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Abstract

In many invasive species the number of invading individuals is proportional to the time
since the population has established (its ‘age’), not its density. Examples include plant dis-
eases which spread via lesions, which grow on leaves with time and produce ever-increasing
amounts of infective material. In this paper, a Leslie matrix model is developed to represent
the age structure and reproductive potential due to lesions, particularly for mycelial colonies
associated with fungal plant pathogens. Lesion size (and therefore age) is bounded by leaf size,
which can be quite large, leading to large matrices. The production of new mycelial colonies
is affected by dispersal of spores from the reproductive age-classes of existing colonies, so
that dispersal must be included in the matrix model by convolution operators. The infinite-
dimensional version of the model is more tractable than the large, finite models, and is used
to determine an upper bound on rates of invasion. The model is applied to model the life
history of the öomycetePhytophthora infestans, causal agent of potato late blight disease. It
is shown that the infinite-dimensional model closely predicts behavior of finite dimensional
models, cut off at certain age-classes of lesions because of finite leaf size. Surprisingly, the
infinite-dimensional model is more tractable than finite-dimensional model versions, yielding
robust results for practical situations.

1 Introduction

The spread of disease or invasive species has been the subject of mathematical, biological, and

epidemiological interest since the turn of the nineteenth century. The progress of ‘waves of inva-

sion’ affect humans directly, and consequently predicting the rate at which invasions and epidemics

move has been an issue of applied interest in mathematics since Fisher [7], Kolmogorov [14] and

Skellam [30]. Modern treatments have been extended to systems of competing species (see, for

example, the companion papers [40] and [20] of the team Weinberger, Lewis and Li) and popula-

tions with significant age structure (e.g. (Neubert & Caswell, [19]). Classically, the spread of an

invasion or epidemic has been related to the density of dispersing units (spores, seeds, juveniles

seeking new territories), which is generally proportional to the density of the established popu-

lation, and the mean dispersal distance of these propagules. Since the density of an established

population is generally limited, the density of propagules has an upper bound and it is reasonable

to expect that propagation speeds should also be asymptotically limited.

However, as pointed out by Shigesada and Kawasaki [29], many populations have the property

that the number of invading propagules grows with the age (spatial extent of the basic infected

unit or patch, as opposed to the density) of the established population. Examples include fungal

pathogens, Gypsy moth (Lymantria dispar), cheat grass (Bromus tectorum) in the American West,
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and native-invasive species like Southern and Mountain Pine Beetles (Dendroctonus frontalisand

pondersosae, respectively). In all of these cases, the basic small-scale unit of infection is a spot or

lesion. For either lesions on a leaf (as inBotrytis elliptica, responsible for fire disease in lilies, or

Phytophthera infestans, potato late blight) or an infectious spot of trees (as in Southern Pine Beetle

Dendroctonus frontalis), the number of propagules available to start new infestations is related to

the age of the lesion or spot, not its density. As pointed out by Shigesada and Kawasaki, this can

result in continually accelerating invasions.

Plant diseases, caused by fungi, bacteria, viruses and other microorganisms, are a leading cause

of agricultural crop loss and are therefore of particular interest. One of the most important plant

diseases in the world in terms of damage and control costs is late blight disease in potatoes and

tomatoes, caused by the oömycetePhytophthora infestans[11]. Oömycetes are a distinct group

of plant pathogens which until recently were regarded as fungi, but have now been classified as a

distinct taxon, more related to algae than to fungi. Epidemiologically however, with regard to the

spread of disease in plant populations, oömycetes have much in common with fungal pathogens.

Their life cycle includes the same steps of infection, formation of biomass (‘mycelium’) in the

host, spatial expansion of the affected area (‘lesion’), and formation and dispersal of propagules

(‘spores’). For purposes of this paper, we will therefore speak about fungi when we discuss relevant

epidemiological processes. The oömyceteP. infestansis taken as an example organism because of

its practical importance and because its life cycle attributes are well studied.

Reproductive strategies of fungi are varied in the extreme. A common theme for plant pathogenic

fungi is production of spores that are spread through the air. Spores are released, spread with wind

and/or rain, and after landing on (nearby) plant surfaces they potentially cause new lesions. Once

a lesion is initiated, the pathogenic fungus colonizes the surrounding plant tissue by sending out

hyphae and extracting nutrients from this tissue. The lesion grows at a relatively constant radial

rate. Several days after a region of tissue has been colonized by hyphae, sporulating bodies develop

from the local mycelium and spores can be produced and released for some time. After this period,

the local mycelium dies and sporulation stops. In the mean time the colonized area, and therefore

the lesion, has expanded.

ForP. infestansthis general pattern of latency, infectiousness and senescence results in circular

lesions with an infective annulus some distance behind the (invisible) leading edge of the lesion and
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dead tissue some radial distance behind that. One may think of lesions as the basic infection unit

of P. infestans(Zadoks and Schein [41]). Release and spread of spores from an annular sporulating

region inside each lesion, followed by infection, is the basic mode of propagation ofP. infestans

through a crop.

The mathematical analysis of plant disease epidemics in particular is a matter of great practical

relevance, and substantial effort has therefore been invested in generating predictions of spatial

spread of plant disease (van den Bosch et al., [33, 34, 35, 36] and linking theories of epidemics of

plant diseases to those of animals and humans (e.g. Segarra et al., [28]; Diekmann & Heesterbeek,

[4]). Almost exclusively, theories of plant disease epidemics have been based on the analysis of

ordinary and partial differential equations and integral equations. Such approaches require that

the life history of individuals (often lesions of the disease on the host), e.g. their fecundity versus

age, be quantified at the individual lesion level. Such an approach seems awkward in the case of

mycelial colonies for which the reproductive potential is limited only by the amount of resource

space that is available for colonization, and not by any intrinsic characteristic of the individual.

Recent progress (Neubert & Caswell, [19]; Caswell et al., [2]) in the analysis of matrix models

(for population growth) in combination with integrodifference equations (for dispersal) allow us to

develop a model in which this unbounded reproductive potential of the individual is made explicit.

In order to make the model intuitively appealing, it is developed for the pathogenPhytophthora

infestans. It should be kept in mind, however, that the proposed methodology are applicable to any

organism organized in radially expanding colonies, and whose reproductive potential increases

with age as the colonized area and annulus of reproductively active material increases. Thus, this

model may find application for microscopic as well as macroscopic fungi (e.g. Lamour, [17]),

pathogenic organisms that infecting a living hosts, decomposers (”saprophytes”) that colonize soil

or detritus, as well as bark beetles, cheat grass, and the like.

Below we will propose a discrete-time, continuous-space model for the density of lesions. We

will view a lesion, or spot, as the basic infectious unit, and examine how an epidemic progresses

when the number of propagules produced by a lesion grows linearly with the age of the lesion (as

in most fungal pathogens). Below we will propose a discrete-time, continuous-space model for the

density of lesions in an uninfected substrate. Our objectives will be to:

• show how the demographics of lesions of - for instance - plant disease causing organisms
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can be captured in a Leslie matrix formalism,

• derive the asymptotic propagation properties of such an infinite dimensional matrix model

when combined with integrodifference equations to represent dispersal,

• show that the infinite dimensional version is more tractable than the finite dimensional age

structure, and

• demonstrate that the asymptotic infinite dimensional results provide a reasonable, close up-

per bound on propagation speeds.

We will derive and analyze the model specifically in the case of potato late blight, but the results

should be generally applicable to diseases and invasions where infectiousness increases continually

with the age of the basic infective unit, a lesion.

2 Modeling the Population Dynamics of Fungal Invaders

2.1 Age Structure of Lesions – Dynamics on a Leaf

An individual lesion on a leaf grows at a measurable and well-defined radial growth rate,∆r, per

day, and after a certain latency period (LP = five days forP. infestans) the invaded area of the leaf

sporulates for a certain number of days (IP = 1 day). The progress of an individual late blight

lesion on a single leaf is depicted in Figure 1. During the infectious period spores are released at

a given rate,SI, per unit area per day, and these spores disperse. Some fraction of spores which

settle from the air are intercepted by leaves (with probabilityPint), and of these intercepted spores

a fraction,Pinf, successfully germinates and infects the plant (provided it does not land on area

already occupied by a lesion). The parameters of the model and nominal values are listed in Table

1.

When a lesion ist days old, the area that it adds is the difference between the area it is,At =

π(t∆r)2 and the area it will become on the next day,At+1 = π(t + 1)2∆r2. Thus,

∆At+1 = At+1 − At = π∆r2
[
(t + 1)2 − t2

]
= (2t + 1)π∆r2 ≈ 2πt∆r2.

Consequently, when a lesion isLP + 1 or more days old, the area which is sporulating is the area

which was added to the lesionLP days ago. SinceNn
t is the density of lesions of aget days on
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Figure 1: Diagram of progress of a single lesion through a leaf. The actual furthest location of the
lesion, denoted as the dashed circle, is invisible. The edge of the sporulating area, indicated above
as the area between heavy solid circles, emerges from the leaf surfaceLP days after infection and
produces sporulating bodies. In the radial region behind the sporulating area the lesion has used
up available resources. A typical daily growth rate for a late blight lesion is 4 millimeters per day,
with a latency period ofLP = 5 days.
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Parameter Description Nominal Value (Units)
SI Sporulation Intensity 108 (Spores/meter2/day)
LP Latency Period 5 (days)
IP Infectious Period 1 (day)
Pinf Probability of infection per landed spore 10−2

Pint Probability of interception per dispersed spore 10−1

∆r Radial growth rate of lesions 4× 10−3 (meter/day)
LAI Leaf Area Index 5 (meter2 crop/meter2 soil)
σ Mean dispersal distance from parent lesion 1 (meter)

Variable Description (Units)
t Age of Lesion (days)
n Day of Simulation (independent variable) (days)

Nn
t Density of Lesions of aget on dayn (number/meter2)

At Area of a lesion of aget days (meter2)
∆At Newly grown area for at-day-old lesion (meter2)

Table 1: Parameters and variables of thePhytophthora infestanspopulation model. Nominal values
are gleaned from [8] and [26]as well as estimates provided by field researchers [32], using the rule
of thumb that each parent lesion produces about ten daughter lesions in ideal circumstances.

dayn, the density of spores produced by these lesions is

SPn
t = Nn

t × SI ×∆At−LP ≈ Nn
t × SI × 2π∆r2(t− LP ), (t > LP ).

This is an idealization based on the assumption that leaves of the plant are much larger than the

lesions; stability of our results to relaxation of this assumption will be investigated in later sections.

The density of spores produced on dayn is thus is given by

SPn = SI ×
n∑

t=LP+1

Nn
t ∆At−LP

︸ ︷︷ ︸
Area of Infectious Lesions

≈ SI × 2π∆r2

n∑
t=LP+1

Nn
t (t− LP ).

Assuming that all dispersal happens locally, the density of spores arriving is the density of

spores produced on the previous day, SPn,

and a model for reproduction of lesions can be written

Nn+1
1 = Pint × Pinf × Pun(N

n
1 , Nn

2 , · · ·)× SPn

Nn+1
2 = Nn

1

...
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Nn+1
t = Nn

t−1

...

The combination of probabilities in the first line is the probability of the composite event that (first)

a spore lands on a leaf and is not subsequently knocked off (Pint), that (second) the spore is able

to germinate, penetrate the outer skin of the leaf and establish in the host(Pinf), and finally that

(third) the spore has landed on leaf area not currently occupied by a lesion (Pun). Probabilistic

parameters for potato late blight are set using the ‘rule of thumb’ that 1 parent lesion produces a

net 10 daughter lesions in the Netherlands in ideal circumstances [32]. The probability of a spore

landing on unoccupied leaf area can be calculated from the ratio of the total leaf area and the total

area unoccupied by lesions,

Pun(N
n
1 , Nn

2 , · · ·) = max

[
LAI −∑n

t=LP+1 Nn
t ∆At−LP

LAI
, 0

]

≈ max

[
1− 2π∆r2

LAI

n∑
t=LP+1

Nn
t (t− LP ), 0

]
. (1)

2.2 The Effects of Dispersal – Spread Between Leaves

To investigate the spread of lesions one must describe how spores produced in one location ar-

rive at a different location. Dispersal can occur by wind, by raindrops ‘splattering’ [22], or even

ballistically by pressurized expulsion from sporangia; models can range from relatively simple

probabilistic descriptions to solution of turbulent diffusion equations in and above the crop [12].

We will a probabilistic approach and introduce a dispersal kernel,K(x), the probability of spores

produced atx = 0 dispersing to the locationx. The density of spores,S(x), arriving at a location

x, given a spatial distribution of spore production,P (x), is

S(x) =

∫ ∞

−∞
K(x− y)P (y) dy

def
= K ∗ P.

One may think of this as summing the probabilities that spores produced at locationy, numbering

P (y) dy, will disperse the distance(x − y) to the locationx. Integrating defines the convolution,

S = K ∗ P .

To include dispersal in the age-structured model we interpretNn
t as the spatial density of le-

sions which aret days old on dayn. The number of spores arriving at a given spatial location is
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then

S arr = SI ×
∞∑

t=LP+1

(K ∗Nn
t )∆At−LP ≈ SI × 2π∆r2

∞∑
t=LP+1

(t− LP )K ∗Nn
t .

Writing ~Vn = (Nn
1 , Nn

2 , · · ·Nn
t , · · ·)T , the spatio-temporal dynamics are governed by a nonlinear

Leslie matrix with dispersal operations:

~Vn+1 = (B ◦ K) ∗ ~Vn, (2)

whereB is the infinite dimensional matrix

B =




0 0 0 0 0 R Pun 2R Pun 3R Pun · · · (t− LP )R Pun · · ·
1 0 0 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 0 0 0 · · ·
0 0 0 1 0 0 0 0 0 0 · · ·
0 0 0 0 1 0 0 0 0 0 · · ·
...

...
...

...
...

.. .
...

...
...

...
.. .




, (3)

K is the matrix composed of dispersal kernels,

K =




0 0 0 0 0 K(x) K(x) K(x) · · · K(x) · · ·
δ(x) 0 0 0 0 0 0 0 0 0 · · ·
0 δ(x) 0 0 0 0 0 0 0 0 · · ·
0 0 δ(x) 0 0 0 0 0 0 0 · · ·
0 0 0 δ(x) 0 0 0 0 0 0 · · ·
0 0 0 0 δ(x) 0 0 0 0 0 · · ·
...

...
...

...
...

. . .
...

...
...

...
. . .




, (4)

and the operation of element-by-element multiplication (Hadamard product) is denoted by ‘◦’. The

composite constant,

R = 2πPintPinf SI ∆r2, (5)

is the net number of new lesions produced in an unoccupied environment by anLP + 1-day old

lesion (the youngest lesion which is infectious). Nonlinearity is introduced into the system byPun,

computed on a daily basis for each location.

3 An Upper Bound for the Speed of Invasion

3.1 Review of the Minimum Wave Speed Calculation

We summarize here (and adopt the notation of) arguments presented by Neubert and Caswell [19]

for finite Leslie matrices with dispersal, which are in turn based on results of Weinberger [38, 39],
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Kot et al. [15, 16] and Neubert et al. [21]. Estimating the speed of the wave of invasion, or front,

requires analyzing the linearization of (2). For sufficiently smallNn
t (for example, in advance of

the main infestation),Pun ≈ 1 and the dynamics can be written

~Vn+1 = (A ◦ K) ∗ ~Vn, (6)

whereA is the linearization ofB,

A = lim
Pun→1

B.

Sufficiently far in advance of the front, the spatial shape of solutions may be approximated

~Vn ∼ e−sx ~w,

where~w is a vector describing relative abundances in different age-classes of lesions, each drop-

ping off exponentially at a rate,s, in the direction,x, in advance of the front. For a front traveling

at a distancev per iteration, then

~Vn+1(x) = ~Vn(x− v) ∼ esv−sx ~w,

and substituting into (6),

esv−sx ~w =
[
(A ◦ K) ∗ e−sx

]
~w = e−sx [A ◦M(s)] ~w. (7)

HereM(s) is the moment-generating matrix computed element-by-element,

M(s) =

∫ ∞

−∞
esyK(y) dy. (8)

To see why, consider one of the nonzero elements ofK in the first row:

K ∗ e−sx =

∫ ∞

−∞
e−s(x−y)K(y) dy = e−sx

∫ ∞

−∞
esyK(y) dy = e−sxM(s),

whereM(s) is the (scalar) moment generating function for the dispersal kernelK.

Cancelling common factors in (7) gives an eigenvalue problem

esv ~w = [A ◦M(s)] ~w
def
= H(s) ~w. (9)

SupposeH(s) has (countable) eigenvaluesλ1(s), λ2(s), · · ·, non-increasingly ordered by magni-

tude. Theminimum wave speed conjectureis that the speed of the wave of invasion is smaller than

v∗, where

v∗ = min
0<s<ŝ

[
1

s
ln (λ1(s))

]
, (10)
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whereŝ is the maximums for which all elements ofM(s) are defined.

For waves of invasion starting from compact initial conditions, the speed of advance should be

slower thanv∗, an argument elegantly stated recently by Neubert and Caswell [19]. In many, but

not all, cases it can also be shown that fronts accelerate to the minimum speed, in which case it be-

comes the asymptotic speed of fronts. Taking a dynamic perspective suggests that the ‘minimum’

speed should be the asymptotic front speed. This perspective harks back to Kolmogorov et. al.

[14], but was stated in the context of dynamics by Dee and Langer [3] and Powell et. al. [23, 24].

In a traveling frame of reference,z = x−nv, the solution to the linearized equation can be written

~Vn = FT −1
[
e−invkH(ik)~̂V 0

]
, (11)

whereFT −1 denotes the inverse Fourier transform,~̂V 0 is the Fourier transform of the initial data

andH is as in the discussion above, but evaluated with the substitutions → ik. Asymptotically,

using the power method, the integrand in (11) can be written

e−invkH(ik)~̂V 0 = a1e
−invkλn

1 (ik)~̂e1(k) + · · · = a1 exp [n {ln (λ1(ik))− ivk}] ~̂e1(k) + · · · ,

whereλ1 is the largest magnitude eigenvalue and~̂e1 the associated eigenvector. Thus

~Vn ≈ 1

2π

∫ ∞

−∞
eikz exp [n {ln (λ1(ik))− ivk}] ~̂e1(k) dk. (12)

The integral in (12) can be evaluated using steepest descents to get a further asymptotic approxi-

mation. The stationary point satisfies

d

dk
[ln (λ1(ik))− ivk]

set
= 0. (13)

If k∗ is the stationary point solving (13), an associated speed for the traveling frame of reference,

v∗, is chosen so that the wave neither grows nor shrinks in this frame of reference, that is

Real [ln (λ1(ik
∗))− iv∗k∗] = 0. (14)

Working through the algebra, one finds that the solutions to (13, 14) correspond exactly to (10),

using the substitutionik∗ → s∗.

The dynamic interpretation leads to a useful convergence estimate. The quantity maximized in

(13) is the exponential growth rate of of waves traveling with speedv. The stationary point,k∗, has
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maximal growth rate; the method of steepest descents is a statement that asymptotic front solutions

grow from the most unstable Fourier mode in an ensemble describing the initial data. The choice

of v∗ via (14) determines the speed of the most unstable mode using a stationary phase argument.

This suggests that the minimal wave speed,v∗, should not only be an upper bound, but also the

asymptotic speed observed, since it results from the growth and propagation of the most unstable

wave component of the solution. Moreover, an asymptotic form for the solution is predicted,

~Vn(z) ∼ eik∗z a1(k
∗)√

2nπ
exp [ln (λ1(ik

∗))− iv∗k∗]

[
λ′′1(ik

∗)
λ1(ik∗)

−
(

λ′1(ik
∗)

λ1(ik∗)

)2
]− 1

2

~̂e1(k
∗)+c.c. (15)

Incorporating the factor of
√

n from the denominator of (15) into the exponent indicates that front

speeds should converge from below to the asymptotic speed,

vobserved= v∗
(

1− ln(n)

2nk∗

)
, (16)

which will be used below.

3.2 Determination of Maximum Eigenvalue

Calculation ofv∗ is on firm ground when the matrices involved are finite. For our system, however,

the matrices concerned are infinite dimensional and calculating the maximum eigenvalue ofH(s)

is not straightforward. Recalling that we have takenM(s) to be the (scalar) moment generating

function for the dispersal kernelK(x), and specifyingLP = 5, we can write

H(s) =




0 0 0 0 0 R M(s) 2R M(s) 3R M(s) · · · (t− 5)R M(s) · · ·
1 0 0 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 0 0 0 · · ·
0 0 0 1 0 0 0 0 0 0 · · ·
0 0 0 0 1 0 0 0 0 0 · · ·
...

...
...

...
...

. ..
...

...
...

...
.. .




, (17)

whereR is defined by (5).

To analyze the spectrum ofH(s), we consider the linear operatorH : l1 → l1 defined by

(x1, x2, x3, · · ·) →
(

ρ

∞∑

k=6

(k − 5)xk, x1, x2, x3, · · ·
)

, ρ
def
= R M(s), (18)

wherel1 is the Banach space of all real sequencesx def
= (x1, x2, x3, · · ·) such that

∑ |xk| < ∞. The

matrix H(s) is the representation ofH in the standard basisek
def
= δik, whereδik is the Kronecker
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symbol. The spacel1 is natural, since the total number of lesions and spores is always finite. The

domain ofH is

DomH =

{
x ∈ l1 :

∣∣∣∣∣
∞∑

k=6

(k − 5)xk

∣∣∣∣∣ < ∞
}

,

reflecting the previous natural assumption, since the summation in is proportional to the total num-

ber of spores produced (large, but finite).

For eachλ, the operatorHλ
def
= H − λI is defined by

(x1, x2, x3, · · ·) →
(
−λx1 + ρ

∞∑

k=6

(k − 5)xk, x1 − λx2, x2 − λx3, x3 − λx4, · · ·
)

. (19)

Our aim is to find all eigenvalues ofH, that is, the set of allλ ∈ C which satisfyHλx = 0, x 6= 0.

The set of all eigenvalues is called the point spectrum ofH [31, Section V.4] and is denoted by

σp(H). For each eigenvalueλ, anyx ∈ DomH such thatHλx = 0 is a corresponding eigenvector.

Equating the right hand side of (19) to zero gives

xk = λxk+1, k = 1, 2, 3, · · · . (20)

For the first component, using (20) and induction, we have

−λx1 + ρ

∞∑

k=6

(k − 5)
x1

λk−1
= 0. (21)

¿From (20) it follows that any non-trivial solution ofHλx = 0 must satisfyx1 6= 0, so (21) implies

−λ + ρ

∞∑

k=6

(k − 5)
1

λk−1
= −λ + ρ

1

λ3

∞∑

k=1

k

λk+1
= 0.

We seek the largest eigenvalue and expect the population of lesions to grow, so we confine our-

selves to the case|λ| > 1. Using differentiation of geometric series, we have

−λ + ρ
1

λ3

1

(λ− 1)2
= 0.

Therefore, eigenvalues ofH are zeros of the polynomial

λ6 − 2λ5 + λ4 − ρ = 0, (22)

which also satisfy|λ| > 1. From (20) we see that the corresponding eigenvectors are

x =

(
1,

1

λ
,

1

λ2
,

1

λ3
, · · ·

)
.

13



Obviously,x ∈ l1, and since|λ| > 1 implies
∑

(k − 5)/|λk| < ∞, we also havex ∈ DomH.

Interestingly, the roots of (22) can be computed exactly in terms of radicals (e.g. byMathematica),

and they all lie outside the unit circle. Inspecting all six roots, we see that the largest magnitude

root of the polynomial (22) is

λ1(s) =
1

3
+

21/3

3
(
2 + 27

√
ρ +

√
108

√
ρ + 729ρ

)1/3
+

(
2 + 27

√
ρ +

√
108

√
ρ + 729ρ

)1/3

3 · 21/3
. (23)

Since in deriving this expression we have assumed that|λ| > 1 andλ1(s) > 1 for ρ 6= 0, we

conclude that (23) gives the largest eigenvalue of the operatorH(s) from (17). By analysis similar

to one in [9, Section 3] (see also [31, Section V.4, Problem 11]), we can show that the residual

spectrum ofH is the setσr(H) = {λ ∈ C : |λ| ≤ 1, λ 6= 1} and the continuous spectrum ofH,

σc(H), contains only the pointλ = 1. The derivation of these results is beyond the scope of this

paper and is omitted, since they do not correspond to invading lesion populations.

Sinceρ = RM(s), expression (23), together with (10), allows for prediction of rates of invasion

as a function of parameters describing the fecundity, dispersal, and infectiousness of the disease.

This formula is useful, in that the maximum eigenvalue and therefore asymptotic speed of invasion

for any lesion-based pathogen can be determined without setting up arbitrarily large population

matrices and extracting eigenvalues numerically. In addition, since the maximum eigenvalueλ1(s)

behaves likeO(ρ1/6) from (23), the formula also allows us to conclude that the predicted upper

boundv∗ from (10) is stable for very infectious diseases (R À 1) in the sense that small changes

of the parameters from Table 1 or entries in the matrix cause only proportionally small changes in

v∗.

3.3 Finite Dimensional Case

In general one may expect speeds of the nonlinear invasion, governed by the infinite system (2),

to approach speeds predicted for the linear system, (6), using the minimum-speed methodology.

An new wrinkle occurs because of age structure: invasions are initialized with lesions of age 1,

and the progress of disease is modeled by application offinite operators, whose number of entries

grows by one daily. Consequently there are two convergence issues to keep in mind. The first

concerns the rate at which nonlinear fronts of fixed dimensionality approach the minimal wave

speed. The second, novel issue concerns the rate at which the finite dimensional eigenvalues,

14



presumably controlling the speed of propagation in the age-structured population, approaches the

largest eigenvalue in the infinite system.

Let Hm(s) be the leadingm × m submatrix ofH(s) from (17), whereρ is defined by (18).

Let λ
(m)
1 (s) denote the largest positive eigenvalue ofHm(s). To estimate the effect of reduction

to finite dimension for the linearized case, we need to computeλ
(m)
1 (s), and compare it toλ1(s).

First, sinceHm(s) is non-negative and irreducible, by the Perron-Frobenius Theorem [18, Theorem

9.2.1] it follows that the absolutely largest eigenvalue ofHm(s) is real and positive. Thusλ(m)
1 (s)

exists for everym and is equal to the spectral radius ofHm(s). Figure 2 shows the eigenvalues of

H100(s) for ρ = 10; we see six distinct eigenvalues (there are five distinct eigenvalues for oddm),

and the rest of the eigenvalues are close to the outer border of the unit circle.

−1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 2: Eigenvalues ofH100(s) for ρ = 10. Note the six eigenvalues outside the unit circle,
converging to the six roots of the polynomialλ6 − 2λ5 + λ4 − ρ = 0 in the infinite case.

Let us prove that the sequence of largest eigenvalues,{λ(m)
1 (s)}, is convergent forρ fixed. We

do this by showing that the sequence is bounded and increasing. Let

Dm = diag

(
1, 1, 1, 1, 1,

1

ρ
,

1

2 ρ
,

1

3 ρ
, · · · , 1

(n− 5) ρ

)
,

and set

H†
m(s) = D−1

m HmDm.

The first row ofH†
m(s) is

(0, 0, 0, 0, 0, 1, 1, 1, · · · , 1),
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the first sub-diagonal is (
1, 1, 1, 1, ρ, 2,

3

2
,
4

3
,
5

4
, · · · , m− 5

m− 4

)
,

and the remaining elements ofH†
m(s) are zero. By applying Geršgorin’s Theorem [18, Theorem

7.2.1] columnwise, it follows that all eigenvalues are included in the union of discs which are

centered at zero and have radii

r1 = r2 = r3 = r4 = 1, r5 = ρ, rk =
k

k − 1
+ 1, k = 2, 3, · · · ,m− 5.

Therefore,

|λi(H†
m(s))| ≤ max{ρ, 3}, i = 1, 2, · · ·m.

Since the matricesH†
m(s) andHm(s) have identical eigenvalues the sequence{λ(m)

1 (s)} is bounded.

Further, letPm(λ, s) be the characteristic polynomial ofHm(s). SinceHm(s) has the form of the

companion matrix, it is easy to see that

Pm(λ, s) = λm − ρλm−6 − 2 ρ λm−7 − 3 ρ λm−8 − · · · − (m− 6) λ− (m− 5).

By induction we have

Pm+1(λ, s) = λPm(λ, s)− (m− 4).

SincePm(λ
(m)
1 (s), s) = 0, we have

Pm+1

(
λ

(m)
1 (s), s

)
= λ

(m)
1 (s) · 0− (m− 4) < 0.

Therefore,Pm+1(λ, s) has a real zero which is greater thanλ
(m)
1 (s). It follows that the sequence

{λ(m)
1 (s)} is increasing and, since it is also bounded, convergent. By comparing these results with

those of Section 3.2, it is obvious thatλ
(m)
1 (s) → λ1(s). This convergence is very fast, as shown

in Figure 3 forρ = 1, 10, 20.

The results of this section justify using the infinite leaf model of Section 2.2. Although the

assumption is biologically unrealistic, from Figure 3 we conclude that limiting leaf size (such that

the maximum age is, say, between 10 and 20 days, or the spot sizes are only 4 to 8 cm) produces

essentially similar results for the speed of invasion.

Two idealizations have been made to arrive at a predicted speed: neglecting nonlinear terms

and approximating the sequence of increasing, finite matrices with an asymptotic infinite matrix.

Two questions, therefore, remain unanswered:
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Figure 3: Convergence ofλ(m)
1 (s) (denoted by×) to λ1(s) (solid) for ρ=1, 10 and 20. Herem

is both the number of days (generations) since simulation inception and the order of the matrix.
Convergence is rapid in all cases, so that by the twentieth generation of an infestation the finite and
infinite values are the same for all practical purposes.

• How much is the invasion speed,vnl, obtained from the realistic model (2) overestimated by

the invasion speed,vl, obtained from the linearized model (6)?

• How well does the theoretical bound for invasion speedv∗ approximate the speed of the

linearized modelvl, given that the infinite matrix is an approximation to the iteration of

operators of finite, but growing, dimension?

These questions are addressed numerically below.

4 Numerical Tests

In numerical simulations we considered two types of dispersal kernels in (4): the Gaussian kernel,

K(x) =
1

σ
√

2π
e−

x2

2 σ2 , (24)

and the Laplace kernel

K(x) =
1

2 σ
e−

|x|
σ , (25)

whereσ is the mean distance traveled by spores in meters (nominally set to 1 meter). These two

kernels are among the most commonly used for dispersal studies. The Gaussian form describes

a process of random dispersion in the horizontal direction as spores fall from a given height to
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the ground; the Laplace kernel describes the net results of a random horizontal diffusion in time

coupled with a constant rate of precipitation of spores to the ground. It is important to check the

sensitivity of the results to dispersal; the amount of infectious material increases without bound,

and so it is possible that the ‘heavy tail’ of the Laplace distribution could lead to continually ac-

celerating fronts and divergence between predictions and observations. Convolution and dispersal

were implemented using Fast Fourier Transforms and the property that the transform of the con-

volution is the product of the transforms. In all simulations 4096 grid points were used; the size

of the spatial domain was180 × v∗ meters, wherev∗ is the maximum predicted velocity. Given

initial conditions starting in the center of the domain, this gave enough space so that in 60 ‘days’

of simulation a developing front had 1.5 times as much room to propagate as the maximum speed

linear prediction. Boundary conditions were taken to be periodic.

Each simulation was performed in the non-linear case using (2), wherePun from (3) was recom-

puted in each step (each day) using formula (1), and in the linearized case using (6). The behavior

of Pun and shape of typical fronts for parameters as in Table 1 and both Laplace and Gaussian

kernels is depicted in Figure 4, for both linear and nonlinear growth rates. In both cases,Pun was

used to diagnose and depict the location of the front; that is, to determine the location of the wave

of invasion each ‘day’ we would calculatePun (even if it was not used in the dynamics, as in the

linear simulations) and determine the current extent of the invasion by determining which grid cell

contained that point wherePun = 1
2
. From the obtained results we then deduced the speeds of

invasion (vnl andvl, respectively) in both non-linear and linear settings by calculating the distances

propagated over 10 days at the end of the simulation.

For each simulation we also computed the upper bound of the invasion speedv∗ from (10) as

follows: we multiplied the composite constantR from (5) and the moment generating function

M(s) from (8) to obtainρ from (18). Thisρ was then inserted into (23) to obtainλ1(s). Finally,

λ1(s) was inserted into (10), and the minimum overs was computed, givingv∗. The speed of

invasionv∗ should match the speed obtained by the simulation in the linearized case. According

to (8), the moment generating function is given by

M(s) = e
σ2s2

2
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Figure 4: Evolution of the front from initial conditionsN0
1 = 104, |x| < 3, N0

∗ = 0 otherwise, in
the case of the Laplace kernel (top) and Gauss kernel (bottom), with nominal parameters as given
in Table 1. The fraction of resourceoccupied, 1 − Pun, is plotted here. Time slices are ten days
apart, with the evolution of the nonlinear front given by solid lines and the linear front given by
dotted lines. Notice that during the last time slice small round-off errors have grown in advance
of the front; these eventually grow and dominate the solution. The nonlinear solution looks much
smoother at this point because calculation ofPun involves summing over age classes, smoothing
the instability.
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for the Gaussian kernel (24), and by

M(s) =
1

1− σ2s2
,

for the Laplace kernel (25).
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Figure 5: Progress of an invasion with mean spore dispersal distances of 1 meter using Gaussian
(left) and Laplace (right) kernels. Parameters are set to nominal values described in Table 1.
Invasions were allowed to progress linearly (unoccupied resource fraction,Pun, set always to 1,
dashed lines) and nonlinearly (solid lines). The predicted speeds arev∗ = 0.415 meters/day for the
Gaussian kernel andv∗ = 0.936 meters/day for the Laplace kernel, which is a small overestimate
of the linear propagation speeds and a larger overestimate of the nonlinear speeds.

Figure 5 shows an example of simulation with nominal values of parameters from Table 1. For

these values, the composite constantR from (5) and (17) is equal toR = 10.0531. The simulation

was run with Gaussian and Laplace kernel, respectively, withσ = 1 meter in both cases. Solid

curves show the progress of infection in the non-linear cases, and dashed curves show the progress

in the linearized cases withPun = 1 in (3). For this example the theoretical speeds arev∗ = 0.415

meters/day for the Gaussian kernel andv∗ = 0.936 meters/day for the Laplace kernel. We see that,

for both kernels, the speeds obtained by linearization,vl, overestimate the speeds of the nonlinear

model,vnl, and the theoretical speedsv∗ slightly overestimatevl. This is quite interesting, as the

dynamic perspective on front propagation suggests thatv∗ should be the asymptotic speed for both

linear and nonlinear fronts, and simulation results with fixed-size Leslie matrices indicate rapid

convergence to the predicted minimal wave speed (see, for example, Neubert and Caswell [19]).
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To more completely investigate the comparative behavior ofvnl andvl versusv∗, we performed

a series of simulations with different values of parameters from Table 1 in a randomized facto-

rial design. The first three parameters (SI, LP andIP ) were kept at nominal values, while the

remaining five parameters were chosen as follows:

Pinf ∈ {0.0075, 0.01, 0.0125},
Pint ∈ {0.075, 0.1, 0.125},
∆r ∈ {1× 10−3, 2× 10−3, 3× 10−3, 4× 10−3},

LAI ∈ {3, 5, 7},
σ ∈ {0.5, 1, 1.5, 2}.

This gives 432 simulations for each kernel. The composite constantR attained values in the

interval R ∈ [0.3534, 15.7080], and the theoretical bound for invasion speedv∗ attained values

v∗ ∈ [0.1198, 0.8755] for the Gaussian kernel andv∗ ∈ [0.2376, 2.0106] for the Laplace kernel.

Simulation results are summarized in Figure 6.

The disparity between observation and prediction depicted in Figure 6 reflects what appears to

be a consistent overprediction of observed linear and nonlinear speeds, with the degree of over-

prediction being approximately twice as large for nonlinear speeds as for linear speeds. The ex-

planation lies in three interrelated effects. Firstly, the net daily per-capita growth rate for fungal

lesions was never less than 1.5 in our simulations, and often as large as 10, reflecting the extremely

invasive nature of late blight. As a consequence, simulations were difficult to run for long periods

of time; at some point small round-off errors in the neighborhood of zero grew geometrically. In

practice we were unable to maintain simulations much beyond 50 iterations, and running longer

simulations to allow for greater convergence was impossible both because of the extreme instabil-

ity of the zero population state as well as the size of the transition matrices (which are as large as

the number of days) at each spatial location.

Confounded with this aretwo convergence effects, each contributing to overprediction. In the

first place there is the convergence to the stable traveling population distribution, which is described

by the first neglected terms in the power method. Thus, when considering the evolution of a front

from compact initial data, the asymptotic problem should read

ens∗v∗ ~w = Hn(s∗) ~w = a1(s
∗)λn

1~e1(s
∗) + a2(s

∗)λn
2~e2(s

∗) + · · ·
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Figure 6: Comparison of predicted and observed speeds for waves of invasion with and without
density dependent growth restrictions for both Laplace and Gaussian dispersal kernels. Parameters
are chosen in a random factorial design described in the text, with variation centered on the nominal
values described in Table 1. Observed linear and nonlinear speeds are marked with ‘+’ and ‘×’
respectively. The solid line is the linevobserved = vpredicted, indicating perfect agreement. Results
indicate a consistent overprediction of observation by prediction, with a greater degree of error for
nonlinear as compared to linear propagation.
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= λn
1

[
a1(s

∗)~e1(s
∗) + a2(s

∗)
λn

2

λn
1

~e2(s
∗) + · · ·

]
.

Here~e1(s
∗) can be interpreted as the asymptotic stable population distribution selected by the

wave of invasion, while~e2(s
∗) is the age structure of the ‘ringing’ which occurs as population

distributions converge to the stable distribution along a front. The ratio of the largest and second-

largest magnitude eigenvalues is the rate of convergence. This is asymptotically negligible, but for

finite simulations we may expect an error proportional to

EPower∼ |~e1 · ~e2| |λ2|n
|λ1|n . (26)

The second convergence effect is the natural acceleration of the front to the asymptotic front

speed described by (16). Predicted by steepest descents, this is the convergence of the spatial shape

of the front to its asymptotic exponential shape, a translate ofe−s∗x. The speed convergence error

is (from 16)

ESpeed∼ ln(n)

2nk∗
. (27)

While ESpeedtends to zero asn tends to infinity, the convergence is slow, and again the error can not

be neglected for short simulations.

To investigate how these errors relate to observed errors in our simulation we ran each of the

factorially crossed parameter studies for as long as possible, diagnosing the onset of overwhelming

instability by the inevitable sudden jump in the rate of progress of the front. In each simulation

the day at which the simulation ‘broke’ was diagnosed by and recorded asnday. During each

simulation the forward progress (xfp) of the front was diagnosed as described above. Observed

speeds were then

vobserved=
xfp(nday − 5)− xfp(nday − 15)

10
.

The largest two eigenvalues of the finite transition matrix,λm
1 (s∗) andλm

2 (s∗), were calculated,

with m evaluated at the center of the speed calculation interval,m = nday− 10. This information

determines the size of the two error components,EPower andESpeed. These errors are compared to the

observed relative speed error,
v∗ − vobserved

v∗
,

in Figure 7. Errors for the Laplace kernel were similar, but of smaller size. In each case,EPower +

ESpeed is a close upper bound on the size of observed errors.
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5 Conclusion

We have shown in this paper how to extend the methodology of Neubert and Caswell [19], incorpo-

rating age structure and dispersal into integrodifference population models, to infinite dimensional

cases of lesion-based diseases. Not only is the infinite dimensional version easier to analyze than

the finite version, but the results are very close to wave speed observed in the finite case. Even

in the extremely invasive late potato blight the agreement between analytic results and simula-

tions are well within expected error tolerances. The minimum wave speed, given by the infinite

dimensional version of (10), is an upper bound for rates of invasion propagation and seems to be

the asymptotic speed selected for waves of invasion, as suggested by the dynamic interpretations

of Dee and Langer [3] and Powell et al. [23, 24]. In fact, results in this paper suggest that the

dynamic interpretation has the additional virtue of accurately describing convergence rates to the

asymptotic wave speed.

We have also described a modeling approach for lesion-based foliar diseases, which may find

potential application in any sort of invasion process where growing patches are the basic unit of

infection. Examples include cheat grass in the American West [29], pathogenic fungi of the genus

Botrytis (which cause ‘fire disease’ in flower crops and infect field and greenhouse vegetables,

small fruits, ornamental plants, flower bulbs and forest tree seedlings world wide [13]), and insects

such as the Southern Pine Beetle (which create ‘spot’ infections in patches of pine forest [25]) or

gypsy moth, which seems to invade by via spots [27]. Even reproduction and spread of forests may

fit; trees could be regarded as an assembly of branches whose reproduction is linearly increasing in

time as the tree adds branches. Thus the individual tree would take the role of the ‘lesion’ and the

approach would remain fundamentally the same. By no means is this the first attempt at modeling

spread of late blight and fungal pathogens (see, for example van den Bosch et al. [37] and Pielaat

and van den Bosch [22]), nor (more generally) age structured spread in general (see Hengeveld

[10] and Shigesada and Kawasaki [29] for reviews). But itis the first attempt that we know of to

put the concept of an ever-growing infection structure on the relatively firm and simple ground of

a Leslie matrix formulation.

The drawback in the modeling approach used here is the difficulty in accounting for two fac-

tors: finite leaf size and coalescence of lesions. The first factor is not too difficult to imagine

incorporating, though possibly tedious. At the coarsest level, when lesions grow to the average
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size of a leaf they can grow no more, which amounts to truncating the nonlinear Leslie matrix at

an age class of lesions corresponding to the area of the largest leaves. At a slightly less coarse

scale, in plants with a size distribution of leaves, one would need to estimate the probability of a

lesion using up all available area by the probability that it had landed on a leaf of its current size.

This would give a transition probability of smaller than one for lesions larger than a certain size,

which would drop to zero for lesions at the largest leaf size. Finally, when lesions grow on finite

substrates they will eventually encounter boundaries, and while they may continue to grow the new

growth area will no longer be annular. Consequently some estimate is needed of the probability

of observing annular growth of area∆At, which would then alter the rate at which new lesions

are formed. In all of these cases, incorporation of realistic leaf sizes would ruin the special matrix

structure which allowed for analytic calculation of the largest magnitude eigenvalue, though the

theory predicting the existence of a single, largest eigenvalue would remain in place.

The second factor, coalescence of lesions on a leaf, would be somewhat more difficult to

address. Shigesada and Kawasaki [29] outline a procedure for approximating the rate at which

patches of an invasive species run into one another. The basic idea is to model the process as a

summation, so that when two circular patches encounter one another they are approximated as a

new patch of size equal to the sum of the previous patches. Knowing the distribution of distances

at which patches are established and their radial growth rates, one can predict the mean time un-

til patches encounter one another. In our age-structure framework this would manifest as a new

kind of transition probability: among all age classes would be a class of transitions which would

allow a lesion of a given size to sum with a lesion of any other size and create a new lesion in a

size class equal to the sum of the two. The resulting transition matrix would be lower triangular

(except for the top row, representing the production of new lesions), and have nonzero entries up

to the point where maximum dispersal distance and radial growth no longer allow for two lesions

to coalesce (i.e. when the size of the lesion is greater than its capacity for dispersal). At this stage

new theoretical difficulties are bound to be encountered; the infinite dimensional version of the

size class/dispersal formalism was relatively easy to describe in the current case due to the simple

form of the Leslie matrix involved.

Both of these factors, however, clearlyreducethe growth rate of the lesion population and

would slow down the wave of invasion. Consequently we may expect thev∗ calculated above to
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remain an upper bound for the speed of invasions. It is then particularly useful since part of the

calculation can be performed analytically, given the simple algebraic form of the largest eigenvalue

for the infinite dimensional system.
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