
OPTIMAL PERTURBATION BOUNDSFOR THE HERMITIAN EIGENVALUE PROBLEMJESSE L. BARLOW � AND IVAN SLAPNI�CAR yAbstract. There is now a large literature on structured perturbation bounds for eigenvalue problems of the formHx = �Mx;where H and M are Hermitian. These results give relative error bounds on the ith eigenvalue, �i, of the formj�i � ~�ijj�ij ;and bound the error in the ith eigenvector in terms of the relative gap,minj 6=i j�i � �j jj�ij1=2j�j j1=2 :In general, this theory usually restricts H to be nonsingular and M to be positive de�nite.We relax this restriction by allowing H to be singular. For our results on eigenvalues we allow M to be positivesemi{de�nite and for few results we allow it to be more general. For these problems, for eigenvalues that are not zeroor in�nity under perturbation, it is possible to obtain local relative error bounds. Thus, a wider class of problemsmay be characterized by this theory.The theory is applied to the SVD and some of its generalizations. In fact, for structured perturbations, our boundon generalized Hermitian eigenproblems are based upon our bounds for generalized singular value problems.Although it is impossible to give meaningful relative error bounds on eigenvalues that are not bounded away fromzero, we show that the error in the subspace associated with those eigenvalues can be characterized meaningfully.1. Introduction. We consider the eigenvalue problemHx = �Mx; H;M 2 Cn�n; x 2 Cn; � 2 C;(1.1)where H and M are Hermitian matrices. We assume that there exists a nonsingular matrix X 2Cn�n such that X�HX = 
; X�MX = J;(1.2)where 
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then M is positive semi-de�nite, and (1.1) is the generalized Hermitian eigenvalue problem. Mostof the results in this paper concern this class of eigenvalue problems.We compare (1.1) to the perturbed problem(H +�H)~x = ~�(M +�M)~x(1.3)where �H and �M are Hermitian and satisfyk�Hk � �H ; k�Mk � �M ;and �H and �M are \small" positive real numbers. Let �1 � �2 � : : : � �n be the eigenvalues of thepencil (1.1) and let ~�1 � : : : � ~�n be eigenvalues of the perturbed pencil (1.3). Starting from thetheory of Kato [10], we obtain meaningful bounds onj�i � ~�ijj�ij :(1.4)Moreover, for the case whenM is positive de�nite, we give conditions under which we can boundthe error in the subspaces in terms of a generalization of the relative gaprelgap(�i) = minj 6=i j�i � �j jj�ij 12 j�j j 12 :This theory generalizes that in papers by Barlow and Demmel [1], Demmel and Veseli�c [3], Veseli�cand Slapni�car [16], Gu and Eisenstat [9], Li [11, 12], Zha [19], and Eisenstat and Ipsen [4].We make the following improvements to the theory given in the above papers:� The bounds on eigenvalues allow for H and M to be singular. These bounds are used toobtain bounds on the singular value decomposition (SVD), the quotient and product SVDfor pairs of matrices, and the restricted SVD (RSVD) for matrix triplets.� The bounds on eigenvectors include bounds on the error in the subspace associated witheigenvalues that are not bounded away from zero.� The bounds given are local in the sense that each eigenvalue has its own condition number.� The bounds given are optimal and show clearly the role of structured perturbations.In x2, we give two simple bounds for the relative error of the form (1.4) under weaker assumptionsthan have been given in previous works [1, 16, 9, 8] and show how this theory can be applied to theSVD, the quotient and product SVD, and RSVD. In x3, we show how this theory accounts for thee�ect of structured perturbation on the problem (1.1). In x4, we give bounds on error in subspacesfor scaled perturbations. Some examples are given in x5 and our conclusions are in x6.2. Locally Optimal Perturbation Bounds on Hermitian Pencils. In this section we �rstgive local condition numbers for eigenvalues. Also, we specialize this result to the cases whenM from(1.1) is positive semi-de�nite and perturbed through factors, and whenM = I and H is an inde�nitematrix given in factorized form and perturbed through factors. We then derive the perturbationbounds for the singular value decomposition and its generalizations.2.1. Local Condition Numbers of Eigenvalues. Consider the perturbed matrixH +�H = H + �HEH ;where �H = k�Hk and EH = �H=�H . Thus kEHk = 1. LetH(�) = H + �EH ; � 2 [0; �H ]:(2.1)Now consider the family of generalized eigenproblemsH(�)x(�) = �(�)Mx(�); � 2 [0; �H ]:(2.2) 2



where M is �xed. We assume that (1.2) holds for each � 2 [0; �H ] and some X(�), 
(�), and J(�).Let (�i(�); xi(�)) be the ith eigenpair of (2.2). De�ne SH(�H ) to be the set of indices given bySH(�H) = fi : H(�)xi(�) 6= 0;Mxi(�) 6= 0 for all � 2 [0; �H ]g:(2.3)The set SH(�H) is the set of eigenvalues for which relative error bounds can be found. The nexttheorem gives such a bound. Its proof follows that of Theorem 4 in [1, p.773].Theorem 2.1. Let (�i(�); xi(�)) be the ith eigenpair of the Hermitian pencil in (2.2). LetSH(�H) be de�ned by (2.3). If i 2 SH(�H), thenexp(��H�Hi ) � �i(�H)�i(0) � exp(�H�Hi );(2.4)where �Hi = max�2[0;�H ] jx�i (�)EHxi(�)jjx�i (�)H(�)xi(�)j :Proof. Assume without loss of generality that �i(�) > 0; � 2 [0; �H ], otherwise multiply H(�)from the pencil (2.2) by �1. Now assume that �i(�) is simple at the point �. Then from the classicaleigenvalue perturbation theory, since Mxi(�) 6= 0, for su�ciently small � we have�i(� + �) = �i(�) + � x�i (�)EHxi(�)x�i (�)Mxi(�) +O(�2):Since �i(�) > 0 for all �, we have�i(� + �)�i(�) = 1 + � x�i (�)EHxi(�)�i(�)x�i (�)Mxi(�) +O(�2)= 1 + � x�i (�)EHxi(�)x�i (�)H(�)xi(�) +O(�2):Thus, we have ����d(ln �i(�))d� ���� � jx�i (�)EHxi(�)jjx�i (�)H(�)xi(�)j :(2.5)If �i(�) is simple for all � 2 [0; �H ], then the bound (2.5) follows by integrating from 0 to �H . In Kato[10, Theorem II.6.1,p.139], it is shown that the eigenvalues of H(�) in SH(�H) are real analytic, evenwhen they are multiple. Moreover, Kato [10, p.143] goes on to point out that there are only a �nitenumber of � where �i(�) is multiple, so that �i(�) is continuous and piecewise analytic throughoutthe interval [0; �H ]. Thus we can obtain (2.4) by integrating over each of the intervals in which �i(�)is analytic.The above bound is \tight" in the sense that if the computable �rst order approximation�̂i = jx�i (0)EHxi(0)jjx�i (0)H(0)xi(0)jis large, then the corresponding eigenvalue is sensitive. If the perturbation EH is not structured inany particular way with regard to xi(�), then the bound from Theorem 2.1 will not be much betterthan classical normwise bounds [17, 15, 7].Now we consider perturbing M . LetM +�M =M + �MEM3



where �M = k�Mk and EM = �M=�M . We then letM(�) =M + �EM ; � 2 [0; �M ]:Now consider the family of generalized eigenproblems~H~x(�) = ~�(�)M(�)~x(�); � 2 [0; �M ](2.6)where ~H = H +�H is �xed. Let (~�i(�); ~xi(�)) be the ith eigenpair of the pencil (2.6). De�ne theindex set SM (�M ) bySM (�M ) = fi : ~H~xi(�) 6= 0;M(�)~xi(�) 6= 0 for all � 2 [0; �M ]g:(2.7)Now we have an analogous theorem for M .Theorem 2.2. Let (~�i(�); ~xi(�)) be the ith eigenpair of the Hermitian pencil in (2.6). Let theindex set SM (�M ) be de�ned by (2.7). For all i 2 SM (�M ) we haveexp(��M�Mi ) � ~�i(�M )~�i(0) � exp(�M�Mi );(2.8)where �Mi = max�2[0;�M ] j~x�i (�)EM ~xi(�)jj~x�i (�)M(�)~xi(�)j :Proof. For i 2 SM (�M ) we note that ~�i(�) 6= 0. Thus, let �i(�) = ~�i(�)�1, where �i(�) is aneigenvalue of M(�)~x(�) = �(�) ~H ~x(�):We note that the proof of Theorem 2.1 goes through if we exchange the roles of H and M , thusexp(��M�Mi ) � �(�M )�(0) � exp(�M�Mi ):Taking the reciprocal yields (2.8).Now we can consider the general problem (1.3). The following corollary is obvious from Theorems2.1 and 2.2.Corollary 2.3. Assume the hypotheses and terminology of Theorems 2.1 and 2.2. Let �i,i = 1; 2; : : : ; n, be the eigenvalues of the pencil in (1.1) and let ~�i, i = 1; 2; : : : ; n, be the eigenvaluesof the pencil in (1.3). Let SH;M (�H ; �M ) = SH(�H) \ SM (�M ). For i 2 SH;M (�H ; �M ) we haveexp(��H�Hi � �M�Mi ) � ~�i�i � exp(�H�Hi + �M�Mi ):2.1.1. Semi-de�nite M . We now assume that M is a positive semi-de�nite matrix written inthe form M = G�G;(2.9)where G 2 Cm�n. We assume no relationship between m and n. Also, let the perturbation to Mbe structured according toM +�M = (G+�G)�(G+�G); k�Gk = �G:4



Again de�ne EG = �G=�G:(2.10)We now de�ne M(�) = G(�)�G(�); G(�) = G+ �EG:The structure of this perturbation is di�erent from before sinceM(�) =M + �(G�EG +E�GG) + �2E�GEG; � 2 [0; �G](2.11)is now a quadratic function in � instead of a linear one. This leads to the following theorem.Theorem 2.4. Let M be an n � n positive semi-de�nite matrix and let G be an m � n ma-trix satisfying (2.9). Let M(�) be de�ned by (2.11), let �G and EG be de�ned by (2.10), and let(�i(�); xi(�)) be the ith eigenpair of the pencil H � �M(�). De�neSG(�G) = fi : Hxi(�) 6= 0;M(�)xi(�) 6= 0; 8� 2 [0; �G]g:Also de�ne yi(�) = G(�)xi(�)=kG(�)xi(�)k. For i 2 SG(�G) we haveexp(�2�G�Gi ) � �i(�G)�i(0) � exp(2�G�Gi );(2.12)where �Gi = max�2[0;�G] jRe(y�i (�)EGxi(�))jjy�i (�)G(�)xi(�)j :Proof. For i 2 SG(�G) we assume again that �i(�) simple at the point � and non-negative for� 2 [0; �G]. Then from classical eigenvalue perturbation theory for su�ciently small � we have�i(� + �) = �i(�)� ��i(�)x�i (�)[G(�)�EG +E�GG(�)]xi(�)x�i (�)M(�)xi(�) +O(�2):Using the de�nitions of G(�) and yi(�) the above expression becomes�i(� + �) = �i(�)� ��i(�)y�i (�)EGxi(�) + x�i (�)E�Gyi(�)y�i (�)G(�)xi(�) +O(�2)= �i(�)� ��i(�)2Re(y�i (�)EGxi(�))y�i (�)G(�)xi(�) +O(�2):Thus, �i(� + �)�i(�) = 1� � 2Re(y�i (�)EGxi(�))y�i (�)G(�)xi(�) +O(�2);and we have ����d(ln �i(�))d� ���� � 2jRe(y�i (�)EGxi(�))jjy�i (�)G(�)xi(�)j � 2�Gi :If �i(�) is simple for all � 2 [0; �G], then the bound (2.12) follows by integrating from 0 to �G.Otherwise, the argument given in the proof of Theorem 2.1 applies to obtain (2.12).An analogy of Corollary 2.3 can be obtained by combining Theorems 2.1 and 2.4.5



2.1.2. Hermitian Matrices Perturbed Through Factors. A corollary is related to a resultfor perturbation by factors due to Veseli�c and Slapni�car [16].Corollary 2.5. Let H 2 Cn�n have the form H = GJG�, where G 2 Cn�m and J 2 Cm�mis normal and nonsingular. Let �G = �GEG 2 Cn�m, where kEGk = 1. De�ne G(�) = G + �EGfor � 2 [0; �G] and let H(�) = G(�)JG�(�). Let (�i(�); xi(�)) be the ith eigenpair of H(�) and let ibe an index such that �i(�) 6= 0 for � 2 [0; �G]. Also de�ne yi(�) byyi(�) = JG�(�)xi(�)kJG�(�)xi(�)k :(2.13)Then �i(�G) satis�es exp(�2�G�Gi ) � �i(�G)�i(0) � exp(2�G�Gi );(2.14)where �Gi = max�2[0;�G] jRe(y�i (�)E�Gxi(�))jjy�i (�)G�(�)xi(�)j :(2.15)Proof. The key observation is to recognize that yi(�) in (2.13) satis�esG�(�)G(�)yi(�) = �i(�)J�1yi(�); � 2 [0; �G]:We note that this is a pencil of the form given in Theorem 2.4. We then note that, since xi(�) is aneigenvector of H(�) = G(�)JG�(�), we havexi(�) = G(�)yi(�)kG(�)yi(�)k = G(�)JG�(�)xi(�)kG(�)JG�(�)xi(�)k :Thus, the conclusion of Theorem 2.4 gives the bound (2.14) with �Gi given by (2.15).2.2. The Singular Value Decomposition and Generalizations. In this section we de-scribe the singular value decomposition and its generalizations, and apply the perturbation resultsfrom x2 to these decompositions.2.2.1. The Decompositions. The singular value decomposition (SVD) of a matrix A, thegeneralized quotient SVD (QSVD) and product SVD (PSVD) of a matrix pair (A;B), and therestricted singular value decomposition(RSVD) of a matrix triplet (A;B;C) are all special Hermitiangeneralized eigenvalue problems.The SVD of a matrix A 2 Cm�n is given byA = U�V �; � = � k n� kk 	 0m� k 0 0 �; k = rank(A);where U 2 Cm�m and V 2 Cn�n are unitary, and	 = diag(�1; : : : ; �k) 2 Rm�nis nonnegative.From Van Loan [13] and Paige and Saunders [14], the generalized quotient SVD (QSVD) of thematrix pair (A;B), A 2 Cm�n, B 2 Cp�n is given byA = U�AX�1; �A = 0@ s1 s2 s3 s4s1 	A 0 0 0s2 0 Is2 0 0t1 0 0 0 0 1A; s1 + s2 = rank(A);6



B = V �BX�1; �B = 0BB@ s1 s2 s3 s4s1 	B 0 0 0s2 0 0 0 0s3 0 0 Is3 0t2 0 0 0 0 1CCA; s1 + s3 = rank(B);	A = diag(�1; �2; : : : ; �s1); 	B = diag(�1; �2; : : : ; �s1);where U 2 Cm�m and V 2 Cp�p are unitary and X 2 Cn�n is nonsingular. We can make theregularity assumptionskXeik = 1; kX�1k = k� AB � k; �2i + �2i = 1; i = 1; 2; : : : ; s1:If B is square and nonsingular this yields the SVD of AB�1, hence the name quotient SVD.Also of signi�cance is the product SVD (PSVD) of the matrix pair (A;B) due to Hammarlingand Fernando [6]. It gives a form for the singular value decomposition of AB, where A 2 Cm�n andB 2 Cn�p, can be written asA = U�AX�1; �A = 0@ s1 s2 s3 s4s1 	A 0 0 0s2 0 Is2 0 0t1 0 0 0 0 1A; s1 + s2 = rank(A);
B = X�BV �; �B = 0BB@ s1 s2 s3 s4s1 	B 0 0 0s2 0 0 0 0s3 0 0 Is3 0t2 0 0 0 0 1CCA; s1 + s3 = rank(B);where again U and V are unitary, X is nonsingular, and �A�B is the diagonal matrix of the singularvalues of AB.Rather than express the perturbation theory of the QSVD and PSVD separately, we insteadgive the restricted SVD of a matrix triplet (A;B;C) due to Zha [18] which includes the QSVD andPSVD as special cases. It has the formA = Y ���AX�1 2 Cm�n;B = V �BX�1 2 Cp�n;C = Y ���CU� 2 Cm�q;where U and V are unitary, X and Y are nonsingular, and �A, �B and �C are nonnegative anddiagonal. If B and C are nonsingular, this implicitly gives the SVD of C�1AB�1. If C = I , thenthis is the QSVD of (A;B), and if A = I , then this is the PSVD of (B;C). The matrices �A, �B7



and �C can be written in the following form
� �A �B�C 0 � =

0BBBBBBBBBBBBBB@
s1 s2 s3 s4 s5 s6 t1 t2 t3 t4q1 I 0 0 0 0 0 I 0 0 0q2 0 I 0 0 0 0 0 0 0 0q3 0 0 I 0 0 0 0 0 0 0q4 0 0 0 	A 0 0 0 0 	B 0q5 0 0 0 0 0 0 0 0 0 Iq6 0 0 0 0 0 0 0 0 0 0r1 0 0 0 0 0 0r2 0 0 I 0 0 0r3 0 0 0 	C 0 0r4 0 0 0 0 I 0

1CCCCCCCCCCCCCCAwhere s1 = q1 = t1 = jfi : Axi; Bxi 6= 0; C�yi = 0gj;s2 = q2 = jfi : Axi 6= 0; Bxi = C�yi = 0gj;s3 = q3 = jfi : Axi 6= 0; Bxi = 0; C�yi 6= 0gj;s4 = q4 = t3 = r3 = jfi : Axi; Bxi; C�yi 6= 0gj;s5 = r4 = jfi : Axi = 0; C�yi 6= 0gj; q5 = t4 = jfi : A�yi = 0; Bxi 6= 0gj;s6 = jfi : Axi = 0; C�yi = 0gj; q6 = jfi : A�yi = 0; Bxi = 0gj;t2 = jfi : B�vi = 0; A�yi 6= 0gj;r2 = jfi : Cui = 0; Ayi 6= 0gj:Here k = q4 = s4 = t3 = r3 is the dimension of the set of \interesting" singular values of (A;B;C).2.2.2. The Perturbation Theory. Again from Zha [19, 18], the RSVD is equivalent to thematrix pencil � 0 A�A 0 �� ~x~y � = �� B�B 00 CC� �� ~x~y � :(2.16)Here each singular value triplet (�i; �i; 
i) such that �i�i
i 6= 0 corresponds to two eigenvalues ofthe pencil (2.16). They are �i = �i�i
i ; �i+k = � �i�i
i ;(2.17)and they correspond to the eigenvectorszi = 1p�2i + 
2i � 
ixi�iyi � ; zi+k = 1p�2i + 
2i � 
ixi��iyi � :8



The positive values of �i are called the generalized singular values of the matrix triplet (A;B;C).The theory laid out in the previous section will quickly yield perturbation bounds for this eigenvalueproblem.We now compare the generalized singular values of (A;B;C) to those of a \nearby" triplet( ~A; ~B; ~C). This generalizes some results in [19] to allow A, B, and C to be rank de�cient, and isproven with weaker assumptions. We need to de�ne some terms. Let�A = ~A�A; �B = ~B � B; �C = ~C � C;(2.18) �A = k�Ak; �B = k�Bk; �C = k�Ck;(2.19) EA = �A=�A; EB = �B=�B ; EC = �C=�C :(2.20)We also de�ne �BC = maxf�B; �Cg; FB = �B=�BC ; FC = �C=�BC :(2.21)Let A(�) = A+ �EA; � 2 [0; �A];(2.22) B(�) = B + �FB ; C(�) = C + �FC ; � 2 [0; �BC ]:(2.23)Note that ~A = A(�A), ~B = B(�BC) and ~C = C(�BC). For � 2 [0; �A], let the RSVD of the matrixtriplet (A(�); B; C) be given byA(�) = Y ��(�)�A(�)X�1(�); �A(�) = diag(�i(�));(2.24) B = V (�)�B(�)X�1(�); �B = diag(�i(�));C = Y ��(�)�C(�)U�(�); �C = diag(
i(�)):For appropriate values of i, de�nexi(�) = X(�)ei; yi(�) = Y (�)ei; � 2 [0; �A]:(2.25)For � 2 [0; �BC ] let the RSVD of the matrix triplet ( ~A;B(�); C(�)) be given by~A = ~Y ��(�)~�A(�) ~X�1(�); ~�A = diag(~�i(�));(2.26) B(�) = ~V (�)~�B(�) ~X�1(�); ~�B = diag( ~�i(�));C(�) = ~Y ��(�)~�C(�) ~U�(�); ~�C = diag(~
i(�)):For appropriate values of i, de�ne~xi(�) = ~X(�)ei; ~yi(�) = ~Y (�)ei; � 2 [0; �BC ];(2.27) ~ui(�) = ~U(�)ei; ~vi(�) = ~V (�)ei; � 2 [0; �BC ]:Finally, de�ne the set of indicesSABC(�A; �BC) = SA(�A) \ SBC(�BC);(2.28) 9



where SA(�A) = fi : �i(�)�i(�)
i(�) 6= 0; for all � 2 [0; �A]g;SBC(�BC) = fi : ~�i(�) ~�i(�)~
i(�) 6= 0; for all � 2 [0; �BC ]g:We note that if i 2 SABC(�A; �BC), then�i = �i�i
i ; ~�i = ~�i~�i~
i ;(2.29)where (�i; �i; 
i) and (~�i; ~�i; ~
i) are singular triplets of (A;B;C) and ( ~A; ~B; ~C). For such i, it ismeaningful to bound ~�i=�i.Theorem 2.6. Let (A;B;C) and ( ~A; ~B; ~C) be matrix triplets such that A; ~A 2 Cm�n, B; ~B 2Cp�n, C; ~C 2 Cq�n. Let �A = k ~A � Ak, �B = k ~B � Bk, and �C = k ~C � Ck, and let �BC be givenby (2.21). Let EA, EB and EC be given by (2.20), and let SABC(�A; �BC) be given by (2.28). Letxi(�); yi(�); � 2 [0; �A] be given by (2.25) and let ~xi(�); ~yi(�); ~ui(�); ~vi(�); � 2 [0; �BC ] be given by(2.27). For all i 2 SABC(�A; �BC), if �i and ~�i are given by (2.29), we haveexp(��A�Ai � �B�Bi � �C�Ci ) � ~�i�i � exp(�A�Ai + �B�Bi + �C�Ci );(2.30)where �Ai = max�2[0;�A] jRe(y�i (�)EAxi(�))jjy�i (�)A(�)xi(�)j ;(2.31) �Bi = max�2[0;�BC ] jRe(~v�i (�)EB ~xi(�))jj~v�i (�)B(�)~xi(�)j ;�Ci = max�2[0;�BC ] jRe(~y�i (�)EC ~ui(�))jj~y�i (�)C(�)~ui(�)j :Proof. This theorem is proven by considering the two doubled generalized eigenvalue problemsassociated with the RSVDs (2.24) and (2.26). The RSVD (2.24) is equivalent to eigenvalue problemfor the pair (H(�);M); � 2 [0; �A] whereH(�) = � 0 A� + �E�AA+ �EA 0 � ; M = diag(B�B;CC�):We note that for i 2 SABC(�A; �BC), the eigenvector of H(�) has the formz(�) = (
i(�)xTi (�); �i(�)yTi (�))T :If we let �i(�) be the ith eigenvalue of the pair (H(�);M); � 2 [0; �A], and de�neEH = � 0 E�AEA 0 � ;then �Hi in (2.1) satis�es�Hi = max�2[0;�A] jRe(z�i (�)EHzi(�))jjz�i (�)H(�)z�i (�)j= max�2[0;�A] �i(�)
i(�)jRe(y�i (�)EAxi(�) + x�i (�)E�Ayi(�))j�i(�)
i(�)jy�i (�)A(�)x�i (�) + x�i (�)A�(�)yi(�)j= max�2[0;�A] 2jRe(y�i (�)EAxi(�))j2jy�i (�)A(�)x�i (�)j = �Ai10



according to (2.31). Thus �i(�A) satis�esexp(��A�Ai ) � �i(�A)�i(0) � exp(�A�Ai ):(2.32)Now for i 2 SABC(�A; �BC), let ~�i(0) = �i(�A), and let (~�i(�); ~zi(�)) be the ith eigenpair of the pair( ~H;M(�)), where ~H = H(�A) andM(�) = G�(�)G(�); G(�) = diag(B;C�) + � diag(�BEB ; �CE�C):Here �B = �B=�BC and �C = �C=�BC . We note thatsi(�) = G(�)~zi(�)kG(�)~zi(�)k = ~�i(�)~
i(�)(~v�i (�); ~u�i (�))k~�i(�)~
i(�)(~v�i (�); ~u�i (�))�k = p0:5(~v�i (�); ~u�i (�))�;thus we can write �Gi from (2.12) as�Gi = max�2[0;�BC ] 2jRe(s�i (�) diag(�BEB ; �CE�C)~zi(�))jjs�i (�)G(�)~zi(�)j= max�2[0;�BC ] 2jRe(�B~
i(�)~v�i (�)EB ~xi(�) + �C ~�i(�)~u�i (�)EC ~yi(�))jj~
i(�)~v�i (�)B(�)~xi(�) + ~�i(�)~y�i (�)C(�)~ui(�)jThus, �Gi � max�2[0;�BC ] 2jRe(�B~
i(�)~v�i (�)EB ~xi(�))jj~
i(�)~v�i (�)B(�)~xi(�) + ~�i(�)~y�i (�)C(�)~ui(�)j(2.33) + max�2[0;�BC ] 2jRe(�C ~�i(�)~v�i (�)EC ~yi(�))jj~
i(�)~v�i (�)B(�)~xi(�) + ~�i(�)~y�i (�)C(�)~ui(�)j :The �rst term in (2.33) is bounded bymax�2[0;�BC ] 2jRe(�B~
i(�)~v�i (�)EB ~xi(�))jj~
i(�) ~�i(�) + ~�i(�)~
i(�)j = max�2[0;�BC ] 2jRe(�B~
i(�)~v�i (�)EB ~xi(�))j2j~
i(�) ~�i(�)j= �B max�2[0;�BC ] jRe(~v�i (�)EB ~xi(�))jj~v�i (�)B(�)xi(�)j = �B�Bi :By a symmetric argument, the second term in (2.33) is bounded by�C max�2[0;�BC ] jRe(~v�i (�)EC ~yi(�))jj~y�i (�)C(�)~ui(�)j = �C�Ci :Thus, �Gi � �B�Bi + �C�Ci :(2.34)Using (2.34) we have exp(��BC�Gi ) � ~�i(�BC)~�i(0) � exp(�BC�Gi ):(2.35) 11



The combination of (2.34) and (2.35) yieldsexp(��B�Bi � �C�Ci ) � ~�i(�BC)~�i(0) � exp(�B�Bi + �C�Ci ):Using the fact that �i(�A) = ~�i(0) and the bound (2.32) yields (2.30).Two corollaries to this theorem yield perturbation bounds for the QSVD and PSVD. For theQSVD consider the matrix pair (A;B) and the \nearby" pair ( ~A; ~B), de�ne �A and �B as in (2.18),de�ne �A and �B as in (2.19), and EA and EB as in (2.20). We de�ne A(�) as in (2.24) and B(�) asin (2.23). For � 2 [0; �A], let the QSVD of (A(�); B) be given byA(�) = U(�)�A(�)X�1(�); �A(�) = diag(�i(�));(2.36) B = V (�)�B(�)X�1(�); �B = diag(�i(�));and the QSVD of ( ~A;B(�)); � 2 [0; �B ], be given by~A = ~Y ��(�)~�A(�) ~X�1(�); ~�A = diag(~�i(�);(2.37) B(�) = ~V (�)~�B(�) ~X�1(�); ~�B = diag( ~�i(�)):Corollary 2.7. Let (A;B) and ( ~A; ~B) be matrix pairs such that A; ~A 2 Cm�n and B; ~B 2Cp�n. Let �A and �B be given in (2.19). Let EA and EB be given by (2.20). Let SAB(�A; �B) begiven by (2.28) with �BC = �B and 
i(�) = 
i(�) = 1 for all i, �, and �. Let xi(�) = X(�)ei; ui(�) =U(�)ei; � 2 [0; �A], where X(�) and U(�) are from (2.36), and let ~xi(�) = ~X(�)ei; ~vi(�) = ~V (�)ei; � 2[0; �B ], where ~X(�) and ~V (�) are from (2.37). For all i 2 SAB(�A; �B), if �i = �i=�i and ~�i = ~�i=~�i,where (�i; �i) and (~�i; ~�i), are the corresponding quotient singular value pairs of (A;B) and ( ~A; ~B),respectively, we have exp(��A�Ai � �B�Bi ) � ~�i�i � exp(�A�Ai + �B�Bi );where �Ai = max�2[0;�A] jRe(u�i (�)EAxi(�))jju�i (�)A(�)xi(�)j ;�Bi = max�2[0;�B ] jRe(~v�i (�)EB ~xi(�))jj~v�i (�)B(�)~xi(�)j :This is proven from Theorem 2.6 by simply observing the QSVD of (A;B) is the RSVD of(A;B; I) and making appropriate substitutions.A perturbation bound for the PSVD follows from the following characterization. Consider thematrix pair (A;B) and the \nearby" pair ( ~A; ~B), de�ne �A and �B as in (2.18), de�ne �A and �Bas in (2.19), and EA and EB as in (2.20). We now let�AB = maxf�A; �Bg; FA = �A=�AB ; FB = �B=�AB;(2.38)and let A(�) = A+ �FA; B(�) = B + �FB :Then the pair (A(�); B(�)) has the PSVD given byA(�) = U(�)�A(�)X�1(�); �A(�) = diag(�i(�));(2.39) B(�) = X(�)�B(�)V �(�); �B(�) = diag(�i(�)):12



We also need to de�ne the setSAB(�AB) = fi : �i(�)�i(�) 6= 0; � 2 [0; �AB]g:(2.40)We note that we need only one set of perturbations for the PSVD.Corollary 2.8. Let (A;B) and ( ~A; ~B) be matrix pairs such that A; ~A 2 Cm�n and B; ~B 2Cn�p. Let �A = k ~A�Ak and �B = k ~B �Bk. Let �AB be given in (2.38). Let EA and EB be givenby (2.20), and let SAB(�AB) be given by (2.40). Let xi(�) = X(�)��ei; ui(�) = U(�)ei; � 2 [0; �A],where X(�) and U(�) are from (2.36), and let zi(�) = X�1(�)ei; vi(�) = V (�)ei, � 2 [0; �AB], where~X(�) and ~V (�) are from (2.37). For all i 2 SAB(�AB), if �i = �i�i and ~�i = ~�i ~�i, where (�i; �i)and (~�i; ~�i) are the corresponding product singular value pairs of (A;B) and ( ~A; ~B), respectively, wehave exp(��A�Ai � �B�Bi ) � ~�i�i � exp(�A�Ai + �B�Bi );where �Ai = max�2[0;�AB ] jRe(u�i (�)EAxi(�)jju�i (�)A(�)xi(�)j ;�Bi = max�2[0;�AB ] jRe(z�i (�)EBvi(�)jjz�i (�)B(�)vi(�)j :Proof. From Zha [18], we note that the PSVD of (A;B) is the RSVD of (I; A;B). Thus thePSVD may be written in RSVD form as I = Y ��X�1;A = U�AX�1;B� = Y ���BV �:The �rst line states that Y � = X�1, thus B = Y ���BV �. Using this characterization with Theorem2.6 yields the appropriate result.We now consider the SVD of A +�A. From just considering the RSVD of the triplet (A; I; I)we obtain the following corollary.Corollary 2.9. Let A;�A 2 Cm�n;m � n , and let �A = k�Ak and EA = �A=�A. De�neA(�) = A+ �EA for � 2 [0; �A]. Let A(�) have the singular value decompositionA(�) = U(�)�(�)V (�)�; � 2 [0; �A];where U(�) 2 Cm�m and V (�) 2 Cn�n are unitary and�(�) = diag(�1(�); : : : ; �n(�)); U(�) = (u1(�); : : : ; um(�)); V (�) = (v1(�); : : : ; vn(�)):Then for each i 2 SA(�A), where SA(�A) = fi : �i(�) 6= 0; � 2 [0; �A]g, we have thatexp(��A�Ai ) � �i(�A)�i(0) � exp(�A�Ai );(2.41)where �Ai = max�2[0;�A] jRe(u�i (�)EAvi(�))jju�i (�)A(�)vi(�)j :(2.42)The above characterizations give us methods for understanding the e�ects of scaling upon theRSVD, QSVD, PSVD, and, of course, the ordinary SVD.13



3. E�ect of Structured Perturbations. In this section, we discuss the e�ect of commonstructured errors. For this part of the theory we state the results for the SVD and QSVD. Similarbounds can be derived for the PSVD and RSVD. The theory for Hermitian pencils can be writtenin terms of a particular QSVD problem.3.1. Structured Perturbations of the SVD and QSVD. For the ordinary SVD, we sup-pose that the perturbation matrix �A in (2.18) has the form�A = �AEAwhere EA = FADA; kDAk = kAk; kFAk = 1:Here DA is some right scaling matrix.Note that we do not require (2.19), that is, in general �A 6= k�Ak. Thus the values of �i meansomething slightly di�erent. However, products of the form �A�Ai remain the same, hence the resultsof the analysis are the same.Our aim is to obtain a bound of �Ai for all i 2 SA(�A) as de�ned in Corollary 2.9. As before welet A(�); � 2 [0; �A] be de�ned by (2.22).We now introduce the notion of a truncated SVD. In this case, we truncate with respect to theindex set SA(�A).Definition 3.1. Let k be the number of indices in SA(�A), and let the singular values of A(�)whose indices are in SA(�A) correspond to singular values �1(�); : : : ; �k(�). Let the truncated SVDof A(�) with respect to SA(�A) be given byA(�; �A) = U(�)�(�; �A)V �(�); � 2 [0; �A];where �(�; �A) = diag(�1(�); �2(�); : : : ; �k(�); 0; : : : ; 0):It is also appropriate to de�ne the Moore-Penrose pseudoinverse of A(�; �A). For a �xed matrixA 2 Cm�n, the Moore-Penrose pseudoinverse is the unique matrix Ay 2 Cn�m satisfying the fourPenrose conditions 1: AAyA = A; 3: (AAy)� = AAy;2: AyAAy = Ay; 4: (AyA)� = AyA:It is easily veri�ed that the Moore-Penrose pseudoinverse of A(�; �A), � 2 [0; �A], is given byAy(�; �A) = V (�)�y(�; �A)U�(�);where �y(�; �A) = diag(��11 (�); : : : ; ��1k (�); 0; : : : ; 0):We now use this form to establish global error bounds for all �i; i 2 SA(�A).Proposition 3.2. Let A;�A 2 Cm�n , and let �A = �AFADA, where kFAk = 1. De�neA(�) = A + �FADA for � 2 [0; �A]. Let A(�) have the singular value decomposition assumed inCorollary 2.9. Let �i(�); i = 1; 2; : : : ; n denote the singular values of A(�), and let A(�; �A) be asde�ned in De�nition 3.1. Then for each i 2 SA(�A) (that is, for each i = 1; 2; : : : ; k), �i(�A) satis�es(2.41) with �Ai bounded by�Ai � �Ai = max�2[0;�A] kDAAy(�; �A)ui(�)k � max�2[0;�A] kDAAy(�; �A)k:14



Proof. From (2.42), for each i 2 SA(�A) we have�Ai = max�2[0;�A] jRe(u�i (�)FADAvi(�))jju�i (�)A(�)vi(�)j :(3.1)Using the fact that ku�i (�)FAk � 1 with (3.1) yields�Ai � max�2[0;�A] kDAvi(�)k�i(�) :(3.2)By the de�nition of Ay(�; �A) we havevi(�) = Ay(�; �A)ui(�)�i(�):(3.3)Combining (3.2) with (3.3) yields the desired result.The following corollary is a componentwise error bound that we might expect from singularvalue improvement procedures. Its proof is very similar to the scaled case.Corollary 3.3. Let A;�A 2 Cm�n , and let �A = �AEA, where jEAj � jAj. Here both theinequality and the absolute value are componentwise. Assume the rest of the hypothesis of Corollary2.9. Then (2.41) holds for each i 2 SA(�A) with �Ai bounded by�Ai � �Ai = max�2[0;�A] k jAj jAy(�; �A)ui(�)j k � max�2[0;�A] k jAj jAy(�; �A)j k:We now consider the e�ect of scaled and componentwise errors for the QSVD. For simplicityassume that Null(A) \ Null(B) = f0g. The QSVD of (A;B) yields an expanded de�nition ofpseudoinverse discussed in [5, 2].Definition 3.4. The B-weighted pseudoinverse of the matrix A is unique matrix AyB thatsatis�es the four conditions1: AAyBA = A; 2: AyBAAyB = AyB3: (AAyB)� = AAyB ; 4: (B�BAyBA)� = B�BAyBAUsing the QSVD, the B-weighted pseudoinverse of A and the A-weighted pseudoinverse of Bare given by AyB = X�yAU�; ByA = X�yBV �:Now as with the ordinary SVD, we can simply use truncated weighted pseudoinverses. We letA(�); � 2 [0; �A], be given by (2.36). We then let�A(�; �A) = diag(�1(�; �A); : : : ; �n(�; �A));where �i(�; �A) = � �i(�) i 2 SA(�A)0 otherwise :We then truncate A(�) to obtainA(�; �A) = U(�)�A(�; �A)X�1(�) � 2 [0; �A]:15



Thus, B-weighted pseudoinverse of A(�; �A) is clearly given byAyB(�; �A) = X(�)�yA(�; �A)U�(�):We also let B(�); � 2 [0; �B] be given by (2.37). We then de�ne~�B(�; �B) = diag( ~�1(�; �B); : : : ~�n(�; �B));where ~�i(�; �B) = � ~�i(�) i 2 SB(�B)0 otherwise:Thus we truncate B(�) to B(�; �B) giving usB(�; �B) = ~V (�)~�B(�; �B) ~X�1(�):We then note that the ~A-weighted pseudoinverse of B(�; �B) is given byB ~A(�; �B) = ~X(�)~�yB(�; �B) ~V �(�):For the QSVD, the condition numbers �Ai and �Bi have a straightforward interpretation in termsof truncated pseudoinverses. Its proof is analogous to that for the ordinary SVD case above.Proposition 3.5. Let (A;B) and ( ~A; ~B) be matrix pairs such that A; ~A 2 Cm�n and B; ~B 2Cp�n. Let �A = �AEA and �B = �BEB. Let EA = FADA and EB = FBDB where kFAk =kFBk = 1, and assume the rest of the hypothesis and terminology of Corollary 2.7. De�ne�Ai = max�2[0;�A] kDAAyB(�; �A)ui(�)k; i 2 SA(�A);�Bi = max�2[0;�B ] kDBBy~A(�; �B)~vi(�)k; i 2 SB(�B):Then �Ai � �Ai ; i 2 SA(�A); �Bi � �Bi (�B); i 2 SB(�B):This is a generalization of a bound by Demmel and Veseli�c [3]. If DA, DB , A, and B have fullcolumn rank, then this becomes exactly that result. Note, however, that the character of this boundchanges when either A or B has some near zero generalized singular values.Corollary 3.6. Let (A;B) and ( ~A; ~B) be matrix pairs such that A; ~A 2 Cm�n and B; ~B 2Cp�n. Let �A = �AEA and �B = �BEB, where jEAj � jAj and jEB j � jBj. Assume therest of the hypothesis and terminology of Corollary 2.7. Let SA(�A) be the set of indices where�(�) 6= 0; � 2 [0; �A] and let SA(�A) be the set of indices ~�i(�) 6= 0; � 2 [0; �B]. De�ne�Ai = max�2[0;�A] k jAj jAyB(�; �A)ui(�)j k; i 2 SA(�A);�Bi = max�2[0;�B ] k jBj jBy~A(�; �B)~vi(�)j k; i 2 SB(�B):Then �Ai � �Ai ; i 2 SA(�A); and �Bi � �Bi ; i 2 SB(�B):16



Moreover, �Ai � max�2[0;�A] k jAj jAyB(�; �A)j k; i 2 SA(�A);�Bi � max�2[0;�B ] k jBj jBy~A(�; �B)j k; i 2 SB(�B):The structured perturbations for the SVD and QSVD set a stage for us to give structuredperturbation bounds for Hermitian generalized eigenvalue problem.3.2. Structured Perturbations for the Hermitian Generalized Eigenvalue Problem.Veseli�c and Slapni�car [16] describe a formalism that allow us to reduce the considering of a generalHermitian pencil to a particular QSVD. To do so, we �rst de�ne the spectral absolute value of thematrix H(�) with respect to M . Suppose that the family of pencils H(�) � �M; � 2 [0; �H ] has theform H(�) = X��(�)�(�)X�1(�); M = X��(�)J(�)X�1(�);(3.4)where X(�) = (x1(�); : : : ; xn(�));�H(�) = diag(�1(�); : : : ; �n(�));J(�) = diag(j1(�); : : : ; jn(�)):Here ji(�) = � 0 if xi(�) 2 Null(M) ;1 otherwise.As done in Veseli�c and Slapni�car [16], we relate our problem to a positive de�nite eigenvalue problem.Definition 3.7. Let H(�); � 2 [0; �H ] and M be Hermitian and let M be positive semi-de�nite.Let the pair (H(�);M) have the generalized eigendecomposition in (3.4). The spectral absolute valueof H(�) with respect to M is the matrix HzM (�) given byHzM = X��(�)j�(�)jX�1(�):Here j�(�)j = diag(j�1(�)j; j�2(�)j; : : : ; j�n(�)j). If M = I, then we de�ne Hz(�) byHz(�) = HzI (�):If we let X�1(�) have the factorizationX�1(�) = Q(�)R(�);where Q(�) is unitary, then it is easily seen thatHzM (�) = R�(�)(R��(�)H(�)R�1(�))zR(�):This is the de�nition given by Veseli�c and Slapni�car [16] for the case where M is nonsingular. Wealso note that for the case M = I , we haveHz(�) =pH2(�)17



where p� denotes matrix square root.We will now de�ne a truncated version of HzM (�). De�ne SH(�H) as in (2.3).Definition 3.8. We de�ne HzM (�; �H ); � 2 [0; �H ] as the truncated spectral absolute value ofH(�) with respect to M . It is the matrix HzM (�; �H) such thatHzM (�; �H) = X��j�(�; �H)jX�1;where j�(�; �H)j = diag(j�1(�; �H)j; : : : ; j�n(�; �H)j)and �i(�; �H ) = � 0; i 2 SH(�H);�i(�); otherwise.Clearly, HzM (�; �H ) is positive semi-de�nite. We can factor both HzM (�; �H ) and M into theform HzM (�; �H ) = C�(�; �H )C(�; �H ); � 2 [0; �H ];(3.5)and M = G�G;(3.6)respectively, whereC(�; �H ) = U(�)�(�; �H )X�1(�) 2 Cm�n; m � n; � 2 [0; �H ](3.7) G = V (�)J(�)X�1(�) 2 Cp�n; p � n; � 2 [0; �H ]:In (3.7) U and V are matrices with orthonormal rows and orthonormal nontrivial columns. Thatis, columns of U which correspond to i 2 SH(�H) are orthonormal, and columns of V for whichji(�) = 1 are orthonormal. Also, �(�; �H ) satis�es�(�; �H ) = diag(�i(�; �H )) =pj�(�; �H)j:(3.8)The form (3.7) describes the QSVD of the pair (C(�; �H ); G). This allows us to establish boundsthat are similar to those in the previous section.Clearly, the G-weighted pseudoinverse of C(�; �H); � 2 [0; �H ], is given byCyG(�; �H) = X(�)�y(�; �H )U�(�); � 2 [0; �H ]:(3.9)Using this structure, we can establish bounds on all of the eigenvalues that do not change signunder the perturbation.Theorem 3.9. Let H(�); � 2 [0; �H ] be Hermitian and have the form (3.4). Let (�i(�); xi(�))be the ith eigenpair of the pair (H(�);M) where M is Hermitian and positive semi-de�nite. LetC(�; �H ), � 2 [0; �H ] be as de�ned in (3.5), let G be de�ned by (3.6), and let the QSVD of(C(�; �H ); G) be given by (3.7). De�ne SH(�H) as in (2.3). Then each �i(�); i 2 SH (�H), sat-is�es (2.4), where �Hi = max�2[0;�H ] jx�i (�)EHxi(�)jx�i (�)HzM (�; �H )xi(�)(3.10) = max�2[0;�H ] ju�i (�)[CyG(�; �H)]�EHCyG(�; �H )ui(�)j:18



Moreover, we have maxi2SH(�H )�Hi � max�2[0;�H ] k[CyG(�; �H )]�EHCyG(�; �H)k:(3.11)Proof. For each i 2 SH(�H) considering (2.4) yields�Hi = max�2[0;�H ] jx�i (�)EHxi(�)jx�i (�)HzM (�; �H )xi(�) = max�2[0;�H ] jx�i (�)EHxi(�)j�i(�)2 :Using the fact that xi(�) = �i(�)CyG(�; �H )ui(�), we have�Hi � max�2[0;�H ] ju�i (�)[CyG(�; �H)]�EHCyG(�; �H )ui(�)j;which is the second equality in (3.10). Thus,�Hi = max�2[0;�H ] ku�i (�)[CyG(�; �H)]�EHCyG(�; �H )ui(�)k;and classical norm inequalities yield (3.11).The componentwise version of Theorem 3.9 is obtained similarly as in x3.1.The following corollary yields a bound for the case of scaled perturbations discussed by Barlowand Demmel [1]. Here EH has the formEH = D�FHD; kFHk = 1:(3.12)Corollary 3.10. Assume the hypothesis and terminology of Theorem 3.9. Assume that EHhas the form (3.12) and assume that CG(�; �H ) is de�ned by (3.7). Then�Hi � �Hi = max�2[0;�H ] kDCyG(�; �H )ui(�)k2; i 2 S(�H ):4. Error Bounds on Subspaces. We now consider the e�ect of structured perturbations onthe eigenvectors of H . We con�ne our attention to the perturbed problem(H +�H)~x = ~�~x;where �H has the form (3.12).We let H(�) be as in (2.1), thus S(�H ) has the formS(�H) = fi : �i(�) 6= 0; � 2 [0; �H ]g(4.1)and its set complement is Sc(�H) = fi : �i(�) = 0; for some � 2 [0; �H ]g:(4.2)Suppose that S(�H ) has k elements and that Sc(�H)has n� k elements. Let X1; ~X1 2 Cn�k bethe matrices of eigenvectors of H and H +�H associated with S(�H ) and let X2; ~X2 2 Cn�(n�k)be the matrices of eigenvectors associated with Sc(�H).We now de�ne several forms of relative gaps:relgap(�; �) = �� �jj��j1=2 ; �; � 6= 0;(4.3) 19



relgap(�i; �H) = minj 6=i minj2SH (�H) relgap(�i; �j(�H ));(4.4) relgap(�;�) = mini;j relgap(�i; 
j); � = diag(�i); � = diag(
j);relgap0(~�i; �H) = k(~�iI � �2)�1j�ij k;relgap0(�; �H) = minj relgap0(
j ; �H):The �rst de�nition (4.3) is just that from Barlow and Demmel [1]. The second de�nition (4.4) is thedistance of a particular non{zero eigenvalue from all of the other non{zero eigenvalues. The thirdde�nition generalized the �rst to sets of eigenvalues. The fourth and �fth de�nitions generalize (4.4)to distance from the set of near zero eigenvalues.Let Hz(�) and C(�) be de�ned by De�nition 3.7 and (3.7), respectively. Note that, since theeigenvector matrix X(�) is unitary, we can also set U(�) = X��(�) = X(�) in (3.7). We will alsoneed the values �Hi = max�2[0;�H ] kDCyG(�; �H)ui(�)k;(4.5) �H = max�2[0;�H ] kDCyG(�; �H)k;�0 = kDX2k2mini2SH(�H ) j�i(�H)j ;�HF = max�2[0;�H ] kDCyG(�; �H)kF :We can write down the following theorem on the error in the ith eigenvector of H .Theorem 4.1. Let H; �H 2 Cn�n be Hermitian and let S(�H) and Sc(�H) be de�ned by(4.1) and (4.2), respectively. For i 2 S(�H ), let xi; ~xi be the ith eigenvectors of H and H + �H,respectively. Let Xi1 be the matrix X1 with xi excluded. If �H has the form (3.12) thenkX�i1~xik � �Hrelgap(�i; �H)q�H�Hi ;kX�2 ~xik � �Hrelgap0( ~�i; �H)q�0�Hi ;kX�2 ~X1kF � �Hrelgap0(~�1; �H)q�0�HF ;where �Hi ; �H ; �0 and �HF are de�ned by (4.5).Proof. We have that X�i1(H +�H)~xi = ~�iX�i1~xiand, thus, X�i1~xi = (~�iI � �i1)�1X�i1�H~xi= (~�iI � �i1)�1X�i1D�FHD~xi:Since Xi1 = Cy(0; �H)Ui1j�i1j1=2; ~�i = Cy(�H ; �H)~uij�ij1=2;20



we have kX�i1~xik � k(~�iI � �i1)�1(j�i1j j~�ij)1=2k kDCy(0; �H)k kDCy(�H ; �H)~uik= �H ��H�Hi �1=2relgap(�i; �H) :Likewise, X�2 ~xi = (~�iI � �2)�1X�2�H~xi:Thus, kX�2 ~xik � �Hk(~�iI � �2)�1j~�ij k ��0�Hi �1=2 = �H ��0�Hi �1=2relgap0(~�i; �H) :A straightforward computation yieldskX�2 ~X1kF � �H ��0�HF �1=2relgap0(~�1; �H) ;as desired.This can be generalized to (1.3) with M positive de�nite if we substitute an M{weighted normfor the Euclidean. Natural analogs of the results in this section are easily stated.A result that is useful for clusters of eigenvalues is given next.Theorem 4.2. Assume the hypothesis and terminology of Theorem 4.1. Let �1 and ~�1 bepartitioned as �1 = diag(�11;�12); ~�1 = diag(~�11; ~�12);and let X1 and ~X1 be partitioned conformally asX1 = � p k � pX11 X12 �; ~X1 = � p k � p~X11 ~X12 �:Then kX�11 ~X12kF � �H�HFrelgap(�11; ~�12) :(4.6)Proof. Let xi be a column of X11 and let ~xj be a column of ~X12. Then a straightforwardcomputation yields jx�i ~xj j � jx�i�H~xj jj~�j � �ij � �H jx�iD�FHD~xj jj~�j � �ij� �H kDxik kD~xjkj~�j � �ij � �H q�Hi �Hjrelgap(�i; ~�j) :Summing over i and j yields (4.6).An important type of perturbation for singular value problems for positive de�nite H is whenH is perturbed through its factors, that isH = G�G; H +�H = (G+�G)�(G+�G):(4.7) 21



Theorem 4.3. Let H and H +�H have the form (4.7). Assume that for some � < 1, G and�G satisfy k�Gxk � �kGxk; x 2 Cn:If (�i; xi) and ( ~�i; ~xi) are the ith eigenpairs of H and H +�H, respectively, thenjx�j ~xij � �[1 + (1� �)�1]relgap(�i; ~�j) :(4.8)Proof. We have that x�j (G+�G)�(G+�G)~xi = ~�ix�j ~xi:That may be rewritten asx�jG��G~xi + x�j�G(G+�G)~xj = (~�i � �j)x�j ~xi;and again as j�j j1=2u�j�G~xj + j~�ij1=2x�j�G�~ui = (~�i � �j)x�j ~xi:We note that k�Gxik � �kGxik = �j�ij1=2;and k�G~xjk � �kG~xjk = �[ k(G+�G)~xjk+ k�G~xjk ]:Thus, k�G~xjk � �(1� �)�1j~�j j1=2:An application of the Cauchy{Schwarz inequality and some algebra yields (4.8).5. Examples. In this section we illustrate our results on several examples.We give examples for structured perturbations of x3, in particular for the relative componentwiseperturbations of the type �A = �AEA; jEAj � jAj:Such perturbations are highly interesting since they appear during various numerical algorithms foreigenvalue and singular value problems [1, 3, 7, 15, 16, 17]. Such perturbations are sometimes called
oating-point perturbations [16].The �rst two examples deal with the singular value decomposition and illustrate Corollary 3.3.Example 5.1. Let A be a product of a well-conditioned matrix and a strong column scaling,A = 0@�2 � 1040 7 � 1020 7�8 � 1040 �7 � 1020 �6�7 � 1040 2 � 1020 2 1A = 0@�2 7 7�8 �7 �6�7 2 2 1A �0@ 1040 1020 11A = BD:Let �A = �AEA where �A = 10�6 andEA = 0@ 7 � 1039 �1 � 1020 3�3 � 1040 1 � 1020 �1�9 � 1039 3 � 1019 0:41A :22



Let ��i = �i(A+�A)� �i(A). The singular values of A are (properly rounded)(�1; �2; �3) = (1:08 � 1041; 9:76 � 1020; 0:426);and the relative changes in the singular values are� j��1j�1 ; j��2j�2 ; j��3j�3 � = (2:4 � 10�7; 1:6 � 10�7; 3:5 � 10�6):Both singular value decompositions, of A and A+�A, are computed by the one-sided Jacobi methodwhose su�ciently high accuracy is guaranteed by the analysis of Demmel and Veseli�c [3].Since jEAj � jAj, we can apply Corollary 3.3. We compute the �rst order approximations of thecorresponding bounds, that is,j��ij�i � �Ak jAj jAyuij k � �Ak jAj jAyj k:(5.1)Note that, since the scaling D factors out, we can use B instead of A in the above formulae,which makes the computation of the inverse much more accurate. The bounds obtained by the �rstinequality in (5.1) are� j��1j�1 ; j��2j�2 ; j��3j�3 � � (1 � 10�6; 1:25 � 10�6; 4:6 � 10�5):The second inequality in (5.1) gives maxi=1;2;3 j��ij�i � 4:6 � 10�5:The similar bound is obtained by the perturbation theory by Demmel and Veseli�c [3],maxi=1;2;3 j��ij�i � n�Ak [A diag�1(kA:ik)]�1k � 9:5 � 10�5:(5.2)Example 5.2. Let �A and EA be as in Example 5.1, and letA = 0@�2 � 1040 7 � 1020 7�8 � 1040 �6:0001 � 1020 �6�7 � 1040 2 � 1020 2 1A :This matrix di�ers from the one in Example 5.1 only in the element A22, which is chosen to makethe last two column vectors of A nearly parallel. The singular values of A are(�1; �2; �3) = (1:08 � 1041; 9:25 � 1020; 0:45);and the relative changes in the singular values are� j��1j�1 ; j��2j�2 ; j��3j�3 � = (2:5 � 10�7; 1:6 � 10�7; 3:0 � 10�2):The bounds obtained by the �rst inequality in (5.1) are� j��1j�1 ; j��2j�2 ; j��3j�3 � � (1 � 10�6; 1:2 � 10�6; 4:2 � 10�1):23



This shows that our bounds are local and nearly optimal. The second inequality in (5.1) and theDemmel-Veseli�c bound (5.2),maxi=1;2;3 j��ij�i � 4:2 � 10�1 and maxi=1;2;3 j��ij�i � 8:9 � 10�1;respectively, both cover only the worst case.The following two examples illustrate the application of Theorem 3.9 to componentwise per-turbed Hermitian eigenvalue problem. Both examples were also analyzed in [16].Example 5.3. Let H = 0@ 1 1 11 0 01 0 10�81A :Let �H = �HEH , where �H = 10�5 andEH = 0@ 0:3 �0:5 0:4�0:5 0 00:4 0 �6 � 10�121A :Thus, jEH j � jH j. Let ��i = �i(H +�H)� �i(H). The eigenvalues of H are (properly rounded)(�1; �2; �3) = (2;�1; 5 � 10�9);and the relative changes in the eigenvalues are� j��1j�1 ; j��2j�2 ; j��3j�3 � = (6:7 � 10�7; 1:7 � 10�6; 9:0 � 10�6):We want to apply Theorem 3.9 with M = I . Since the eigenvector matrix X(�) is itself unitary, wecan take U(�) = V (�) = X��(�) = X(�) in (3.7), which implies C(�; �H) = (Hz)1=2; G(�) = I . The�rst order approximations of the bounds from Theorem 3.9 arej��ij�i � �H jx�i (Hz)�1=2j jH j j(Hz)�1=2xij � �Hk j(Hz)�1=2j jH j j(Hz)�1=2j k:(5.3)The bounds obtained by the �rst inequality in (5.3) are� j��1j�1 ; j��2j�2 ; j��3j�3 � � (1 � 10�6; 1:7 � 10�5; 3:0 � 10�5):On the other hand, the bound obtained from the second inequality in (5.3),maxi=1;2;3 j��ij�i � 1:9 � 104;and the bound from Veseli�c and Slapni�car [16],maxi=1;2;3 j��ij�i � n�Hk(D�1HzD�1)�1k � 6:0 � 103;(5.4)where D = diag(qHzii), are both useless. 24



Example 5.4. Another interesting example is the following: let H = DAD, whereA = 0BB@ 1 �1 �1 �1�1 1 �1 �1�1 �1 1 �1�1 �1 �1 1 1CCA ; D = 0B@ 108 1 1 1081CA :The eigenvector matrix of H isX = 0B@ 1=p2 1=2 1=2 00 �1=2 1=2 1=p20 �1=2 1=2 �1=p2�1=p2 1=2 1=2 0 1CA :Let �H = �HEH , where �H = 10�6 and E = 0:5�1016wwT , w = ( 1 0 0 1 )T . Thus, jEH j � jH j.The eigenvalues of H are (�1; �2; �3; �4) = (2 � 1016; 2 � 108;�2 � 108; 2);and the relative changes in the eigenvalues are� j��1j�1 ; j��2j�2 ; j��3j�3 ; j��4j�4 � = (4 � 10�16; 49; 0:98; 1:1 � 10�10):We see that the middle eigenvalues are very sensitive. The bounds obtained by the �rst inequalityin (5.3) are � j��1j�1 ; j��2j�2 ; j��3j�3 ; j��4j�4 � � (10�6; 50; 50; 10�6);and clearly show the di�erent sensitivity of outer and inner eigenvalues. The bounds obtained fromthe second inequality in (5.3) and (5.4),maxi=1;2;3;4 j��ij�i � 100; and maxi=1;2;3;4 j��ij�i � 200;respectively, are useless.The last example illustrates Theorem 3.9 on a matrix pair (H;M).Example 5.5. Let H = DHAT�ADH and M = DMBTBDM , whereDH = diag ( 108 104 10 10 1 ) ; � = diag (�1 �1 1 1 ) ;DM = diag ( 10�4 10�2 10�2 10�1 1 ) ;and A = 0B@�3 �5 �5 0 24 2 �2 �4 �5�1 �1 1 1 11 5 3 1 3 1CA ; B = 0@ 3 �2 �4 �4 �2�3 4 4 4 0�1 1 2 0 �21A :Thus, H is inde�nite singular of rank four,M is semi-de�nite of rank three, and H andM are scaledin opposite directions. Altogether,H = 0BBB@�2:3 � 1017 �1:7 � 1013 �5:0 � 109 1:6 � 1010 2:8 � 109�1:7 � 1013 �3:0 � 108 �7:0 � 105 1:2 � 106 3:4 � 105�5:0 � 109 �7:0 � 105 �1:9 � 103 �4:0 � 102 1:0 � 1021:6 � 1010 1:2 � 106 �4:0 � 102 �1:4 � 103 �1:6 � 1022:8 � 109 3:4 � 105 1:0 � 102 �1:6 � 102 �1:9 � 1011CCCA ;25



M = 0BBB@ 1:9 � 10�7 �1:9 � 10�5 �2:6 � 10�5 �2:4 � 10�4 �4:0 � 10�4�1:9 � 10�5 2:1 � 10�3 2:6 � 10�3 2:4 � 10�2 2:0 � 10�2�2:6 � 10�5 2:6 � 10�3 3:6 � 10�3 3:2 � 10�2 4:0 � 10�2�2:4 � 10�4 2:4 � 10�2 3:2 � 10�2 3:2 � 10�1 8:0 � 10�1�4:0 � 10�4 2:0 � 10�2 4:0 � 10�2 8:0 � 10�1 8:0 � 100 1CCCA :The eigenvector matrix of the pair (H;M) is (properly rounded)X = 0BBB@ 1:000 �7:396 � 10�5 �4:802 � 10�6 1:857 � 10�7 2:183 � 10�8�2:528 � 10�3 1:000 3:010 � 10�2 �2:964 � 10�4 �6:718 � 10�53:736 � 10�3 5:002 � 10�1 8:661 � 101 �8:412 � 10�1 �5:038 � 10�26:292 � 10�4 �1:501 � 10�1 �1:009 � 101 2:133 1:680 � 10�1�2:528 � 10�5 1:000 � 10�2 5:756 � 10�1 �2:372 � 10�1 3:359 � 10�1 1CCCA :We have X�HX = diag (�2:3 � 1017 9:57 � 108 �1:3019 � 107 7:7388 2:6 � 10�15 ) ;X�MX = diag (�3:6 � 10�23 1:1 � 10�18 1 1 1 ) :We conclude that SH(�H ) = f3; 4g,�(0; �H) = diag ( 0 0 �1:3019 � 107 7:7388 0 ) ; J(�) = diag ( 0 0 1 1 1 ) ;where �(0; �H) and J(�) are de�ned by De�nition 3.8 and (3.4), respectively.Let us perturb H to H +�H with �H = �HEH , where �H = 10�6 andEH = 0BBB@�1 � 1017 3 � 1012 9 � 108 7 � 109 �3 � 1083 � 1012 �4 � 106 2 � 105 �3 � 105 1 � 1059 � 108 2 � 105 9 � 102 8 � 101 �4 � 1017 � 109 �3 � 105 8 � 101 4 � 102 2 � 101�3 � 108 1 � 105 �5 � 101 2 � 101 �6 1CCCA :Thus, jEH j � jH j. The relative changes in the eigenvalues �i, i 2 SH(�H), are� j��3j�3 ; j��4j�4 � = (3:5 � 10�7; 5:3 � 10�4):The �rst order approximations of the bounds from Theorem 3.9 arej��ij�i � �H ju�i (0)[CyG(0; �H)]�j jH j jCyG(0; �H)ui(0)j(5.5) � �Hk j[CyG(0; �H)]�j jH j jCyG(0; �H)j k;where U(0) and CyG(0; �H) are de�ned by (3.9), (3.8) and (3.7). We can takeU = � 0 0 1 0 00 0 0 1 0� ;in which case[CyG(0; �H)]� = ��1:331 � 10�9 8:341 � 10�6 2:400 � 10�2 �2:796 � 10�3 1:595 � 10�46:675 � 10�8 �1:065 � 10�4 �3:024 � 10�1 7:667 � 10�1 �8:525 � 10�2� :The bounds obtained from the �rst inequality in (5.5) are� j��3j�3 ; j��4j�4 � � (2:7 � 10�6; 4:6 � 10�3);26
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