + ENi(Q) + 0(€D). (2.7)

Let us compute A(¢). By differentiating the equation

[H+ (C+&Ezi(C+&) =N+ M + (C+ &) Flzi(¢C+€)

with respect to &, and setting £ = 0 in the result, we obtain

Ez;(¢) + H(Q)#:(¢) = M(QM (Ozi(Q) + Mi(OFzi(C) + Xi(QOM(Q):(C).
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Applying z¥(¢) to the left side of this equation, using (2.3), and rearranging

gives
u(0) = _THOE(©O _ MlQai (O Fwi(Q)
T OM Qi) T (OMQail0)

Since \;(¢) # 0 for all ¢, dividing by A;({) gives

dinXi(Q)) _ M(Q) | aH(QBxi(Q) @i (QFm(Q)
L MO mOHOnO  mOMQnQ M @9

where In is the complex version of the natural logarithm function.

If X;(¢) is simple for all { € [0,4], then the bound (2.5) follows by
integrating from 0 to §. In Kato [12, Theorem I1.6.1,p.139], it is shown that
the eigenvalues of H({) in S are real analytic, even when they are multiple.
Moreover, Kato goes on to point out that there are only a finite number of
¢ where \;(¢) is multiple, so that \;(¢) is continuous and piecewise analytic
throughout the interval [0, §]. Thus we can obtain (2.5) by integrating (2.8)
over each of the intervals in which \;(¢) is analytic. ]

Our usual way of interpreting this bound comes from the following
corollary.

COROLLARY 2.1. Assume the hypothesis and terminology of Theorem
2.1. For alli € S we have

‘Ai(é) —X(0)
Ai(0)

‘ < lexp(ds) — 1],

where

Ki Crél[%?g] |Re(p;(¢)] lgfél[%i(jH m(p;(¢))|

Neither the exact expression Theorem 2.1 nor the bound in Corollary
2.1 is computable. We can only hope to compute the function p;({) at one
point, ¢ = 0.

Thus we will always use the computable first order approximation?

Ri = [Re(pi(0))] +i[Tm(p(0))/-

If this value is large, then the corresponding eigenvalue is sensitive. More-
over, if ¢ is sufficiently small, then this approximation will give us appro-
priate qualitative information.

{This approximation can be computed by switching the roles of the perturbed and
unperturbed problem. The backward errors E and F' simply change signs, and the
“original” vector z;(0) becomes the computed one.
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A very important issue in this paper is whether or not an index i is in
the set S. From the proof of Theorem 2.1, it can easily be inferred that
i € S if and only if p;(¢) in (2.6) is bounded for each (. That, of course,
is not possible to verify since we cannot compute p;(¢) for every value of
(. We will give a heuristic criterion for membership in this set, justified
below. The discussion below assumes that A;(() is simple and that we can
use an argument like that in Theorem 2.1 to consider the case where A;(()
is not simple.

First, consider the case where H ({)z;(¢) = 0 for some ¢, but M ({)z;(¢) #
0 for all . Then \;(¢) = 0 for some (. By the mean value theorem for
some ¢ € [0, (], we have

Xi(€) = Ni(0) + ¢Xi(€) = 0.

Thus _
Ai(0) = =CNi().

If
X (0)] > 0 max /\z R
| ( )‘ (6[0,(5]| (f)‘

then i € S§. Of course, this is not verifiable either. Thus a good heuristic is
X (0)] > 81X (0) =i e S.

or equivalently,

If we assume that M ({)z;(¢) = 0 for some ¢, but H({)z;({) # 0 for all ,
similar reasoning arrives again at the heuristic (2.9). The only way to know
for certain if i € S¢, the complement of S, is to discover a perturbation in
the class of interest that makes either H(()z;({) = 0 or M(¢)z;(¢) = 0.

It is entirely possible that H({)z;(¢) = M({)z;(¢) = 0 and that p;(¢)
is defined in the limit and bounded for all (. This is the so-called (0,0)-
eigenvalue case. To exclude this case as well, we may wish to impose the
slightly stricter criterion

27 (0)Ez;i(0)] |22(0)Fz;(0)|
(w;»*(O)H(O)a:i(on - :U;f(O)M(o)xi((m) <1 (2.10)

If (2.10) is not true, then it is unlikely that reasonable relative error bound
on J; is obtainable. Absolute error bounds are unlikely to be improved
upon for such eigenvalues. If (2.10) holds, then the estimate

Ai(8) = A:(0)

< Ri) — 2
@ | S lewR) 11+ 0()
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is accurate and computable. We demonstrate this point with an example.

ExAMPLE 2.1. We take M = I and H = DAD where
D = diag(1, 10%,10*,10°)

and

The matrix H has exactly one zero eigenvalue. We then take
E = |H|.
To the digits displayed, MATLAB computes the eigenvalues
A = diag(2 - 10'6,1.0001 - 102,4.9995 - 107, 3.05062 - 10~ 17).

The last eigenvalue should be zero, but is not. The clue here is that the
corresponding values of #;,i = 1,2,3,4, are

k=(1,1,13,3.93-10'7).

If we choose § = 2.2204 - 10716, the relative distance between two floating
point numbers in IEEE double precision, we see that

Oky = 87 > 1,

thus the last eigenvalue cannot be reliably separated from zero, and the
small componentwise perturbation H = H — §|H| makes this eigenvalue
negative. However, all of the other eigenvalues are well-separated from
zero. The non-zero eigenvalues of H are all well-behaved under componen-
twise perturbations. We will show later (Example 5.5) that the subspace
associated with the zero eigenvalue is also well-behaved.

Since for Hermitian eigenvalue problems, the eigenvalues will be real,
we can will use the following simplification of Corollary 2.1.

COROLLARY 2.2. Assume the hypothesis and terminology of Theorem
2.1. If \;i(¢) € R for all ( € ]0,d] and i € S then

Ai(9)
Ai(0)

exp(—0k;) < < exp(dki), (2.11)

where

zi () Ezi(¢) i (Q) Fzi(¢)

N 0 | T OH QT () m (OMQzi(Q) |
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Our bound improves similar results from [1, 5, 6, 18] since it is applicable
to the larger class of matrix pairs, accommodates the case when one or both
matrices are singular, and gives nearly optimal local condition number for
each non-zero eigenvalue.

If the perturbations E and F' are not structured in any particular way
with regard to x;({), then the bound from Theorem 2.1 will not be much
better than classical normwise bounds [19, 17, 9]. For structured pertur-
bations the first order approximation of our bound can be much sharper
than the classical bounds and relative bounds from [1, 5, 6, 18], as shown
in the examples of §5.

2.2.  The singular value decomposition
The singular value decomposition (SVD) of a matrix A € C™*" is given
by
A=UXV",
where U and V are unitary, and ¥ = diag(c;) diagonal and nonnegative.

For simplicity, we assume m > n, for m < n, analogous results follow by
considering A*.

COROLLARY 2.3. Let A = A+ AA = A+ 6FE, where E = AA/S.
Define A(() = A+ CE for ¢ € [0,d]. Let A(C) have the singular value
decomposition

A(Q) =U@QEQV(Q)", ¢el0,d],
where U(() € C™*™ and V(() € C™*™ are unitary and

Z(C) = diag(ol (C)a s ,Jn(C)),
U(C) (Ul(C),...,Um(C)),
V() = (wi(Q),---,on(Q))

Then for each index i such that o;(¢) # 0 for all ¢ € [0,5] we have

exp(—dk;) < 2:(0) < exp(dki), (2.12)
where Re(uf (() Evi(C)
e(u; v;
ki = | QA O ‘ (2.13)

Proof. We note that o;(() is the ith eigenvalue of (1.1) with M =1
and H(() given by



The corresponding eigenvector is

If we evaluate p;(¢) in (2.6) we obtain

* 0 B
z;(¢) < E* 0 >x(C) _ Re(uj (¢)Ev;(())

PO = T OO W OAQNQ)
If we then apply Corollary 2.2, we have (2.13). [ |

3. Effect of structured perturbations

In this section, we discuss the effect of common structured errors. For
this part of the theory we state the results for the SVD and the Hermitian
pencil (H, M). Similar bounds which can be derived for generalizations of
the SVD are given in [2].

If we had exact expressions for the perturbation matrices E and F' from
(2.1), then Theorem 2.1 and Corollary 2.1 could always be used to give a
good bound. However, it is extremely rare that a perturbation resulting
from either data or an algorithm is known exactly. Usually, we just have
a bound for it, and with some luck, we have a structured bound. In this
section, we discuss what can be determined from such a bound.

Two structures of perturbations are discussed, although there are oth-
ers. The first structure discussed are scaled perturbations, that is, when F
has the form (and analogously F')

E=D*EsD, |Es||<L.

Such perturbations are common in the discussion of Jacobi-type methods
[5]. When discussing the SVD, we may discuss the two-sided perturbation

E =DjEsDgr, ||Es| <1.
However, for simplicity, we will just simply discuss the perturbation
E=EsD, |Esll<1.

Our results are easy to generalize to the two-sided perturbations.
The other structure discussed here are componentwise perturbations.
Here we assume that

|E| <[H|, [F|<|M],
where both the inequality and the absolute value are componentwise. Such

perturbations are common for highly structured eigenvalue problems and
for data perturbations.
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3.1.  Structured perturbations of the SVD
We suppose that

A=A+AA=A+6E, E=EsD, (3.1)

where D is some right grading matrix and ||Es|| < 1. An important context
for this class of perturbations is the analysis of Jacobi-type methods [5]
where

D = diag(|lAC:, DI [[AG, 2], -, (1A, m)]])-

However, the results here allow D to be any matrix.

For ¢ € [0,4] let A(¢) and its SVD be defined as in Corollary 2.3. As
before, let S be the set of indices for which o;(¢) # 0 for all ¢ € [0,0]. We
now introduce the notion of a truncated SVD. In this case, we truncate
with respect to the index set S.

DEFINITION 3.1. Let k& = |S|, and let the singular values of A(()
whose indices are in S correspond to singular values o1((),...,0k(¢) in
non-increasing order. The truncated SVD of A({) with respect to S is
defined as

A(GS) = UGS VO,

where

E(C,S) = diag(ol(<)702(C):' . :Uk(C):Oa" 50)

It is also appropriate to define the Moore-Penrose pseudoinverse of
A(¢;S). For a fixed matrix A € C™*™, the Moore-Penrose pseudoinverse
is the unique matrix At € C?*™ satisfying the four Penrose conditions

1. AATA = A, 3. (AAT)* = A4t
2. ATAAT = AT, 4. (ATA)* = At A

It is easily verified that the Moore-Penrose pseudoinverse of A((;S) is given
by
ANGS) =V(QEHGSHU (),
where
£H(¢8) = diag(o, 1 (Q), -+, 05,1 (0), 0, 0),

and k is as specified in Definition 3.1. We now use this form to establish
global error bounds for all g;,i € S.
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PROPOSITION 3.1. For ¢ € [0,6] let A(() = A+ (EsD, where Es and
D are defined by (3.1), have the singular value decomposition assumed in
Corollary 2.3. Then (2.12) holds for each i € S with k; bounded by

i < DAY ¢ S)u; < DAY 8.
K _Crg[gfg}ll (¢;S)u (C)II_Crg[gfg]ll (&GSl

Proof. From (2.13), for each i € S we have
[Re(uj(C)EsDvi(Q))]

K; = max " 3.2
N T OAQwQ)] 2

Using the fact that ||u}({)Es|| <1 with (3.2) yields

[[ Dvi ()]l
i < max ————. 3.3
S (33)
By the definition of A'((;S) we have

vi(€) = AN (¢ S)ui(¢)ai(0). (3.4)
Combining (3.3) with (3.4) yields the desired result. [ |

The following corollary is a componentwise error bound that we might
expect from singular value improvement procedures. Its proof is very sim-
ilar to the scaled case.

COROLLARY 3.1. Let
A=A+ AA=A+JE, |E| < |A|.

Here both the inequality and the absolute value are componentwise. For
¢ €10,6] let A(¢) = A+(E, have the singular value decomposition assumed
in Corollary 2.3. Then (2.12) holds for each i € S with x; bounded by

< s 141147 (G S)u (O < s [[14]147 (G281 |

Proposition 3.1 and Corollary 3.1 generalize the corresponding results by
Demmel and Veseli¢ [5] and Li [13] to matrices which do not necessarily
have full rank. Corollary 3.1 is illustrated by Example 5.1 in §5.

3.2.  Structured perturbations for the Hermitian generalized eigenvalue prob-
lem

We consider the Hermitian pencil H — AM, where M is positive semi-
definite, and the perturbed pencil H — AM, where H and M are defined by
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(2.1). Suppose that the family of pencils H(¢) — AM(¢), ¢ € [0, §], defined
by (2.2), has the form

H(¢) =X (QAMOX (), MEQ)=X""(QJOX ),  (35)

where
Here

0 if ;(¢) € Null(M(()) ,
1 otherwise.

Ji(C) Z{

As done in Veseli¢ and Slapnicar [18], we relate our problem to a positive
definite eigenvalue problem. To do so, we first define the spectral absolute
value of the matrix H(¢) with respect to M (().

DEFINITION 3.2. Let For ¢ € [0, 6] let the pair (H(¢), M (¢)) have the
generalized eigendecomposition in (3.5). The spectral absolute value of
H(¢) with respect to M(¢) is the matrix | H(¢) Iy given by

LH ()l = X7 (OIAMOIX (),

where |[A(¢)| = diag(|\1(Q)], ..., | \n(Q)]). If M(¢) = I for all ¢, then we
define | H(()l=1H(¢)Ir.

If we let X ~1(¢) have the factorization

where Q(¢) is unitary, then it is easily seen that

LH () lar = R*(Q IR (Q)H(OR™ (O R(Q).

This is the definition given by Veseli¢ and Slapnicar [18] for the case where
M is nonsingular. We also note that for the case M = I, we have

1H(Ol=VH?((),

where /- denotes matrix square root, that is, | H(¢)l is the positive semi-
definite polar factor of H(().
We will now define a truncated version of | H({)lps. Define S as in (2.4).
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DEFINITION 3.3. The truncated spectral absolute value of H(¢) with
respect to M (¢) is the matrix | H(¢; S) Iy such that

LH(G:S) = X7 (QIA(GS)IXTH(O),

where

A(GS) = diag(M(G;S), .-+, Aa((5S))

0, otherwise.

and

We define M(¢;S) and J({;S) conformally.
Clearly, | H({; S) las is positive semi-definite. We can factor both | H(¢; S) s
and M(¢;S) into the form

1H(G:S) e = CH(GS)CGS), (3.6)
M(GS) = G (GS)G(GS),
respectively, where
C(GS) = UQ@(GSXTI() e ™™, m<mn, (3.7)
G(GS) = VIQJ(GS)XTH() e CP ™, p<n.

Here
®((;S) = diag(¢;(¢;S)) = diag(V/|Ai(¢: S))),

and U({) and V({) are matrices with orthonormal rows and orthonormal
nontrivial columns. That is, columns of U({) which correspond to i € S
are orthonormal, and columns of V(¢) for which j;({) = 1 are orthonormal.
Note that the form (3.7) describes the quotient singular value decomposi-
tion (QSVD) of the pair (C((;S),G(¢;S)) [15, 16]. The G((;S)-weighted
pseudoinverse of C'(¢;S) [3, 8] is given by

CH(G:S) = X(O2N(G U™ (©). (3.8)
Likewise, the C((;S)-weighted psuedoinverse of G((;S) is
GL(G:S) = X(QTH(GS)V(0)-

Using this structure, we can establish bounds on all of the eigenvalues
that do not change sign under the perturbation.
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THEOREM 3.1. Let the pair (H, M) be defined by (2.1). For ¢ € [0,0]
let (\i(Q),zi(C)) be the ith eigenpair of the pair (H((), M(()), defined by
(2.2). Let C((;S) and G(¢;S) be defined by (3.6), and let the QSVD of
(C((;8),G((;S)) be given by (3.7). Define S as in (2.4). Then each

Xi(C),i € S, satisfies (2.11), where

, o 1eQOEn(Q)] e QOFw(Q)
iSO T OTHG S) humi(Q) T o8 750 MQwi (O)

= max |ul (QICL(G O] BC(GS)uiC)]

+ max 07 (QIGL (¢ ) FGL(G S)vi(€))

¢elo,6

(3.9)

IN

t e SYFECT (¢ t e SWEGH (¢
Crél[gfg]ll[CG(C,S)] ECL (G +<Ig[g§]ll[Gc(C,3)] FGo(G S

Proof. For each 1 € S considering (2.11) as in Corollary 2.2 yields

e QESQL  (5i(OF ()
lon e QOHQm (O] T ¢ [f(OMQzi(C)]

e (ZEQE (O] (2 (O Fzi ()]
celong ¢i(¢)? +<e[%,a] Ji(Q?

By (3.6) and (3.7) this is just the first equality in (3.9). Since

2;(C) = ¢ (QCL (¢ S)ui () = Gl QGE(E; S)vi(€),

K; =

we have

rio= max Juf (O[CT(G S BCT (G S)ui (0

+ Jnax v (QIGE (G ) FGL (G S)ui(C)1-

which is the second equality in (3.9). Classical norm inequalities yield the
inequality in (3.9). [ |

The following corollary yields a bound for the case of scaled perturba-
tions discussed by Barlow and Demmel [1].

COROLLARY 3.2. Assume the hypothesis and terminology of Theorem
3.1. Assume that E and F' have the form

E =DyEsDy, ||[Es||<1, F=DyFsDy, |Fs|<1.
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Then for each i € S
< 1 . X 2 1 . X 2_
6 < max [DaCh(G SO + max [DuGHG SO

D T 2 D T 2
s [DaCL(G )P + mas [DuGh(GS)]

IN

The componentwise version of Theorem 3.1 is obtained similarly as in
§3.1 and §3.2.

COROLLARY 3.3. Assume the hypothesis and terminology of Theorem
3.1. Assume that |E| < |H| and |F| < |M|. Then

ki < max [u}(Q)[CL(GS)] | H]CT(¢S)ui(Q)

¢€[0,9]
* t . * 1 . .
+<Ié1[%i§] Wi (QIGe (G IM]|G (¢ S)vi(C)]
< o | [CHGOT T CEG S

o max [|[GH(G: ) IMIIGEG S

Corollary 3.3 is illustrated by Examples 5.2, 5.3 and 5.4 in §5. It generalizes
bounds in Veseli¢ and Slapnicar [18] to pencils that are singular and as
shown in the examples, often allows us to improve upon them.

4. Error bounds on subspaces
We now consider the effect of structured perturbations on the eigenvec-
tors of H. We confine our attention to the perturbed problem
(H + AH)Z = \&,
where AH = 0E. Consider the family of Hermitian eigenproblems
H(Qw(0) = NQa(0), H(Q)=H+CE, C€[0,0.  (41)
Define the set S by
S = {i:Mi(0) #0,C € 0,0}, (4.2)
in which case its set complement is

S ={i: \(¢) =0, for some ¢ € [0,d]}. (4.3)
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Suppose that S has k elements and that S¢ has n — k elements. Let
X,X; € C”fk be the eigenvectors of H and H + AH associated with S
and let X5, X5 € C"*("=k) be the matrix of eigenvectors associated with
S¢. Thus we have

HXj = XjA;, j=1,2, (4.4)
(H+AH)X; = X;A;, j=1,2

We now define two separate types of relative gaps:

A —

relgap(A, p) = —|>\u|172’ A # 0,
A —

relgapO(A:u) ‘ A|I'L| '

The first definition is just that from Barlow and Demmel [1], and the second
definition allows g (but not \) to be zero. This allows to bound the error in
the “zero” subspaces, that is, the eigenvectors in S¢. These straightforward
extensions to sets of eigenvalues will be used: for A = diag(\;) and ' =
diag(v;)
relgap(A,T) = r(nu)1 relgap(Ai, ),
i.j

relgapy (A, T)

min relgapg (i, )
(i,
We will bound .
X7 Xallr
which is “sin ®” bound for the error in the zero subspace X, from Davis
and Kahan [4]. )
We will also partition X; (conformally X;) into

Xi=(X11 X)),

where X717 and Xjo are the eigenvectors associated with the eigenvalue
matrices A;; and Ay such that

A1 = diag(All, Alg).

We also bound y
1 X7 X2l P

which is “sin @” bound for the error in two subspaces within the non-zero
subspace X;. There can be no meaningful bound within the zero subspace
Xs.

We can write down the following theorem on the perturbations of these
subspaces.
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THEOREM 4.1. Let H AH € C™*" be Hermitian and let S and S¢ be
defined by (4.2) and (4.8), respectively. Let Xj,X'j and Aj, /N\j, j=1,2
satisfy (4.4). Furthermore, let A1 be partitioned into A; = diag(A11, A1),
and let Ay be partitioned conformally. Define X1;, i = 1,2 such that

HXyi = XqiMg,

and define X1;,i = 1,2 conformally as well. For ¢ € [0,0] let X(¢) be the
eigenvector matriz of the H(() from (4.1), and let A((;S) be defined as in
Definition 3.3 with M =T and X ~1(¢) = X*((). Let

H((S) = X(OQAGS)X(Q),  C(G:S) = MG S)T2X*(Q)

Then
[[CT(0; S)I*AHCT(6; )|l

X7 Xiallp < - 4.5
I Suallr < TS (45)

and ; A

- HT(0;S)AHX.
BeS APPSLAUTIELEE T (16)
relgapy (A, Az)
Proof. For any \; # S\j and i # j, we have

*AHZ;
P P i (4.7)

Aj— A

If x; is a column of X;; and Z; is a column of X, then i,j € S, thus

[z} AHE NN 2} AH ;| [Ai)]'/
T = N2 N = XIC(0; ) IC(6; S) |

|27

47 [CT(0; )" AHCH (6 )iy
relgap(Ai, Ay) '

Summing these up and using standard norm inequalities yields
U7, 1C (05 8)]* AHCH (8:8) |
relgap(Ai1, A1o)

Wherg U11 = C(O;S)X11|A11‘1/2 and Ulg = 0(6;8)X12|A12‘1/2. Since U11

and Uy, have orthonormal columns, the bound (4.5) follows.
To obtain (4.6), simply assume that i € S and j € 8¢ in (4.7). Then

(2P AHZ| N _ 2] AH ;|
=Gl relgapg (A, Ay) [[H(0; S)xil|

X7 X12|[p <

)

]

o Y (0:8) A
relgapg (Ai, )
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A similar argument to that above produces (4.6). [ |
This theorem can be generalized to (1.3) with M positive definite if we
substitute an M-weighted norm for the Euclidean and Frobenius norms.
Bounds on the perturbed subspaces for structured perturbations are
easy to derive from Theorem 4.1. For instance, let

AH = D*AAD, ||AA|p = op.

Then short arguments from (4.5) and (4.6) lead to

* Y DCY(¢; 8)|)?
X5 Kullr < 0r max A2C GO
0<c<d relgap(Ai1, Aro)

3

IDHT(0;S)|[|1DXa||

XX ) _
IXTXolle < or relgapy(Aq, As)

If we instead assume that

|AH| < §|H],
then
- relgap(A11, A12) ’

relgapy(Aq, /~\2)

We note that the error in the zero subspace Xs, given by | X7 Xol|F is
modest if || |[HT(0;S)||H|||r or ||[DH(0;S)||||[DX2|| is modest and A; has
a good relative separation from the near zero eigenvalues.

5. Examples

In this section we illustrate our results on several examples. We give
examples for structured perturbations of §3, in particular for the relative
componentwise perturbations of the type

AH =§E, |E|< |H].

Such perturbations are highly interesting since they appear during various
numerical algorithms for eigenvalue and singular value problems [1, 5, 9,
17, 18, 19]. Such perturbations are sometimes called floating-point pertur-
bations [18]. In all examples we compute the first order approximations of
our bounds, thus we cannot expect optimality in all cases.



19

The first example deals with the singular value decomposition and il-
lustrates Corollary 3.1.

ExAMPLE 5.1. Let

—92.10%0 71020 7
A= -8-10% —-6.0001-102° —6
—7-10% 2.1020 2

Note that the last two column vectors of A are nearly parallel. Let AA =
dFE where § = 1075 and

7-10%  —-1-10%° 3
E=|-3-10 1-10* -1
-9-10% 3-10 04

Also, both A and D are strongly scaled from the right. Let do; = 0;(A +
AA) — 0;(A). The singular values of A are (properly rounded)

(01,02,03) = (1.08 - 10%*,9.25 - 10%°,0.45),
and the relative changes in the singular values are

<50’1| |(50'2| |(50'3|

o1 02 03

) =(25-1077,1.6-1077,3.0- 1072).

Both singular value decompositions, of A and A + AA, are computed by
the one-sided Jacobi method whose sufficiently high accuracy is guaranteed
by the analysis of Demmel and Veseli¢ [5].

Since |E| < 0.42857|A|, we can apply Corollary 3.1. We compute the
first order approximations of the corresponding bounds, that is,

do;
9] gl Al ATl | < ]l AL AT, 64 = 042857, (5.1)

o;

Note that we can use the fact that A is strongly scaled from the right to
compute inverse much more accurately. The bounds obtained by the first
inequality in (5.1) are

(50’1 |(50'2| |(50'3|

) <(43-1077,5-1077,1.8-107").

01 02 03

This shows that our bounds are local and even the first order approxima-
tions can be nearly optimal. Note that our relative bound for o; is slightly
worse than the the bound ||6E||/o1 = 2.97 - 10~7 which is derived from
the classical normwise perturbation theory. This is to be expected for the
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largest singular value since it is always perfectly conditioned in the rela-
tive sense (unless it is 0) and our bounds have an extra condition number.
However, the classical bound is meaningless for other singular values.
The simplified bounds, that is, the second inequality in (5.1)
‘50,|

max —— <1.8-1071
i=1,2,3 0y

and the Demmel-Veseli¢ bound,

‘50’1‘

max
i=1,2,3

-1
< noal| [Adiag(|[A.l)] '] < 3.8 - 107,
respectively, both cover only the worst case.

The following two examples illustrate Corollary 3.3. Both examples
were also analyzed in [18].

EXAMPLE 5.2. Let

1 1 1
H=|1 0 0
1 0 1078
Let AH = 6E, where 6 = 0.5-107° and
06 -1 0.8
E=|1-1 0 0

08 0 —-12-107%

Thus, |E| < |H|. Let §\; = \;(H + AH) — \;(H). The eigenvalues of H
are (properly rounded)

(A, A2, Ag) = (2,-1,5-1077),
and the relative changes in the eigenvalues are

(5)\1| [0A2] |6As]
Al [ Ae] 7]

) =(6.7-1077,1.7-1075,9.0- 107).

We want to apply Corollary 3.3 with M = I. Since the eigenvector matrix
X (¢) is itself unitary, we can take U(¢) = V({) = X7*(() = X({) in
(3.7), which implies C(¢;S) = |H(;S)I'?,G(¢) = I. The first order

approximations of the bounds from Corollary 3.3 are

|6 ]

n S S T T

IN

SIIE 2| HIWHIY?)). (5.2)

IN
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The bounds obtained by the first inequality in (5.2) are

<5>\1| [0A2] |0As]

. , <(5-107%,83-107%1.5-1077),
e ) < | )

which is again nearly optimal. The heuristic (2.9) implies that even the
tiniest eigenvalue A3 does not cross zero for any ¢ € [0, ], even though A3
is in magnitude much less that 4. On the other hand, the simplified bound,
that is, the bound obtained from the second inequality in (5.2), is

max [0
i=1,2,3 |\

< 0.095.

The bound from Veseli¢ and Slapnicar [18]

Y

0N
‘max 10X <nd||(DUNHID M) | <2-10% (5.3)
i=1,2,3 |\

where D = diag(\/lI H I;;), is useless.

EXAMPLE 5.3. Another interesting example is the following: let H =
DAD, where

1 -1 -1 -1 108
-1 1 -1 -1 1
A= -1 -1 1 -1 |’ D= 1
-1 -1 -1 1 108

The eigenvector matrix of H is

1/vV2 172 1/2 0
0 -1/2 1/2 1/V2
0 -1/2 1/2 —-1/V2
-1/vV2 1/2 1/2 0

Let AH = 6E, where 6 = 0.5-107%, E = DEsD, Es = ww”, w =
(1 1 —1 1)". The eigenvalues of H are

X =

(A, A2, As, Ag) = (2-106,2-10°, -2 10%, 2),

and the relative changes in the eigenvalues are

<5>\1 0X2] [6As] [0A4]

, , , =(0,49,0.98,5-1077).
N Pl P M) ( )
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There is no change in A; because its eigenvector satisfies Fx; = 0. Unless
we use the exact perturbation E with Theorem 2.1, or incorporate this into
the structure of our bound, we will not detect this. We see that A and A3
are very sensitive. The bounds obtained by the first inequality in (5.2) are

<6>\1| [0Aa] |0A3] O]

, , , < (5-1077,25,25,5-1077),
Nl Dl A4|>—( )

and clearly show the sensitivity of A2 and A3. The bound on Ay is too
optimistic because this is a first order theory and value of &; is now too
large (> 1) for it to be relevant. All eigenvalues are in the set S since all of
the eigenvectors retain their sign pattern under the perturbation, but two
of them are not well-behaved and can only be meaningfully bounded by
exactly computing the integral in Theorem 2.1 or in absolute error terms.
For A5 the absolute bound

A2 = Xo| < O[|E|| = 10"

is a good estimate, but does not tell us whether the eigenvalue crosses zero
or not. Theorem 2.1 would tell us that, but at great expense.

The bounds (the first order approximations) for A; and A4 are good
in the sense that they show that these eigenvalues are well-behaved. The
bound for A; is not optimal since it only uses the information that |E| <

The bounds obtained from the second inequality in (5.2) and (5.3),

10Xl 50, and [0Al 100,

z':IEQ,SA I\i| — i:IRZSA Al —

respectively, as well as the bound for A4 obtained by the classical normwise
perturbation theory, are useless.

The next example illustrates Corollary 3.3 on a matrix pair (H, M).

EXAMPLE 5.4. Let H = DgATSADy and M = Dy BT BDyy, where

Dy = diag(10%,10%10,10,1), ¥ =diag(—1,-1,1,1),

Y

Dy = diag(107%,1072,1072,1071,1)

and

P 3 -4 -4
A= ., B=|-3 4 4 4 0

1 5 3 1 3 -1 1 2 0 -2
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Thus, H is indefinite singular of rank four, M is semi-definite of rank three,
and H and M are scaled in opposite directions. Altogether,

—-2.3-.10'" —1.7.-10® —5.0-10° 1.6-10° 2.8-10°

—-1.7-10"®* —-3.0-10® —-7.0-10° 1.2-10°% 3.4.10°

H = -5.0-10° -7.0-10° -1.9-10® —-4.0-10> 1.0-10°
1.6 -10° 1.2-10° —4.0-10> —-14-10° -1.6-10°

2.8-10° 3.4-10° 1.0-10> -1.6-10> -1.9-10!

3

1.9-1077 -1.9-107° —26-107° —-24-10"* —4.0-107*

-1.9-107° 2.1-107® 2.6-107° 2.4.1072 2.0-1072

M = —-26-107° 26-10"% 3.6-107% 3.2-1072 4.0-1072
—-24-107* 24-1072 32-1072 3.2-107' 80 107!

—4.0-10"* 2.0-10"2> 4.0-107%2 8.0-10"" 8.0 10°

The eigenvector matrix of the pair (H, M) is (properly rounded)

1.00 —-7.40-107° —-4.80-107¢% 1.86-1077 2.18-10°®
—2.52.107° 1.00 3.01-1072 —296-10"% —6.72-107°
X=| 374-10"% 5.00-107" 8.66-10' —8.41-107' —5.04-1072
6.29-107% —1.50-10"' —1.01-10! 2.13 1.68-107!
—-253-107% 1.00-10"2 5.76-10"' —2.37-10"! 3.36-10"!
We have
X*HX = diag(—2.3-10'7,9.57-10% —1.3019-107,7.7388,2.6 - 10~ 1%),
X*MX = diag(-3.6-107%*,1.1-107*% 1,1,1).

We conclude that S = {3, 4},
A(0;S) = diag(0,0,—1.3019-107,7.7388,0), J(¢) = diag(0,0,1,1,1),

where A(0; S) and J({) are defined by Definition 3.3 and (3.5), respectively.
We can arrive to this conclusion in two ways, by using heuristic (2.9), or
by observing that the null subspaces of of H and M have only the trivial
intersection.

Let us perturb H to H + AH with AH = §E, where 6 = 107 and

—1-10'" 3-.10'?
3.10'2  —4.10°

2108 7-10°  —3-108

2105 —=3-.10° 1-10°

E= 9.108 2.10° -10? 8.10' —4-10!
7-10° —3.10° .10t 4-102 2-10!
—-3.10% 1-10° —5-10' 2-10* —6

0 O N O

Thus, |[Ex| < |H|. The relative changes in the eigenvalues \;, i € S, are

<6>\3| |64
RETRR

> =(3.5-1077,5.3-107%).
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The first order approximations of the bounds from Corollary 3.3 are

|OAi |
| Al

IN

8lu (O)[CH(0; 8)]*| [H] |CT(0; S)ui (0)] (5.4)

IN

aICT O S)[[H||CH(0; S)] ],

where C1(0;S) and U(0) are defined by (3.6) and (3.7), respectively. We
can take
00100
U= (0 0 0 1 0) ’

~1.331-10~° 6.675-108

8.341-107% —1.065-10~*

ct(0;8)=| 2.400-1072 —3.024-10""
—2.796- 1073  7.667-107"

1.595-10~* —8.525-102

in which case

The bounds obtained from the first inequality in (5.4) are

<6>\3| |64
RETRR

) < (2.7-1075,4.6-107%)

and the bound obtained from the second inequality in (5.4) is

O]
Al

<4.6-1073,

[N

ax
1=3,4

Note that choosing C(0;S) with another U(0) in (3.8) would yield the
same bounds.

Our last example deals with subspace bounds of §5.

ExAaMPLE 5.5. Let us reconsider the matrix in Example 2.1. If we

choose § = 2.2204 - 107! then the bound in the perturbation of its zero
subspace is

X Tl < N [HT(0;S)] [Hllr
~ relgapy(A1, A)

The truncated psuedoinverse of H is

2.0004-107*¢  —1.0001-10"*¢ —2.0002 107% —2.0003-10"'4
—1.0001-10716 1-10716 1-10712 1.-107
—2.0002 - 10712 1-10712 2.10°8 2.10710
—2.0003 - 10714 1-10° 2.10710 3.10712

H'(0,8) =
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the associated condition number is
I1H'(0,8)| [H|||r = 4.0004 - 10*,
and we have that relgapO(Al,f\g) ~ 1. Thus

[HT(0; S)| | H]| ||

~ =8.8827-1012
relgapg (A1, Az)

X7 Xo|[p <6

Actually, this bound is very pessimistic. The scaled bound is much
better. If we have
|E| < |H,

then
or < 6||A||F — 8.8818- 10716,

We have that
IDH'(0;S)|| = 3.0002-10~*, || DX;| =2,

thus N
|DH(0; S)||[| DXs|

relgap (A1, Ay)

| X7 Xo|lF < 0 — 5.3295. 10719

Thus it is reasonable to expect the zero subspace of this matrix to be
computed accurately.
The standard absolute gap bound is

[
gap(Aq, As)

| X7 Xol|p < 6 = 8.8827-10°%.

This is far too pessimistic.

6. Conclusion

As a general conclusion based on our bounds and the above examples
we note that the error bounds on individual eigenvalues and vectors tend
to be tighter, sometimes much tighter, than the global error bounds for all
of the eigenvalues of the matrix given in [1] or [18]. Moreover, they are
easier to generalize to large classes of eigenvalue problems. We also note
that we obtain structured perturbation results on Hermitian pencils when
one or both of the matrices are singular (see Proposition 3.1, Corollaries
3.1 and 3.3).
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The above examples also lead us to observation that we can often obtain
meaningful relative error bounds on eigenvalues of numerically singular
matrices as long as those eigenvalues have good local condition numbers.
If these “non-zero” eigenvalues are well-behaved, it is possible that the
subspace associated with the “zero” eigenvalues is also well-behaved (see
comments after Theorem 4.1 and Example 5.5).

Thus, we expand the definition of well-behaved matrices to include ma-
trices whose non-zero eigenvalues have modest local condition numbers and
whose zero subspace is well-behaved. This definition includes the matrices
in Examples 5.2 and 5.5, but does not include Example 5.3 because of its
two badly behaved eigenvalues. Examples 5.1 and 5.2 have eigenvalues (and
singular values) that are much better behaved than the normwise theory
would tell us, but we would not expect any numerical method to compute
all of the digits of the smallest eigenvalues (or singular values) correctly.

We would like to thank the referee for very helpful comments.
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