OPTIMAL PERTURBATION BOUNDS
FOR THE HERMITIAN EIGENVALUE PROBLEM

JESSE L. BARLOW * AND IVAN SLAPNICAR f

Abstract. There is now a large literature on structured perturbation bounds for eigenvalue problems of the form
Hzx =AMz,
where H and M are Hermitian. These results give relative error bounds on the it" eigenvalue, \;, of the form
i = il
R

and bound the error in the it? eigenvector in terms of the relative gap,

min 7‘)\i — X

i (N[22
In general, this theory usually restricts H to be nonsingular and M to be positive definite.

We relax this restriction by allowing H to be singular. For our results on eigenvalues we allow M to be positive
semi—definite and for few results we allow it to be more general. For these problems, for eigenvalues that are not zero
or infinity under perturbation, it is possible to obtain local relative error bounds. Thus, a wider class of problems
may be characterized by this theory.

The theory is applied to the SVD and some of its generalizations. In fact, for structured perturbations, our bound
on generalized Hermitian eigenproblems are based upon our bounds for generalized singular value problems.

Although it is impossible to give meaningful relative error bounds on eigenvalues that are not bounded away from
zero, we show that the error in the subspace associated with those eigenvalues can be characterized meaningfully.

1. Introduction. We consider the eigenvalue problem
(1.1) Hx=\Mz, H,McC"™" gzeC" MNeC,

where H and M are Hermitian matrices. We assume that there exists a nonsingular matrix X €
C™*" guch that

(1.2) X*HX =Q, X*MX =J,
where
O = diag(wi,...,wn), J =diag(j1,...,jn),
and
wi€R, jie{e:0¢c[0,27]}U{0},i=1,2,...,n.

If we restrict X to be unitary, and J to be nonsingular, then A = HM ™! is a normal matrix, and
(1.1) is a statement of eigenproblem for A.
If we impose the restriction

wi €R, j; € {0,1},
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then M is positive semi-definite, and (1.1) is the generalized Hermitian eigenvalue problem. Most
of the results in this paper concern this class of eigenvalue problems.
We compare (1.1) to the perturbed problem

(1.3) (H+ AH)E = X(M + AM)z
where AH and AM are Hermitian and satisfy
IAH[| < 6, [[AM]| < du,

and dy and dp; are “small” positive real numbers. Let A\; > Ay > ... > A, be the eigenvalues of the
pencil (1.1) and let A\; > ... > A, be eigenvalues of the perturbed pencil (1.3). Starting from the
theory of Kato [10], we obtain meaningful bounds on

IAi = il

(1.4) ]

Moreover, for the case when M is positive definite, we give conditions under which we can bound
the error in the subspaces in terms of a generalization of the relative gap

_ [Ai = Al
relgap(X;) I]II;IZI |/\i‘%|/\j‘%.
This theory generalizes that in papers by Barlow and Demmel [1], Demmel and Veseli¢ [3], Veseli¢
and Slapnicar [16], Gu and Eisenstat [9], Li [11, 12], Zha [19], and Eisenstat and Ipsen [4].

We make the following improvements to the theory given in the above papers:

e The bounds on eigenvalues allow for H and M to be singular. These bounds are used to
obtain bounds on the singular value decomposition (SVD), the quotient and product SVD
for pairs of matrices, and the restricted SVD (RSVD) for matrix triplets.

e The bounds on eigenvectors include bounds on the error in the subspace associated with
eigenvalues that are not bounded away from zero.

e The bounds given are local in the sense that each eigenvalue has its own condition number.

e The bounds given are optimal and show clearly the role of structured perturbations.

In §2, we give two simple bounds for the relative error of the form (1.4) under weaker assumptions
than have been given in previous works [1, 16, 9, 8] and show how this theory can be applied to the
SVD, the quotient and product SVD, and RSVD. In §3, we show how this theory accounts for the
effect of structured perturbation on the problem (1.1). In §4, we give bounds on error in subspaces
for scaled perturbations. Some examples are given in §5 and our conclusions are in §6.

2. Locally Optimal Perturbation Bounds on Hermitian Pencils. In this section we first
give local condition numbers for eigenvalues. Also, we specialize this result to the cases when M from
(1.1) is positive semi-definite and perturbed through factors, and when M = I and H is an indefinite
matrix given in factorized form and perturbed through factors. We then derive the perturbation
bounds for the singular value decomposition and its generalizations.

2.1. Local Condition Numbers of Eigenvalues. Consider the perturbed matrix
H+ AH=H +égFEq,
where 6 = ||AH|| and Eg = AH/ég. Thus |Egl|| = 1. Let
(2.1) H(C) = H+(Ex, C€0,0u]
Now consider the family of generalized eigenproblems

(2.2) H(Q)z(C) = MOMz((), ¢ €[0,0m].
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where M is fixed. We assume that (1.2) holds for each ¢ € [0,dx] and some X (¢), (), and J(().
Let (X\i(¢),z;(¢)) be the it" eigenpair of (2.2). Define Si(d7) to be the set of indices given by

(2.3) Su(0m) = {i: H(Q)zi(¢) # 0, Mx;(¢) # 0 for all ¢ € [0,6x]}.

The set Sp(dg) is the set of eigenvalues for which relative error bounds can be found. The next
theorem gives such a bound. Its proof follows that of Theorem 4 in [1, p.773].

THEOREM 2.1. Let (M\;(C),z;(C)) be the ith eigenpair of the Hermitian pencil in (2.2). Let
Su(0m) be defined by (2.3). If i € Su(dn), then

(2.4) exp(—dgrH) < /\Az(f(;) < exp(6gril),
where
GH 27 (O Enzi(Q)]

celtssm] |27 (OH (Owa(Q)]

Proof. Assume without loss of generality that \;(¢) > 0,¢ € [0,dx], otherwise multiply H ()
from the pencil (2.2) by —1. Now assume that X;() is simple at the point . Then from the classical
eigenvalue perturbation theory, since Mx;({) # 0, for sufficiently small £ we have

N+ = X0 + €A 1 o),

Since \;(¢) > 0 for all ¢, we have
Ni(C+E) z} () Enzi(() 2
O TR0 )Ma:i(o +0E)

S OHOi(C >+O(“

Thus, we have

(2.5) ‘dﬂn M) | 2 QEnri(Q)

d¢ = 27 (OQHQzi (O]

If X\;(¢) is simple for all ¢ € [0, 5x], then the bound (2.5) follows by integrating from 0 to §p. In Kato
[10, Theorem I1.6.1,p.139], it is shown that the eigenvalues of H(¢) in Sg(dp) are real analytic, even
when they are multiple. Moreover, Kato [10, p.143] goes on to point out that there are only a finite
number of ¢ where \;(¢) is multiple, so that A;({) is continuous and piecewise analytic throughout
the interval [0, dg]. Thus we can obtain (2.4) by integrating over each of the intervals in which A;(()
is analytic. O

The above bound is “tight” in the sense that if the computable first order approximation

o _ 1210 Bnwi(0)
"7 e O ©0)2:(0)]

is large, then the corresponding eigenvalue is sensitive. If the perturbation Ep is not structured in
any particular way with regard to x;({), then the bound from Theorem 2.1 will not be much better
than classical normwise bounds [17, 15, 7].

Now we consider perturbing M. Let

M+AM =M+ 6mEn
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where 0y = ||[AM]| and Epr = AM/6pr. We then let

M) =M+ E¢Ey, £€]0,0Mm]
Now consider the family of generalized eigenproblems
(2:6) Hi(€) = MOM(©)(6), €€ [0,0m]

where H = H + AH is fixed. Let (X\;(€),%;(€)) be the i'" eigenpair of the pencil (2.6). Define the
index set Sas(dar) by

(2.7) Sar(6ar) = {i - HE:(€) # 0, M(£)Z(€) # 0 for all £ € [0,0n]}.

Now we have an analogous theorem for M.
THEOREM 2.2. Let (X\;(€),%;(€)) be the it" eigenpair of the Hermitian pencil in (2.6). Let the
index set Snr(Oar) be defined by (2.7). For all i € Sy(dn) we have

(2.8) exp(—dpeM) < ;\E((S(J;/g) < exp(dykl),
where
WM \Z5 (&) Emzi(§)]

~ elvoon |77 (6) M (&) (6)]

Proof. For i € Spr(dy) we note that \;(€) # 0. Thus, let 7;(&) = X;(€) !, where 7;(€) is an
eigenvalue of

M(&)&(€) = T(&) HE(&).
We note that the proof of Theorem 2.1 goes through if we exchange the roles of H and M, thus

7(0m)

exp(—6uk,") < (0) M.

< exp(dmk

Taking the reciprocal yields (2.8). O

Now we can consider the general problem (1.3). The following corollary is obvious from Theorems
2.1 and 2.2.

COROLLARY 2.3. Assume the hypotheses and terminology of Theorems 2.1 and 2.2. Let )\;,
i=1,2,...,n, be the eigenvalues of the pencil in (1.1) and let Xi, 1=1,2,...,n, be the eigenvalues
of the pencil in (1.3). Let Sg (0w, 00) = Su(0m) NSp(0ar). Fori € Sy (0m,0p) we have

M

exp(—éHkafI — 6M/i£v[) < < exp(éH/if +omk;").

2.1.1. Semi-definite M. We now assume that M is a positive semi-definite matrix written in
the form

(2.9) M =G*G,

where G € C™*", We assume no relationship between m and n. Also, let the perturbation to M
be structured according to

M+ AM = (G+AG) (G+AG),  ||AG| = dq.
4



Again define
(2.10) Ec = AG/dq.
We now define
M) = GE)"G(E),  G(§) =G+ ¢Eq.
The structure of this perturbation is different from before since
(2.11) M(&) = M + &(G*Eq + ELG) + EELEq, ¢ €[0,6q]

is now a quadratic function in ¢ instead of a linear one. This leads to the following theorem.

THEOREM 2.4. Let M be an n x n positive semi-definite matriz and let G be an m X n ma-
triz satisfying (2.9). Let M(&) be defined by (2.11), let ¢ and Eg be defined by (2.10), and let
(Ni(€), 5 (€)) be the it" eigenpair of the pencil H — AM (£). Define

Sa(0a) = {i: Hay(€) # 0, M(&ai(€) #0, VE €[0,04]}
Also define yi(€) = G(€)2:(&) /IIG(E):(&) |- For i € Sa(da) we have

(2.12) exp(—20qkS) < Ai(0a) < exp(20qKS),
Ai(0)
where
kG = max |Re(y; (§)Eczi(§))]

gefode] |y (G (E)zi(6)]

Proof. For i € Sg(dg) we assume again that \;(€) simple at the point ¢ and non-negative for
£ €0,0¢]. Then from classical eigenvalue perturbation theory for sufficiently small ¢ we have

i QG Eg + E5G(9)]=i(€)

N(E+O = N(6) - O e +0(c).
Using the definitions of G(§) and y;(§) the above expression becomes
N(E+ ) =29 - (e T OIS |, o)

ey oy (o) 2Re(i (O Eqri(€)) 2

~MO AT ge@e T
Thus,

A6+ _, _ 2Re(yi () Eci(§)) >

O T eceme O

and we have

dn M(©) | _ 2/Re(u; (O Bari@)] _, o
‘ & | T HOGcEnE S

If A;(&) is simple for all £ € [0,d¢], then the bound (2.12) follows by integrating from 0 to dg.
Otherwise, the argument given in the proof of Theorem 2.1 applies to obtain (2.12). O
An analogy of Corollary 2.3 can be obtained by combining Theorems 2.1 and 2.4.
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2.1.2. Hermitian Matrices Perturbed Through Factors. A corollary is related to a result
for perturbation by factors due to Veseli¢ and Slapnicar [16].

COROLLARY 2.5. Let H € C"*" have the form H = GJG*, where G € C"*™ and J € C™*™
is normal and nonsingular. Let AG = dqEq € C™"*™, where ||Eg|| = 1. Define G(§) = G + £Eq
for € €[0,0¢] and let H(&) = G(€)JG*(€). Let (Mi(€),7;(€)) be the it" eigenpair of H(€) and let i
be an index such that A\;(§) # 0 for £ € [0,d¢]. Also define y;(€) by

oy = AG(©mi(E)
(219 W = e @m
Then \;(0c) satisfies
(2.14) exp(—20gk%) < A;\ffg;) < exp(20gk%),
where
: ; %

" eclodal 7 (G ©)ni(©)
Proof. The key observation is to recognize that y;(£) in (2.13) satisfies
G*(O)G()yi(€) = Xi() T yi(€), € €0,06]:

We note that this is a pencil of the form given in Theorem 2.4. We then note that, since x;(¢) is an
eigenvector of H (&) = G(§)JG*(£), we have

_ _G@ni§) _ GG (Ozi(E)
1GOOIl GO TG* (&) (O

Thus, the conclusion of Theorem 2.4 gives the bound (2.14) with §' given by (2.15). O

z;(€)

2.2. The Singular Value Decomposition and Generalizations. In this section we de-
scribe the singular value decomposition and its generalizations, and apply the perturbation results
from §2 to these decompositions.

2.2.1. The Decompositions. The singular value decomposition (SVD) of a matrix A, the
generalized quotient SVD (QSVD) and product SVD (PSVD) of a matrix pair (A, B), and the
restricted singular value decomposition(RSVD) of a matrix triplet (A, B, C) are all special Hermitian
generalized eigenvalue problems.

The SVD of a matrix A € C™*" is given by

E n—k
. _k Y 0 B
A=UXV", E_m—k<0 0 >, k = rank(A),

where U € C™*™ and V € C™*" are unitary, and
U = diag(oy,...,0,) € R™*"

is nonnegative.
From Van Loan [13] and Paige and Saunders [14], the generalized quotient SVD (QSVD) of the
matrix pair (4, B), A € C™*" B ¢ CP*" ig given by

S1 S22 83 54

s1 (T4 0 0 O
A=USAX"', Zp4=s| 0 I, 0 0], s +s2=rank(4),
4\ 0 0 0 0



s1 fg 0 0 O
_ —1 82 0O 0 0 O _
B=VY¥gX ", Xp= 55 0 0 I, 0 s1 + s3 = rank(B),
ts 0O 0 0 O

U, = diag(ay, ao,...,as,), Yp=diag(B,l2,...,0s,),

where U € C™*™ and V € CP*P are unitary and X € C"*" is nonsingular. We can make the
regularity assumptions

_ A .
Ixed =t X =1( 5 )1 atesi=1 i=12.m

If B is square and nonsingular this yields the SVD of AB~!, hence the name quotient SVD.

Also of significance is the product SVD (PSVD) of the matrix pair (A, B) due to Hammarling

and Fernando [6]. It gives a form for the singular value decomposition of AB, where A € C™*™ and
B € C"*P_can be written as

s1 (¥4 0 0 O
A=UZAX !, Ta= s 0 I, 0 0], s1+4 sy=rank(A),
t 0 0 0 0

s1 ¥ O 0 0
B =XYgV*, Xp= 22 8 8 IO 8 , 81+ s3 =rank(B),
83
to 0 0 0 0

where again U and V are unitary, X is nonsingular, and ¥ 4 ¥ p is the diagonal matrix of the singular
values of AB.

Rather than express the perturbation theory of the QSVD and PSVD separately, we instead

give the restricted SVD of a matrix triplet (4, B, C') due to Zha [18] which includes the QSVD and
PSVD as special cases. It has the form

A=Y ", X" e cmxn,
B=VYgX~!'ecCr,
C=Y"*SU* e C™*1,
where U and V are unitary, X and Y are nonsingular, and ¥ 4, ¥p and ¥ are nonnegative and

diagonal. If B and C are nonsingular, this implicitly gives the SVD of C"'!AB~'. If C' = I, then
this is the QSVD of (A, B), and if A = I, then this is the PSVD of (B,C). The matrices ¥4, ¥p
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and X ¢ can be written in the following form

v
[y

»
V)

q1
q2
qs
q4
qs
g6
r1
T2
rs3
T4

¢ | 0

(

Sa EB>_

OO OO DODOODODODOO N~
OO OO OO0 O NO

where

s1=q1 =t

So =qo = |{i: Az; # 0, Ba;

»
w

OO NODODODONOO

S4 S5 Sg t1 ta tz3 14
0 0 0 I 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

v, 0 0 0 0 ¥ O
0 0 0 0 0 0 I
0 0 0 0 0 0 0
0 0 O
0 0 O

U 0 O
0 I 0

|{Z : ACUZ',BCUZ' 75 O,C*yz’ = 0}‘,

C*yi = 0}|,

s3=gq3 = |{i: Az; # 0,Bz; = 0,C"y; # 0},

sS4 =qys =tz =r3 =|{i: Azx;, Bx;,C"y; # 0},

ss =1y = |[{i: Ax; = 0,C"y; # 0},

s¢ = [{i: Ax; = 0,C"y; =0},

g5 =l = |{Z : A*yl = OaBml 7é 0}‘7

g6 = |{i: A*y; =0, Bx; = 0},

to = ‘{’L : B*’Ui = O,A*yi 75 0}‘,

ro = |{i: Cu; = 0, Ay; # 0}

Here k = g4 = s4 = t3 = r3 is the dimension of the set of “interesting” singular values of (4, B, C).

2.2.2. The Perturbation Theory.

matrix pencil

0 A*

(2.16) 10

@ ]

>:A< 0

Again from Zha [19, 18], the RSVD is equivalent to the

B*B 0
cer

)(5)

< R

Here each singular value triplet (a;, 3;,;) such that a;8;v; # 0 corresponds to two eigenvalues of

the pencil (2.16). They are

a;
(2.17) = ,
Y By
and they correspond to the eigenvectors
_ 1 ( Vi )
zj = ——— ;
NN

»
>\i+k = _,8'2}/‘

g = N < Vi > _
' VB2 \ B
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The positive values of \; are called the generalized singular values of the matrix triplet (A, B, C).
The theory laid out in the previous section will quickly yield perturbation bounds for this eigenvalue
problem.

We now compare the generalized singular values of (A, B,C) to those of a “nearby” triplet
(A, B,C). This generalizes some results in [19] to allow A, B, and C to be rank deficient, and is
proven with weaker assumptions. We need to define some terms. Let

(2.18) AA=A-A AB=B-B, AC=C-C,
(2.19) 64 =|AAll, 0B =|lAB, dc =I[AC],
(2.20) Es=AA/Sa, Ep=AB/ép, Ec=AC/éc.

We also define

(2.21) Spc = max{dp,6c}, Fg=AB/dgc, Fo=AC/dpc.
Let

(2.22) A(Q) = A+CEa, C€0,84],

(2.23) B(§) = B+¢Fp, C(§) =C+€Fe, €€0,6pcl.

Note that A = A(d4), B = B(6pc) and C' = C(dpc). For ¢ € [0,34], let the RSVD of the matrix
triplet (A(¢), B, C) be given by

(2.24) AQ =Y (QOZA(QX ), Za(C) = diag(ai(()),
B=V(()Er(()X'((), s = diag(fi((),

C=Y""(Q2c(QU* (), ¢ = diag(yi(()).

For appropriate values of i, define

(2.25) zi(Q) = X(Qei, wi(¢) =Y (Q)es, ¢ €0,84].
For € € [0,0pc] let the RSVD of the matrix triplet (4, B(€), C(€)) be given by
(2.26) A=VTOZAOXT(O), Ta = diag(ai(€)),

B(&) =V()Sp(X'(€), Xp = diag(Bi(¢)),

C&) =Y (OZc(OU(Q), Zc = diag(7i(é))-

For appropriate values of i, define
(2.27) 2:(¢) = X(&ei,

i;(§) =U(€)es, 5(Q) =V (ei, € €0,0pc].

Finally, define the set of indices

N4
S
—
I
~
I

~h
—
[aa)
~

®
N

5 € [0, 6BO]:

(2.28) Sapc(64,08c) = Sa(d4) NS (dBc):
9



where

Sa(da) = {i: ai(Q)B:i(()i(C) # 0, for all ( € [0,04]},

Spo(Opc) = {i: a:i(€)Bi()%i(€) #0, for all £ € [0,6p0]}-
We note that if i € Sapc(d4,dpc), then

Qi o 9

Bivi' T B

where (o, 8;,7v:) and N(di,Bi,’yi) are singular triplets of (4, B,C) and (A, B,C). For such i, it is

meaningful to bound A;/);. o . .
THEOREM 2.6. Let (A, B,C) and (A, B,C) be matriz triplets such that A, A € C™*", B,B €

Ccrxn C,C e C™™"™. Let b4 = ||A—A||, 6 = ||B — B||, and éc = ||C — C||, and let épc be given

by (2.21). Let E4, Ep and Ec be given by (2.20), and let Sapc(da,dpc) be given by (2.28). Let

xz(C)ayl(C)aC € [0,§A] be given by (225) anNd let i’z(f)agl(g)/al(f)aﬁl(f)ag € [0,(530] be given by

(2.27). For alli € Sapc(64,9Bc), if \i and \; are given by (2.29), we have

(2.29) i =

(2.30) exp(—dan; — dpkl — dokf) < i— < exp(3ak] + 0kl + 00k,
where
A_ o IR (OFAzi(Q)
(2:31) BT O QA Q)]
p_ . [Re((©Es#:(©)
BT ecloanel 01 (OBOF ()]
IRe (37 (€) Eciti (€))]

 eelosnel |5 (©)C©)a ()]

Proof. This theorem is proven by considering the two doubled generalized eigenvalue problems
associated with the RSVDs (2.24) and (2.26). The RSVD (2.24) is equivalent to eigenvalue problem
for the pair (H(¢), M), € [0,04] where

A* + CE¥ o .
H(¢) = ( A+OCEA +0< A ) M = diag(B*B,CC*).

We note that for i € Sapc(da,0Bc), the eigenvector of H(() has the form

2(¢) = (=] (€), Bi(Qyi ()T
If we let \;(¢) be the i" eigenvalue of the pair (H(¢), M), ¢ € [0,34], and define

_( 0 Ej
EH - < EA 0 ) 3
then k! in (2.1) satisfies

WH [Re (2 (O Erzi(Q)]

" ceosal 122 (QHQ)Z Q)

L BOMOR( (O FAzi(Q) + 2 (O FA3i()
B O O OA (O #1040

2[Re(y; (O Eazi(Q)] _  a

~ celosal 2y (OAQZ O]
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according to (2.31). Thus \;(d4) satisfies

Ai(0a)

(2.32) exp(—d4k) < M (0)

< exp(dakd).

Now for i € Sapc(da,dpc), let Xi(0) = X\;(84), and let (X;(€),2(€)) be the it eigenpair of the pair
(H,M(£)), where H = H(d4) and

M(&) =G (§G(E), G(§) = diag(B,C") + {diag(nsEp, nc E¢).
Here ng = dp/dpc and ne = d¢/dpc. We note that

siey = GO _ BiOBO@E).GE) _ o s
O 60501~ Tomou@mer

thus we can write k¢ from (2.12) as

G 2|Re(s}(€) diag(ns Ep,nc EL) % (€)))
g€f0.050] |53 (§)G(&)Zi(E)]

2|Re(np7:(§)v; (§) EpTi(§) + neBi(€)i; (€ Ecii(€))]
€€[0,0p0] 1%:(§)v7 () B(£)Z:(€) + Bi(&)y; (§)C(§)ui (§)]

max

. )
~ gel0one] [5;(€)07 (&) B(€)F:(€) + Bi ()i (§)C (&) (&)

+ max

The first term in (2.33) is bounded by

max ARemBY(©0 (O Epzi(©))| _ - 2Re(ms%i(€)0] () EpEi())]
gel0.ome]l  |7:()Bi(€) + Bi()Ai(§)] £€[0,9nc] 21%:(8)Bi (&)
— s max [Re (9} (O EBZ:i ()| _ )

£€[0,0Bc] ‘f): (f)B(g)mz(f)‘

By a symmetric argument, the second term in (2.33) is bounded by

 Re(BOFi ) _ o
“ecloime) [ (OCEmO]

n
Thus,
(2.34) k{ < npkp +noks .

Using (2.34) we have

(2.35) exp(—dpcrt’) < ° : < exp(dpchy’)-



The combination of (2.34) and (2.35) yields

exp(—0pkE — d0k{) < M < exp(0pkB + d0ky).

Ai(0)

Using the fact that \;(64) = X;(0) and the bound (2.32) yields (2.30). O

Two corollaries to this theorem yield perturbation bounds for the QSVD and PSVD. For the
QSVD consider the matrix pair (4, B) and the “nearby” pair (A, B), define AA and AB as in (2.18),
define 64 and dp asin (2.19), and E4 and Ep as in (2.20). We define A((¢) as in (2.24) and B(£) as
in (2.23). For ¢ € [0,d4], let the QSVD of (A(¢), B) be given by

Y

(2.36) AQ =U(QZ4(QX (), Ba(0) = diag(ei(()),

B=V(QZp(Q)X (), Ip=diag(Bi(()),
and the QSVD of (4, B(£)),£€ € [0,0p], be given by
(2.37) A=Y OZAOX 1), Ta = diag(ai(©),

B(&) =V()Tp(EX1(E), Tp = diag(Bi(€)).

COROLLARY 2.7. Let (A, B) and (A, B) be matriz pairs such that A,A € C™*" and B,B €
CP*", Let 64 and dp be given in (2.19). Let E4 and Ep be given by (2.20). Let Sap(da,08) be
given by (2.28) with dpc = dp and v;(¢) = vi(§) =1 for alli, {, and &. Let z;() = X (e, u;i(¢) =
U(C)ei, ¢ € [0,04], where X (¢) and U(C) are from (2.36), and let &;(€) = X (€)e;, 0;(€) = V(€)es, € €
[0,05], where X (&) and V (€) are from (2.87). For alli € Sqp(64,08), if \i = a;/B; and X; = &;/B;,
where (o, B;) and (&, B;), are the corresponding quotient singular value pairs of (A, B) and (A, B),
respectively, we have

exp(—(SAka;4 - 0pKP) < X < exp(dak 4+ 0pKP),
where
A Re(ui (O Eazi(Q))]
P o ur(QAQz Q]
o [Re(E (OB ()

gefo.os] |07 (§)B(§)Z:(E)]

This is proven from Theorem 2.6 by simply observing the QSVD of (A, B) is the RSVD of
(A, B, I) and making appropriate substitutions.

A perturbation bound for the PSVD follows from the following characterization. Consider the
matrix pair (4, B) and the “nearby” pair (A4, B), define AA and AB as in (2.18), define 64 and 63
as in (2.19), and E4 and Ep as in (2.20). We now let

(2.38) 6ap =max{d4,0p}, Fa=0A4/6ap, Fp=05B/0an,
and let
A(Q) = A+ (Fa, B(()=B+(Fp.
Then the pair (A(¢), B(C)) has the PSVD given by
(2.39) AQ) =UQOZa(OX O, Ea(Q) = diag(ai(¢)),
B(Q) = X(OXs(QV((), Ep(() = diag(Bi(()).

12



We also need to define the set

(2.40) Sap(0ap) = {i: ai(()Bi(¢) #0,¢ € [0,04p]}.

We note that we need only one set of perturbations for the PSVD.

COROLLARY 2.8. Let (A, B) and (A, B) be matriz pairs such that A,A € C™*" and B,B €
C"*P, Let 54 = ||A— A|| and 6p = ||B — B||. Let ap be given in (2.38). Let E4 and Ep be given
by (2.20), and let Sap(dap) be given by (2.40). Let z;(¢) = X(C) *ei,u;(¢) = U({)es, ¢ € [0,04],
where X (¢) and U(C) are from (2.36), and let z;(¢) = X1 ()es,vi(¢) = V(C)ei, ¢ € [0,54B], where
X(¢) and V(C) are from (2.87). For all i € Sap(6aB), if \i = aif3; and \; = &;B3;, where (a;, ;)
and (&;, ;) are the corresponding product singular value pairs of (A, B) and (A, B), respectively, we
have

exp(—émﬁ4 —0pKP) < % < exp((sA/i;4 +0pKP),
where
Re(uj(Q)Eazi(Q)]
kA = ma | L ,
celoias] [ui (QAQ)z(0)]
b Re((OFpu(0)

eclonn] 22 (Q)BQvi(0)]

Proof. From Zha [18], we note that the PSVD of (A, B) is the RSVD of (I, A, B). Thus the

Y

PSVD may be written in RSVD form as
I=Y *X 1
A=US X1,
B*=Y7*YgV"*.

The first line states that Y* = X !, thus B = Y *Y¥gV*. Using this characterization with Theorem
2.6 yields the appropriate result. O

We now consider the SVD of A + AA. From just considering the RSVD of the triplet (A, 1,1)
we obtain the following corollary.

COROLLARY 2.9. Let A,AA € C™" m >n, and let 54 = ||AA|| and E4 = AA/é4. Define
A(Q) = A+ (E4 for C €]0,04]. Let A(C) have the singular value decomposition

A(Q) =U@QZ(QV(Q)", ¢ €0,84],
where U(() € C™*™ and V({) € C"*™ are unitary and

2(¢) = diag(o1(C), -, on(C)),  U(C) = (ua(Q), - um(C)),  VI(¢) = (vi(C),---,vn(0)):
Then for each i € Sa(da), where Sa(da) = {i: 0:(() # 0, € [0,d4]}, we have that

(2.41) exp(—6ak]') < U;i(?(f)) < exp(daki),
where
(2.42) WA [Re(uf(QEavi(Q))|

§ T celaal [u(QAQui(Q)]

The above characterizations give us methods for understanding the effects of scaling upon the
RSVD, QSVD, PSVD, and, of course, the ordinary SVD.

13



3. Effect of Structured Perturbations. In this section, we discuss the effect of common
structured errors. For this part of the theory we state the results for the SVD and QSVD. Similar
bounds can be derived for the PSVD and RSVD. The theory for Hermitian pencils can be written
in terms of a particular QSVD problem.

3.1. Structured Perturbations of the SVD and QSVD. For the ordinary SVD, we sup-
pose that the perturbation matrix AA in (2.18) has the form
AA=04FE4
where

Ex=FaDa, |IDall=1All, [IFall=1.

Here D4 is some right scaling matrix.

Note that we do not require (2.19), that is, in general 54 # ||AA||. Thus the values of k; mean
something slightly different. However, products of the form 6An;4 remain the same, hence the results
of the analysis are the same.

Our aim is to obtain a bound of n;“ for all i € Sa(d4) as defined in Corollary 2.9. As before we
let A(¢),¢ € [0,84] be defined by (2.22).

We now introduce the notion of a truncated SVD. In this case, we truncate with respect to the
index set S4(da).

DEFINITION 3.1. Let k be the number of indices in Sa(da), and let the singular values of A(()
whose indices are in Sa(64) correspond to singular values o1(C),...,01((). Let the truncated SVD
of A(C) with respect to Sa(d4) be given by

A(G64) = U(QE(G64)VT(C), ¢ €0,64],

where

E(C,(SA) = diag(al(C)7a2(<)a v :Uk(C)aO: e /0)

It is also appropriate to define the Moore-Penrose pseudoinverse of A((;d4). For a fixed matrix
A € C™*" the Moore-Penrose pseudoinverse is the unique matrix At € C”*™ satisfying the four
Penrose conditions

1. AATA=A, 3. (AA")* = AAT,
2. ATAAT = AT, 4. (ATA)* = ATA
It is easily verified that the Moore-Penrose pseudoinverse of A((;04), ¢ € [0,d4], is given by
AN 0a) = V(O (G 04)U(Q),
where
£(¢;04) = diag(o7 " (0); -, 05 ((),0,...,0).

We now use this form to establish global error bounds for all g;,i € Sa(da).

PROPOSITION 3.2. Let A,AA € C™*" | and let AA = 04FaD 4, where ||Fa|| = 1. Define
A(() = A+ CFaDy4 for ¢ € [0,64]. Let A(C) have the singular value decomposition assumed in
Corollary 2.9. Let 0;(¢),i = 1,2,...,n denote the singular values of A(C), and let A((;04) be as
defined in Definition 3.1. Then for each i € Sa(da) (that is, for eachi =1,2,...,k), 0;(64) satisfies
(2.41) with k2 bounded by

A<y A= DAAY (¢ 04)u; < DAAY(C64)].
ki < Xi Cg[loa}gi]ll AAT(C04)u (C)II_Céﬂ]e}gA]ll AAT(C;64)]]
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Proof. From (2.42), for each i € S4(d4) we have

A ey [ReI(QFADAvi(Q))]
Cocelooal fui (QAQwi(Q)]

Using the fact that [|u}({)Fall <1 with (3.1) yields

A 1D av; ()|
(3.2) RS T O

(3.1) K

By the definition of AT(¢;84) we have
(3.3) vi(¢) = AT(¢0.4)ui(Q)oi (Q).

Combining (3.2) with (3.3) yields the desired result. O

The following corollary is a componentwise error bound that we might expect from singular
value improvement procedures. Its proof is very similar to the scaled case.

COROLLARY 3.3. Let A,AA € C™*" | and let AA = §4E4, where |[E4| < |A|. Here both the
inequality and the absolute value are componentwise. Assume the rest of the hypothesis of Corollary
2.9. Then (2.41) holds for each i € Sa(04) with k* bounded by

A< ph = AlAY(C04)u; < AlAY(G 6 .
Kl <ol = max [[14]1ANG)w (O] < max [[14]147(C 80|

We now consider the effect of scaled and componentwise errors for the QSVD. For simplicity
assume that Null(4) N Null(B) = {0}. The QSVD of (A4, B) yields an expanded definition of
pseudoinverse discussed in [5, 2].

DEFINITION 3.4. The B-weighted pseudoinverse of the matriz A is unique matriz AIB that
satisfies the four conditions

1L AALA=4, 2. ALa4l, = AL
3. (AAL)* = AAL, 4. (B*BALA)* = B*BAL A
Using the QSVD, the B-weighted pseudoinverse of A and the A-weighted pseudoinverse of B
are given by
AL = xxlus, Bl =xzLv

Now as with the ordinary SVD, we can simply use truncated weighted pseudoinverses. We let
A((), ¢ € [0,04], be given by (2.36). We then let

Ya(C;0a) = diag(ai(¢;0a), -, an((;4)),
where

0i(G;64) = { ai(C) i€ Sa(6a)

0 otherwise
We then truncate A(¢) to obtain

A(G64) =U(OZA(CG04)X M) C€10,84].
15



Thus, B-weighted pseudoinverse of A((;d4) is clearly given by

AL (¢ 8a) = X(OB (G 8T ().

We also let B(), ¢ € [0,dp] be given by (2.37). We then define

Sp(&0p) = diag(B1(&6B), ... Bu(&: 6B)),

where

Bz(g, (SB) = { Bz(f) 1€ SB((SB)

0 otherwise.

Thus we truncate B(§) to B(;dp) giving us

B(&0p) =V (§)Sp(&68)X (9).

We then note that the A-weighted pseudoinverse of B(¢;dp) is given by

B;(&0p) = X(6)2h(&65)V*(6).

For the QSVD, the condition numbers x#* and kP have a straightforward interpretation in terms
of truncated pseudoinverses. Its proof is analogous to that for the ordinary SVD case above.

PROPOSITION 3.5. Let (A, B) and (A, B) be matriz pairs such that A,A € C™*" and B,B €
CPXn . Let AA = 640E4 and AB = égEp. Let E4 = FaD4 and Eg = FgDpg where ||FA|| =
[|[Fg|| =1, and assume the rest of the hypothesis and terminology of Corollary 2.7. Define

Xt = max IDaAb(CouOll. i€ Saloa),

B = Preos Ve .
it = max [|DpB5(&0s)u(Ol, i€ Sp(on).

Then

K <xi', i€8a(a), &P <xP(0B), i€Sp(n).

This is a generalization of a bound by Demmel and Veseli¢ [3]. If D4, Dp, A, and B have full
column rank, then this becomes exactly that result. Note, however, that the character of this bound
changes when either A or B has some near zero generalized singular values.

COROLLARY 3.6. Let (A, B) and (A, B) be matriz pairs such that A,A € C™*" and B,B €
Cr*n. Let AA = 04E4 and AB = 6pEp, where |E4| < |A| and |Eg| < |B|. Assume the
rest of the hypothesis and terminology of Corollary 2.7. Let Sx(d4) be the set of indices where
a(C) #0,¢ €10,04] and let Sy(04) be the set of indices B;(€) # 0,¢ € [0,0p]. Define

& gg[]fé]m ARG 0a)ui(Q)]l, i € Salda),

B = PR .
pi _gen[‘(%;]H‘B‘|B;,(§,5B)vl(§)\||’ i € Sp(6p).

Then

kA< ph i €8a(0a), and kB <pP, icSp(n).
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Moreover,

pi _Cg[loa}g(A]lll [AB(G oA, i€ Sa(da),

P _gér[}f“g{BHH H A(ga B)|||, 1 € B( B)

The structured perturbations for the SVD and QSVD set a stage for us to give structured
perturbation bounds for Hermitian generalized eigenvalue problem.

3.2. Structured Perturbations for the Hermitian Generalized Eigenvalue Problem.
Veseli¢ and Slapnicar [16] describe a formalism that allow us to reduce the considering of a general
Hermitian pencil to a particular QSVD. To do so, we first define the spectral absolute value of the
matrix H(¢) with respect to M. Suppose that the family of pencils H({) — AM, ¢ € [0,dp] has the
form

(3-4) H(¢) = X (QAMOXTI(Q), M =X""(Q)J(O)X(C),

where

Ar(¢) = diag(A1(C), ..., An(C)),
J(¢) = diag(j1(€), - -, 4n(C))-
Here

3i (<) _{ 1 otherwise.

As done in Veseli¢ and Slapnicar [16], we relate our problem to a positive definite eigenvalue problem.
DEFINITION 3.7. Let H(¢),¢ € [0,0m] and M be Hermitian and let M be positive semi-definite.
Let the pair (H(C), M) have the generalized eigendecomposition in (3.4). The spectral absolute value

of H(C) with respect to M is the matriz H}V[(C) given by
Hip = X (QIAQIX Q).
Here [A(C)| = diag(IA1 (O], [A2(Q)l; -+ Ma(OD). If M =1, then we define H*(C) by

HY(¢) = H(C).

If we let X ~1({) have the factorization

X7HQ) = QOR(),

where Q(() is unitary, then it is easily seen that

H}, (¢ = R* QR (QHQR () R(Q).

This is the definition given by Veseli¢ and Slapnicar [16] for the case where M is nonsingular. We
also note that for the case M = I, we have

HY(¢) = VH?(()

17



where /- denotes matrix square root.

We will now define a truncated version of Hi,(¢). Define Sir(85r) as in (2.3).

DEFINITION 3.8. We define HL(C;(sH),C € [0,dm] as the truncated spectral absolute value of
H({) with respect to M. It is the matriz HJ{/I({;(SH) such that

HY(Gom) = X*A(CGom) | X 7Y
where
IA(C; 8)] = diag(| A (¢ 0m)], - -, [An (€ 0m)))

and

o 0, i€Su(dn),
Xi(C;0m) = { i (Q), othfrwge.

Clearly, H}VI(C; 0 ) is positive semi-definite. We can factor both HL(C; 0r) and M into the
form

(3.5) HY(Com) = C*(G0m)C (G o), € €[0,0m],
and
(3.6) M =G*G,

respectively, where
(3.7) C(¢;om) = U(Q®(¢:om)X71H(C) € C™, m <, (€[0,5p]

G=V(Q)IOXT () eC™, p<n, (€[0,0m].

In (3.7) U and V are matrices with orthonormal rows and orthonormal nontrivial columns. That
is, columns of U which correspond to i € Sg(dy) are orthonormal, and columns of V' for which
Ji(¢) = 1 are orthonormal. Also, ®({;dx) satisfies

(3.8) ®(¢;0m) = diag(¢i(C;m)) = V/|A(C; 0m)]-

The form (3.7) describes the QSVD of the pair (C'(¢;0m),G). This allows us to establish bounds
that are similar to those in the previous section.
Clearly, the G-weighted pseudoinverse of C((;drr),¢ € [0, 6], is given by

(3.9) CL(¢om) = X (OB (¢ 0m)U* (), ¢ € [0,6m].

Using this structure, we can establish bounds on all of the eigenvalues that do not change sign
under the perturbation.

THEOREM 3.9. Let H((),(¢ € [0,0x] be Hermitian and have the form (3.4). Let (Xi(C),x:())
be the it" eigenpair of the pair (H((), M) where M is Hermitian and positive semi-definite. Let
C(¢;0m), ¢ € [0,0m] be as defined in (3.5), let G be defined by (3.6), and let the QSVD of
(C((;:0m),G) be given by (3.7). Define Sy(dm) as in (2.8). Then each X\;((),i € Su(dm), sat-
isfies (2.4), where

(3.10) H max |27 (O)Erwi(Q)]

U celodnl 2 (O HY, (¢ 0m)Ti(Q)

= max i QL (Gom)] EnCh (¢ omui(C)]
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Moreover, we have

11 H - 5o EnCl(c: s )
@) Jmex 6l < mas [CL(G O] EuCh(G

-~

Proof. For each i € S (dp) considering (2.4) yields
" 74 () B i(0) o 1 OBam(Q)]

i = —

celodu] o () HL, (C;0m)i(C) celosn $i(Q)?

Using the fact that z;(() = gi)i(C)Cé(C; 0m)u;(C), we have

wi! < max [uf (OICE (GO BuCh(Gom)ui(C)l,

which is the second equality in (3.10). Thus,

wil = max [l (QCE (G 0m)" EnCE(G omus(ll

and classical norm inequalities yield (3.11). O

The componentwise version of Theorem 3.9 is obtained similarly as in §3.1.

The following corollary yields a bound for the case of scaled perturbations discussed by Barlow
and Demmel [1]. Here Ex has the form

(3.12) Ey = D*FyD, ||Fy| = 1.

COROLLARY 3.10. Assume the hypothesis and terminology of Theorem 3.9. Assume that Eg
has the form (3.12) and assume that Cq((;0m) is defined by (3.7). Then

ki <xH

= Ai

_ T ) 2 .
= max [ DOSGomui(OI®, i € S(0m).

4. Error Bounds on Subspaces. We now consider the effect of structured perturbations on
the eigenvectors of H. We confine our attention to the perturbed problem
(H 4+ AH)& = N\,

where AH has the form (3.12).
We let H(C) be as in (2.1), thus S(6g) has the form

and its set complement is
(4.2) S(0m) = {i: Xi(¢) =0, for some ¢ € [0,0x]}.

Suppose that S(dg) has k elements and that S¢(dg)has n — k elements. Let X1, X; € C"** be
the matrices of eigenvectors of H and H 4+ AH associated with S(dy) and let Xy, Xy € C?*(n—F)
be the matrices of eigenvectors associated with S¢(dp).

We now define several forms of relative gaps:

A—p
(43) Telgap()\,,u) = |>\/J1/2’ 'LL, >‘ # 07
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4.4 l >\116 = i i l )\Z,A 0 s
(4.4) relgap(Ai; 0rr) min min e gap(Xi, N (6m))

relgap(T', A) = minrelgap(Xi,y;), A =diag();), T = diag(y;),

2,]
relgapo(Ni; 6m) = ||(AI — A) "l |,
relgapo(L'; dpr) = minrelgapo(v;; m).
J

The first definition (4.3) is just that from Barlow and Demmel [1]. The second definition (4.4) is the
distance of a particular non—zero eigenvalue from all of the other non—zero eigenvalues. The third
definition generalized the first to sets of eigenvalues. The fourth and fifth definitions generalize (4.4)
to distance from the set of near zero eigenvalues.

Let H*(¢) and C(¢) be defined by Definition 3.7 and (3.7), respectively. Note that, since the
eigenvector matrix X ({) is unitary, we can also set U(¢) = X~ *({) = X(¢) in (3.7). We will also
need the values

H _ b (C S )
(45 X' = max [IDOK(Camui(Q)l,

H 1
= DCL(¢om)],
X" = max IDCG(C;0m)l

_ | DX, ||?
X0 = p 3
MINGeSy (6) \Ai(5H)|

H _ P
= DC %) _
CGH[}J??H] I G(C’ u)llr

We can write down the following theorem on the error in the it" eigenvector of H.

THEOREM 4.1. Let H,6H € C"*" be Hermitian and let S(dg) and S°(0m) be defined by
(4.1) and (4.2), respectively. For i € S(0g), let x;,%; be the i'" eigenvectors of H and H + AH,
respectively. Let X;1 be the matriz Xy with x; excluded. If AH has the form (3.12) then

on
Xl < ——H
|| i1’ || = relgap()\z,(SH) X Xz
.~ o
X33 < ———— )\/Xoxf’,

relgapg(Xi; OH

- )
11X X0 —H)\/x[)x;’,

relgapg(f\l; OF

IN

IN

where xH, X" xo and X1 are defined by (4.5).
Proof. We have that

X5 (H+AH)# = X}
and, thus,

X}E = (I — Ag) X AHZ;

= (M — Ay) "' X5 D*Fr D%
Since

X = CH0;0m)Un|Au|?, X = CH (0 0 ias| N Y/2,
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we have

X5l < NG = Aa) ™ ([Aa | ND2IIDCT ;68| | DCT (S 00|

o (D)
~ relgap(\i; 0m)
Likewise,
X3i; = (M — Ay) ' XSAHE;.
Thus,
o (xoxf) "

.~ N S 1/2
1301 < Sl (T — Ao)~ Nl | (o) '/ = 20X
relgapo(Ni; 0 )

A straightforward computation yields

OH (Xo)()yl?’)l/2

X*XN < - =
X2 Xalr < relgapo(A1;0m)

as desired. O

This can be generalized to (1.3) with M positive definite if we substitute an M—weighted norm
for the Euclidean. Natural analogs of the results in this section are easily stated.

A result that is useful for clusters of eigenvalues is given next.

THEOREM 4.2. Assume the hypothesis and terminology of Theorem 4.1. Let Ay and A; be
partitioned as

Ay = diag(A11,A12), Ay = diag(Aq1, Ar),

and let X1 and X, be partitioned conformally as

p k—p ) P k:p
Xi= (Xun Xip), Xi= (Xnn Xio).
Then
- SrvE
(4.6) 1X;7, Xl F < TXE

relgap(Au, /~\12).

Proof. Let z; be a column of X;; and let Z; be a column of X15. Then a straightforward
computation yields

ary| < ZIAHEL 5 D" D]
I U Aj = Al

- Hy\H
s Dzl IDa) o VXY

= N—xl T Hrelgap(kuj\j).

Summing over ¢ and j yields (4.6). O
An important type of perturbation for singular value problems for positive definite H is when
H is perturbed through its factors, that is

(4.7) H=G*G, H+AH=(G+AG) (G +AG).
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THEOREM 4.3. Let H and H + AH have the form (4.7). Assume that for some n < 1, G and

AG satisfy
|AGa] <nliGall, =€ Cm,
If (\i,z;) and ():Z,:El) are the i*" eigenpairs of H and H + AH, respectively, then

eo oM+ @ —n)]
(4.8) |z < 5y

relgap(Xi, Aj) '
Proof. We have that

That may be rewritten as
2IG*AGE; + 23 AG(G + AG)E; = (N — \j)a} 3,
and again as
|)\j\1/2u;AGsﬁj + |5\Z‘1/2$;AG*1~11 = (S\z — A])CU;CEZ
We note that
IAGz| < nl|Gail| = nXi|*/?,
and
IAGE;|| < nl|GZ;|| = n[I(G + AG)Z;[| + [[AGE,]| ].
Thus,
IAGE;|| < (1 —n) H A2
An application of the Cauchy—Schwarz inequality and some algebra yields (4.8). O

5. Examples. In this section we illustrate our results on several examples.

We give examples for structured perturbations of §3, in particular for the relative componentwise

perturbations of the type
AA=04E4, ‘EA|§|A‘

Such perturbations are highly interesting since they appear during various numerical algorithms for
eigenvalue and singular value problems [1, 3, 7, 15, 16, 17]. Such perturbations are sometimes called

floating-point perturbations [16].

The first two examples deal with the singular value decomposition and illustrate Corollary 3.3.
ExXAMPLE 5.1. Let A be a product of a well-conditioned matrix and a strong column scaling,

—2.10% 7.10%° 7 -2 7 7 1040
A= -8-10 —-7.10° —6|=|-8 -7 —6|- 1020
—7-10% 2.10%0 2 -7 2 2 1

Let AA=84E4 where §4 = 1076 and

7-10%°  -1-10* 3
Eq=|-3-10 1.102° -1
-9-10% 3-10' 04
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Let d0; = 0;(A + AA) — 5;(A). The singular values of A are (properly rounded)
(01,09,03) = (1.08 - 10*',9.76 - 10%°, 0.426),

and the relative changes in the singular values are

<§0’1| |(SO’2| |(SO’3|

o1 02 03

) =(24-1077,1.6-1077,3.5-109).

Both singular value decompositions, of A and A+ AA, are computed by the one-sided Jacobi method
whose sufficiently high accuracy is guaranteed by the analysis of Demmel and Veseli¢ [3].

Since |E4| < |A|, we can apply Corollary 3.3. We compute the first order approximations of the
corresponding bounds, that is,

60’i
09il 511141 1At uil || < 8]l |A]|AT] ]

o;

(5.1)

Note that, since the scaling D factors out, we can use B instead of A in the above formulae,
which makes the computation of the inverse much more accurate. The bounds obtained by the first
inequality in (5.1) are

|001] |d02| |dos]
g1 ' g9 ' g3

) <(1-1075,1.25-107%,4.6-1075).

The second inequality in (5.1) gives

00;
max [0i] < 4.6-107°.
i=1,2,3 0;

The similar bound is obtained by the perturbation theory by Demmel and Veselié¢ [3]

Y

oo; _ _ _
(5.2) max 271 < i [Adiag™ (AT < 951077

i=1,2,3

EXAMPLE 5.2. Let 4 and E4 be as in Example 5.1, and let

—92.10%0 71020 7
A= -8-10% —6.0001-102° —6
—7-10% 2.1020 2

This matrix differs from the one in Example 5.1 only in the element Ay, which is chosen to make
the last two column vectors of A nearly parallel. The singular values of A are

(01,09,03) = (1.08 - 10*1,9.25 - 1020, 0.45),

and the relative changes in the singular values are

<50’1| |(50'2| |(50'3|

o1 02 03

) =(25-1077,1.6-1077,3.0- 1072).

The bounds obtained by the first inequality in (5.1) are

(601 |(SO’2| |(SO’3|

o1 g2 o3

) <(1-1075,1.2-107%,4.2-1071).
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This shows that our bounds are local and nearly optimal. The second inequality in (5.1) and the
Demmel-Veseli¢ bound (5.2),

S0 5o
« 0% 491071 and  max 2% <s9.107,
i=1,2,3 0 i=1,2,3 0;

respectively, both cover only the worst case.

The following two examples illustrate the application of Theorem 3.9 to componentwise per-
turbed Hermitian eigenvalue problem. Both examples were also analyzed in [16].

EXAMPLE 5.3. Let

11 1
H=[10 0
1 0 1078
Let AH = 6y Ey, where 6 = 107 and
03 -05 0.4
Eg=1-05 0 0
0.4 0 —6-107"2
Thus, |Eg| < |H|. Let 6\; = \;(H + AH) — X\;(H). The eigenvalues of H are (properly rounded)
(>\1: >\2: >‘3) = (2; _1: 5 10_9)7

and the relative changes in the eigenvalues are

<5>\1| [0Aa] [0As]

. =(6.7-1077,1.7-107%,9.0- 1079).
)\1 ) )\2 b) )\3 ) (6 7 0 b) b) )

We want to apply Theorem 3.9 with M = I. Since the eigenvector matrix X (¢) is itself unitary, we
can take U(¢) = V() = X~*(¢) = X(¢) in (3.7), which implies C(¢;d5) = (H?)'/2,G(¢) = I. The
first order approximations of the bounds from Theorem 3.9 are

O . _ _ _ _
G3) Oy ()2 ) ()2 < b (Y2 ()

i

The bounds obtained by the first inequality in (5.3) are

<6>\1| [0Aa] |0As]

<(1-107%,1.7-1075,3.0- 1079).
Al b) A2 9 AS ) = ( ) 3 )

On the other hand, the bound obtained from the second inequality in (5.3),

max O <1.9-10%,
i=1,2,3 A\; T

and the bound from Veseli¢ and Slapnicar [16]

Y

(5.4) max. ‘5%‘ < ndgl[(D~'H*D=1)71 < 6.0-10°,

where D = diag(1/ H), are both useless.
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EXAMPLE 5.4. Another interesting example is the following: let H = DAD, where

1 -1 -1 -1 108
-1 1 -1 -1 1
A= -1 -1 1 -1 | b= 1
-1 -1 -1 1 108

The eigenvector matrix of H is
1/vV2 12 1)2 0
0 -1/2 1/2 1/V2
0 -1/2 1/2 —1/V/2
—1/vV2 1/2 1/2 0

Let AH = 6y Ep, where 6 = 107¢ and E = 0.5-10"%ww”, w=(1 0 0 1)'. Thus, |En| < |H]|.
The eigenvalues of H are

X =

(A1, X2, A3, M) = (2-10'%,2-10%, -2 - 10°, 2),
and the relative changes in the eigenvalues are

[0A1] |0A2] [6A3] [dA4]
)YED VR PR VI

) = (4-107'%49,0.98,1.1-107'9).

We see that the middle eigenvalues are very sensitive. The bounds obtained by the first inequality
in (5.3) are

<|5/\1 0X2] [6As]| [0A4]

< (1079,50,50,10°%),
el el Bl 1880 < 100,50, 50,1079,

and clearly show the different sensitivity of outer and inner eigenvalues. The bounds obtained from
the second inequality in (5.3) and (5.4),
OA

max —— <100, and max
i=1,2,3,4 N\ i=1,2,3,4 )\

respectively, are useless.
The last example illustrates Theorem 3.9 on a matrix pair (H, M).
EXAMPLE 5.5. Let H= DyATSADg and M = Dy BT BDyy, where

Dy =diag (108 10° 10 10 1), Y =diag(-1 -1 1 1),
Dy = diag (1074 1072 10~2 10~' 1),

and

PR 3 24 -4
A= , B=|-3 4 4 4 0
-1 -1 1 1 1 101 2 0 -2
1 5 3 1 3
Thus, H is indefinite singular of rank four, M is semi-definite of rank three, and H and M are scaled

in opposite directions. Altogether,

-2.3-10'7 -1.7-10%® -5.0-10° 1.6-10° 2.8-10°
-1.7-10"® -3.0-10® -7.0-10° 1.2-10° 3.4-10°
H=| -50-10° -7.0-10° -1.9-10> -4.0-10> 1.0-10?
1.6 - 1010 1.2-10  —4.0-10> -1.4-10® -1.6-10?
2.8-10° 3.4-10° 1.0-102> -1.6-102 —-1.9-10!
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1.9-1077 -1.9-107° -26-10"° -2.4-10"* —-4.0-107*
-1.9-107° 2.1-1073 2.6-1073 2.4-1072 2.0-1072
M=|-26-10"° 2.6-1073 3.6-1073 3.2-1072 4.0-1072
-2.4-107* 2.4.1072 3.2-1072 3.2-107! 8.0-107!
-4.0-107*  2.0-1072 4.0-1072 8.0-107! 8.0-10°

The eigenvector matrix of the pair (H, M) is (properly rounded)

1.000 —7.396-1075 —4.802-10=% 1.857-10" 2.183-1078

-2.528 1073 1.000 3.010-1072  -2.964-10"* —6.718-107°

X =1 3736-10"3 5.002- 1071 8.661 - 10! -8.412-1071 —-5.038-1072
6.292-10-% —1.501-10"' —1.009- 10! 2.133 1.680- 1071

—2.528-107° 1.000-1072 5.756-1071 —2.372-10~! 3.359-10"!
We have

X*HX = diag (—2.3-10'7 9.57-10% -1.3019-107 7.7388 2.6-10"1%),
X*MX =diag(-3.6-10"2 1.1-107% 1 1 1).

We conclude that Sgr(dmr) = {3,4},
A(0;0x) = diag (0 0 —1.3019-107 7.7388 0), J(C)=diag(0 0 1 1 1),

where A(0;0z) and J(() are defined by Definition 3.8 and (3.4), respectively.
Let us perturb H to H + AH with AH = dgEpy, where 6z = 1076 and

—1-10'" 3-10'2 9-108 7-10° -3-108
3-10% —4-.105 2-105% -3-10° 1-10°

Epg = 9-108 2-10° 9102 8100  —4-10!
7-10° -3-10° 8-10! 4-10? 2-10!
-3-10% 1-10° -5-101 2-10! -6

Thus, |Eg| < |H|. The relative changes in the eigenvalues \;, i € Sy (dg), are

[0As] 64| 7 4
—,— ) =351 31 .
<A3' W (3.5-1077,5.3-10™ %)
The first order approximations of the bounds from Theorem 3.9 are
‘§Al| * T * t
(5.5) N S O |u; (0)[Ce (0;0m)]" | [H[|Cg; (0; 611)ui (0)]

< Sull|[C5(0: 6m)])° | |H|I1CL (05 6m)] I
where U(0) and C’g(O;&H) are defined by (3.9), (3.8) and (3.7). We can take
0 01 0 O
U= (0 00 1 0) ’
in which case

(L (0:6)]" = ~1.331-107° 8341-107%  2400-1072 —2.796-10° 1.595-10~4
GUB O = 6.675-1078  —1.065-107% —3.024-10"! 7.667-10"! —8.525-10"2 )"

The bounds obtained from the first inequality in (5.5) are

03] [0A4]
PPRADY

) <(2.7-107%,46-107%)
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and the bound obtained from the second inequality in (5.5) is

max [0 <4.6-1073.

i=3,4 N\,

Note that choosing C&(O; 0m) with another U(0) in (3.9) would yield the same bounds.

6. Conclusion. The above examples lead us to some observations about the perturbation
bounds in this paper.

Firstly, we can often obtain meaningful relative error bounds on eigenvalues of numerically
singular matrices as long as those eigenvalues are bounded away from zero. If these “non—zero”
eigenvalues are well-behaved, the subspace associated with the “zero” eigenvalues is also well-
behaved.

Secondly, we note that much of the progress in structured perturbation theory has had to do
with the SVD and its generalizations. We note that many of our structured perturbation results
on the Hermitian eigenvalue problem are characterized in terms of the generalized SVD. In many
circumstances, this is a more appropriate approach.

Finally, the error bounds on individual eigenvalues and vectors tend to be tighter, sometimes
much tighter, than the global error bounds for all of the eigenvalues of the matrix given in [1] or
[16]. Moreover, they are easier to generalize to large classes of eigenvalue problems.
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