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e.Introdu
tionIt is known that diagonalization methods deliver output data withhigh relative a

ura
y, a property whi
h is not shared with faster meth-ods su
h as Divide and Conquer or QR methods whi
h require tridi-agonalization or bidiagonalization as a prepro
essing step. After thepioneering resear
h of Demmel and Veseli�
 [6℄, a

ura
y of other meth-ods for solving di�erent matrix eigenproblems has been inspe
ted (see[25, 41℄). Closely related stopping 
riterions and measures of 
onver-gen
e have also been reinvestigated.In this overview paper we present the latest resear
h of Ja
obi meth-ods for solving Hermitian/symmetri
 eigenvalue problem and the sin-gular value problem. The new results mostly address a

ura
y and theasymptoti
 
onvergen
e of s
aled iterates.The paper is divided into three se
tions. In Se
tion 1 are brie
ydes
ribed two- and one-sided Ja
obi methods for Hermitian/symmetri
eigenvalue problem. A spe
ial attention is paid to J-symmetri
 Ja
obimethod of Veseli�
 [51℄ and its one-sided version whi
h is an ex
ellenttool for a

urate eigensolving of inde�nite symmetri
 matri
es. In Se
-tion 2, their asymptoti
 
onvergen
e is reviewed and several new results1



2are shortly explained. Finally, in Se
tion 3, the latest a

ura
y results
on
erning one-sided methods are presented.1. Two-sided MethodsHere we �rst give a short introdu
tion to Ja
obi-type pro
esses [36,17℄. Then we give a brief des
ription of the the most important methods:Hermitian Ja
obi method and J-symmetri
 Ja
obi method. For ea
h ofthe two methods, we introdu
e both the two- and one-sided versions.1.1 Ja
obi-type Pro
essesJa
obi-type methods are iterative pro
esses of the formA(k+1) = P �k A(k)Qk; k � 0; (1.1)where Pk , Qk are nonsingular elementary plane matri
es, P �k is the 
om-plex transpose of Pk and A(0) = A is the initial matrix of order n. Anelementary plane matrix E is a nonsingular matrix whi
h di�ers fromidentity matrix In in one prin
ipal submatrix of order two, denote it byÊ, whi
h is 
alled pivot submatrix or the (i; j)-restri
tion of E. The pairof indi
es i; j, i < j whi
h determine position of Ê within E are pivotindi
es and (i; j) is pivot pair . In (1.1) pivot indi
es depend on k, soi = i(k), j = j(k). When emphasis is on pivot indi
es we shall writePi(k)j(k) instead of Pk (similar for Qk) and when k is understood justPij . Transition from A(k) to A(k+1) is 
alled the kth step or iteration ofthe method.Ja
obi methods are 
hara
terized by the requirementa(k+1)i(k)j(k) = a(k+1)j(k)i(k) = 0; k � 0:whi
h implies that for ea
h k, P̂k and Q̂k are 
omputed from Âk.Pivot strategy is a rule for sele
ting pivot pairs. We identify ea
hpivot strategy with a fun
tion I : N0 ! Pn, where N0 = f0; 1; 2; : : :gand Pn = f(l;m); 1 � l < m � ng, n � 2. Among di�erent 
lassesof (pivot) strategies we 
onsider here only periodi
 strategies whi
h areperiodi
 fun
tions. This means I(k +M) = I(k), k � 0 for a positiveinteger M , the period of I. A periodi
 strategy I is quasi-
y
li
 iffI(k); 0 � k � M � 1g = Pn, and a quasi-
y
li
 strategy is 
y
li
 ifM = N def= n(n�1)=2. The set ofM su

essive iterations starting with kwhi
h is a multiple ofM , is usually 
alled a quasi-
y
le (
y
le for 
y
li
strategies). In the sequel the term strategy means periodi
 strategy.The most 
ommon are the row-
y
li
 and 
olumn-
y
li
 strategies (oftenreferred to as serial) and the parallel ones.



Advan
es in Ja
obi Methods 3The 
olumn-
y
li
 strategy is de�ned by IC(k) = (i(k); j(k)), k � 0,where as k in
reases, the pivot pair runs through the 
olumn-wise or-dering of Pn: (1; 2), (1; 3), (2; 3),: : : ,(1; n), (2; n), : : : ,(n � 1; n) of Pn.The row-
y
li
 strategy IR is de�ned in a similar way by the row-wiseordering of Pn: (1; 2), (1; 3), : : : ,(1; n), (2; 3), : : : ,(n � 1; n). By paral-lel strategy we mean a 
y
li
 strategy for whi
h the de�ning ordering ofPn 
an be divided into p subsequen
es ea
h 
ontaining mutually disjointpairs (pairs (l;m) and (p; q) are disjoint if fl;mg\fp; qg= ;). The planematri
es asso
iated with ea
h su
h subsequen
e mutually 
ommute, theyall 
an be 
omputed in the same time and all 
an be applied simultane-ously. Best eÆ
ien
y is obtained when p � n. Then ea
h subsequen
e
ontains around n=2 pairs (see [3, 28, 18, 29℄). A 
y
le then 
onsists ofp parallel steps and ea
h parallel step 
omprises � n=2 sequential steps.Another interesting periodi
 strategy is the quasi-
y
li
 strategy ofMas
arenhas [30, 31, 37℄ whi
h enables 
ubi
 asymptoti
 
onvergen
eper quasi-
y
le and for whi
h M � 1:25N .The notion of 
onvergen
e depends on the method. For two-sidedmethods it usually means 
onvergen
e of the iterated matrix to a diag-onal matrix.1.2 Hermitian Ja
obi MethodLet H = (hlm) be a (
omplex) Hermitian matrix of order n. Ja
obimethod for 
omputing the eigende
omposition of Hermitian matri
esgenerates sequen
e of Hermitian matri
es by the rule (1.1) with Pk = Qk,k � 0 being unitary matri
es. Rewriting (1.1) with these assumptions,yields H(k+1) = V �k H(k)Vk; k � 0; H(0) = H;where Vk; k � 0 are unitary plane matri
es. If eigenve
tors are wanted,then V (k) = V0V1 � � �Vk�1 is 
omputed by the rule V (k) = V (k�1)Vk�1,k � 1, V (0) = In. For ea
h k � 0 pivot submatrix of Vk,V̂k = " 
os'(k) � sin'(k)e{!ksin'(k)e�{!k 
os'(k) #is 
hosen to diagonalize the pivot submatrix Ĥ(k) ofH(k) = (h(k)lm ). Here {denotes the imaginary unit and z denotes the 
omplex 
onjugate of z 2C.Hen
e, '(k) and !k are 
hosen to produ
e h(k+1)ij = 0. For h(k)ij = 0, thek'th step is skipped i.e. !k = '(k) = 0 is presumed. Otherwise, the usual
hoi
ee{!k = h(k)ijjh(k)ij j ; tan 2'(k) = 2jh(k)ij jh(k)ii � h(k)jj ; '(k) 2 [��=4 ; �=4℄ ; (1.2)



4is assumed. If H is real symmetri
, !k is set zero, so that all V (k) areorthogonal and all H(k) are real symmetri
. In this 
ase jh(k)ij j in therelation (1.2) is repla
ed by h(k)ij . Using 
(k) = 
os'(k), s(k) = sin'(k),t(k) = tan'(k), the transformation formulas readh(k+1)li = 
(k)h(k)li + e�{!ks(k)h(k)lj = h(k+1)il ; l =2 fi; jgh(k+1)lj = 
(k)h(k)lj � e{!ks(k)h(k)li = h(k+1)jl ; l =2 fi; jgh(k+1)ii = h(k)ii + jh(k)ij j t(k); h(k+1)jj = h(k)jj � jh(k)ij j t(k)h(k+1)ij = 0; h(k+1)lm = h(k)lm whenever l;m =2 fi; jg : (1.3)As a 
onsequen
e of the 
hoi
e of transformation parameters, we havek
(H(k+1))k2F = k
(H(k))k2F � 2 j h(k)ij j2 ; k � 0 ; (1.4)where generally, 
(X) = X � diag(X) stands for the o�-diagonal partof X and k � kF is the Frobenius (or Eu
lidean) matrix norm. By k � k2is denoted the spe
tral or matrix 2-norm. The quantity k
(X)kF issometimes referred to as (see [20℄) the o�-norm of X . The quantityk
(H(k))kF 
an be used to measure the progress of the pro
ess.The serial Ja
obi methods are globally 
onvergent, i.e. the sequen
e ofmatri
es H(k) is 
onvergent to diagonal matrix for any initial HermitianH (see [16℄ and [24℄). The asymptoti
ally faster quasi-
y
li
 methodde�ned by Mas
arenhas strategy is also globally 
onvergent [37℄.If H 2Cn�n is positive de�nite, then all H(k), k � 0 are positivede�nite and Ja
obi method delivers relatively a

urate eigenvalues andeigenve
tors (almost as a

urate as H allows, see [6℄). S
aled matri
esH(k)S = [diag(H(k))℄�1=2H(k)[diag(H(k))℄�1=2; k � 0: (1.5)play important role 
on
erning a

ura
y. Their o�-diagonal parts, andthe 
orresponding normsA(k) = 
(H(k)S ) = H(k)S � I; �k = kA(k)kF k � 0;are used in terminating of the pro
ess (see (2.8)). This will be dis
ussedlater. Note that the diagonal elements of A(k) = (a(k)lm ); k � 0 are zerosand the o�-diagonal elements are given bya(k)lm = h(k)lm =qh(k)ll h(k)mm; l 6= m; k � 0: (1.6)The property (1.4) is not shared with the sequen
e of s
aled matri
essin
e H(k+1)S = (�(k+1))�1(V (k))��(k)H(k)S �(k)V (k)(�(k+1))�1



Advan
es in Ja
obi Methods 5is not a unitary transformation. A
tually, the o�-norm of s
aled matri
es
an temporarily in
rease during the pro
ess. In [34℄ it has been provenja(k+1)il j2 + ja(k+1)jl j2 � ja(k)il j2+ja(k)jl j21�ja(k)ij j ; l 6= i; j ;kA(k+1)k2 � kA(k)k2 � ja(k)ij jkA(k)k2�2ja(k)ij j1�ja(k)ij j : (1.7)Hen
e, if kA(k+1)k > kA(k)k, then 0 < ja(k)ij j � 12kA(k)k2. We see thatonly quadrati
ally small (in the s
aled sense) pivot element 
an 
ausethe growth of kA(k)k. The above estimates make it possible to �nd anupper bound for the �nite sequen
e �0; �1; : : : ; �N provided that �0 issmall enough.S
aled iterates 
an be de�ned in inde�nite 
ase, whenever diagonalelements are nonzero. Then the s
aling matrix [diag(H(k))℄�1=2 shouldbe repla
ed by [ j diag(H(k)) j ℄�1=2 = [diag(jH(k)j)℄�1=2, the diagonalelements of H(k)S are �1, A(k) = 
(H(k)S ) and a(k)lm = h(k)lm =qj h(k)ll h(k)mm j,l 6= m, k � 0. Here jX j = (jxlmj) provided that X = (xlm).One-Sided Ja
obi Method LetH = LLT be the Cholesky fa
toriza-tion of positive de�nite H , and let L = U�V T be the SVD of L. Then,sin
e U is orthogonal and � diagonal, the de
omposition H = U�2UTis the spe
tral de
omposition of H . Hen
e, we 
an diagonalize H intwo steps: (1) 
ompute the Cholesky fa
torization to get L and (2)
ompute the SVD of L. For the se
ond task we 
an use the so 
alledone-sided (or right-handed) Ja
obi method. This method appears nat-urally, when two-sided Ja
obi method is applied to LTL. After k stepsone obtains the matrix (LV0 � � �Vk�1)TLV0 � � �Vk�1, hen
e it is suÆ
ientto iterate the pro
ess G(k+1) = G(k)Vk, k � 0, G(0) = L. To 
omputethe parameters of V̂k one needs (see (1.2)) to 
ompute s
alar produ
tof pivot 
olumns (G(k)ei j G(k)ej) and squares of pivot 
olumn normskG(k)eik2 and kG(k)ejk2 (el is the lth 
olumn of In). Fortunately, us-ing formulas for updating the diagonal elements from (1.3) the squaresof norms have to be 
omputed on
e or twi
e during the whole pro
ess.The e�e
t of kth transformation is to orthogonalize the pivot 
olumnsof G(k). Assuming a \
onvergent" (e.g. the serial) pivot strategy, thesequen
e G(k) approa
hes a set of matri
es with orthogonal 
olumns.Let G(k) = U (k)�(k), where U (k) has normalized 
olumns and �(k) isdiagonal positive de�nite. We 
an 
hoose any 
onvergent subsequen
eof V (k) = V0 � � �Vk and an appropriate 
onvergent subsequen
e of U (k)to obtain in the limit U� = LV , the SVD of L. Left singular ve
tors ofL are eigenve
tors of H and squares of the singular values of L are the



6eigenvalues of H . In the 
ontext of 
omputing the spe
tral de
omposi-tion of H , right singular ve
tors are not needed, hen
e a

umulation ofrotations 
an be skipped. This and several other attra
tive features ofthe one-sided method are �rst noted, analyzed and exploited by Veseli�
and Hari [52℄. We shall address some of these features in Subse
tion 3.1.1.3 J-Symmetri
 Ja
obi MethodJ-symmetri
 Ja
obi method, introdu
ed by Veseli�
 in [51℄, is a diago-nalization method for the generalized eigenvalue problem Hx = �Jxwhere H 2 Rn�n is symmetri
 matrix and J = diag(Im; In�m) is dire
tsum of Im and �In�m. The method generates the sequen
e of matri
esby the rule (1.1) with Pk = Qk , k � 0. Sin
e transformation matri
esneed not be orthogonal, we denote them by Ck, k � 0 so that (1.1) takesform H(k+1) = CTk H(k)Ck; k � 0; H(0) = H:The method is so designed that CTk JCk = J holds for all k � 0. Wesee that transition from H(k) to H(k+1) is made by 
ongruen
e trans-formation whi
h preserves the symmetry and inertia of matri
es H(k)as well as the eigenvalues of the initial pair (H; J). Sin
e all Ck areJ � orthogonal, the method is sometimes 
alled J-orthogonal (see [43℄).Although the method 
an be generalized to 
omplex matri
es, all knownresults refer to real matri
es.For 1 � i < j � m and m + 1 � i < j � n, Ck is plane rotationand for 1 � i � m < j � n it is J-orthogonal plane matrix (hyperboli
rotation). Their pivot submatri
es have formĈ(k) = " 
os'(k) � sin'(k)sin'(k) 
os'(k) # and Ĉ(k) = " 
osh'(k) sinh'(k)sinh'(k) 
osh'(k) # ;respe
tively. The angle '(k) is in either 
ase 
hosen to annihilate thepivot element h(k)i(k)j(k), whi
h leads to very simple angle formulastan 2'(k) = 2h(k)ijh(k)ii � h(k)jj ; tanh 2'(k) = �2h(k)ijh(k)jj + h(k)ii ;with '(k) 2 [��=4; �=4℄ for orthogonal rotation. Using 
(k), s(k) and t(k)for both the trigonometri
 and hyperboli
 fun
tions and � = 1 (� = �1)for hyperboli
 (orthogonal) rotation, we obtain the following transfor-mation formulas (
ompare to the relation (1.3))



Advan
es in Ja
obi Methods 7h(k+1)il = 
(k)h(k)il + s(k)h(k)jl ; h(k+1)li = h(k+1)il ; l 62 fi; jgh(k+1)jl = 
(k)h(k)jl + � � s(k)h(k)il ; h(k+1)lj = h(k+1)jl ; l 62 fi; jgh(k+1)ii = h(k)ii + t(k)h(k)ij ; h(k+1)jj = h(k)jj + � � t(k)h(k)ij ;h(k+1)ij = 0; h(k+1)pr = h(k)pr if fp; rg \ fi; jg= ; (1.8)The transformation de�ned by � = �1 (� = 1) is 
alled kth trigono-metri
 (hyperboli
) step or iteration of the method. If eigenve
tors arewanted, the transformations are 
olle
ted as produ
t C0C1 � � �. Aftertrigonometri
 step the relation (1.4) holds. To see what happens afterhyperboli
 step, letH(k) = " H(k)11 H(k)12H(k)21 H(k)22 # ; J = � Im �In�m � ; H(k)11 is m by m;S2(H(k)) = k
(H(k)11 )k2F + k
(H(k)22 )k2F � 2kH(k)12 k2F :Then for the hyperboli
 step holds (see [51℄)S2(H(k+1)) = S2(H(k)) + 2(h(k)ij )2:We 
an say that hyperboli
 steps transfer the o�-diagonal weight fromthe blo
ks H(k)12 and H(k)21 to diagonal blo
ks H(k)11 and H(k)22 and trigono-metri
 steps diagonalize the diagonal blo
ks. Overall, H(k) 
onverges toa diagonal matrix. In [51℄ it has been proved that the method 
onvergesglobally under the serial strategies.If H is n by n positive de�nite, then all H(k), k � 0 are su
h. S
alediterate H(k)S and its o�-diagonal part A(k) are de�ned as above, so thatrelations (1.5) { (1.6) hold for this method too.Resemblan
e with symmetri
 Ja
obi method is also seen from the rela-tions (1.7) whi
h hold not only for trigonometri
, but also for hyperboli
steps (see [35℄). In parti
ular, (1.7) has formja(k+1)il j2 + ja(k+1)jl j2= ja(k)il j2 + ja(k)jl j2 � 2a(k)ij a(k)il a(k)jl1� ja(k)ij j2 � ja(k)il j2 + ja(k)jl j21� jaij j :One-Sided J-Symmetri
 Method J-symmetri
 Ja
obi method alsohas its one-sided version whi
h is an ex
ellent method for a

urate eigen-solving of symmetri
 inde�nite eigenproblem. Let us brie
y derive thealgorithm (see [40, 42, 46℄).



8 Let H = PG1J1GT1 PT be the Bun
h-Parlett fa
torization [4℄ of anonsingular, inde�nite symmetri
 matrix H . Here P is permutation, G1lower blo
k-triangular with diagonal blo
ks of order one or two and J1diagonal with �1 on its diagonal. Using the se
ond permutation P1 inH = PG1J1GT1 PT = (PG1PT1 )(P1J1PT1 )(P1GT1 PT ) = GJGTone 
an obtain J = diag(Im; In�m). Now Hx = �x 
an be written asGJGT = �x and sin
e G is invertible, the last equation is equivalentto GTGJGTx = �GTx. This 
an be written as GTGz = �Jz withz = JGTx. Sin
e Gz = GJGTx = Hx = �x, one obtains x = (Gz)=�.In 
on
lusion, the initial inde�nite symmetri
 eigenproblem Hx = �x is
onverted to J � symmetri
 eigenproblem with positive de�nite matrixGTG. To solve the new problem one 
an apply J-symmetri
 Ja
obimethod. As will be seen later, this transition makes sense if a

ura
yof all eigenvalues and eigenve
tors is important. A pleasant fa
t withthe new eigenproblem is that GTG need not be 
omputed. One simplypostmultiplies G by the J-orthogonal transformations,G(k+1) = G(k)Ck ; k � 0; G(0) = G :Using additional ve
tor to store the diagonal of (G(k))TG(k) and makingbene�t of simple updates of that ve
tor des
ribed in (1.8), only one s
alarprodu
t of the form (G(k)ei j G(k)ej) is needed to 
ompute the parame-ters of Ck. In addition, the matri
es Ck need not be a

umulated sin
eG(k)S = G(k)��1k , �k = diag(kG(k)e1k; : : : ; kG(k)enk) approa
hes the setof eigenve
tor matri
es of H and diagonal elements of �2k approa
h theeigenvalues of H .To see that, we have to assume a globally 
onvergent pivot strategy, sothat (G(k))TG(k) 7! �2 as k in
reases, where � is diagonal with positivediagonal elements. Next, note that the sequen
e (G(k)S )k is bounded. So,let (G(ik)S )k be any 
onvergent subsequen
e and let limk G(ik)S = Q. Sin
eQTQ = In +N , where N has zero diagonal, we haveIn +N = QTQ = limk ��1ik (G(ik))TG(ik)��1ik = �2 limk ��2ik ;implying limk�ik = � and orthogonality of Q. Sin
e G(ik) = G(ik)S �ik ,(G(ik))k is 
onvergent. Be
ause G is invertible, the produ
t C(ik) =C0 � � �Cik is also 
onvergent. Let limk!1 C(ik) = C. Sin
e J-orthogonalmatri
es make a 
losed group in the group of regular matri
es, C isJ-orthogonal. In parti
ular, this means that CJCT = J . We haveobtained Q = GC��1, so we 
an writeHQ = (GJGT )(GC��1) = G(CJCT )GTGC��1 = GCJ�2��1= GCJ� = GC��1�J� = QJ�2 :



Advan
es in Ja
obi Methods 9This proves that Q is an eigenve
tor matrix of H . Sin
e we have thesame 
on
lusion for any 
onvergent subsequen
e of G(k)S we have provedthat G(k)S approa
hes the set of eigenve
tor matri
es of H .Finally, let us mention that the one-sided J-symmetri
 method is ofinterest on its own, not just as the part of the 
ompound algorithm.For example, this method 
an be used to solve the downdating problem,whi
h 
onsists of �nding the eigenvalue de
omposition of the di�eren
eof outer produ
ts, H = AAT � BBT :The matrix H 
an be written in the produ
t formH = GJGT ; G = � A B � ; J = diag(I;�I);and the latter problem 
an be solved by the the one-sided J-symmetri
method. For more details on this problem see [58, 43℄.2. Asymptoti
 Convergen
eIt is well-known that 
y
li
 Ja
obi-type methods 
onverge, under stan-dard 
onditions, asymptoti
ally quadrati
ally. This means that for largeenough k, k
(H(k+N)kF � 
 k
(H(k))k2F ; (2.1)where N = n(n� 1)=2. The 
onstant 
 does not depend on k. By stan-dard 
onditions we mean either simple eigenvalues or multiple eigenval-ues plus ordering of diagonal elements so that those ones 
onverging tothe same eigenvalue take su

essive positions on diagonal plus spe
ial(e.g. serial) pivot strategies. By an argument of Wilkinson [56℄, 
lassi-
al Ja
obi method and all kinds of optimal Ja
obi methods for symmet-ri
/Hermitian matri
es will 
onverge quadrati
ally or better. Sin
e inpraxis one uses serial strategies, the relation (2.1) is modi�ed tok
(H((k+1)N)kF � 
 k
(H(kN))k2F ; k � k0; (2.2)where k0 is suÆ
iently large. The relation (2.2) shows that ultimately (inpraxis after several 
y
les) the measure k
(H)kF redu
es quadrati
allyper 
y
le.The measure k
(H(k))kF appears naturally in asymptoti
 
onver-gen
e results, sin
e k
(H(k))kF = 0 shows H(k) is diagonal. In addition,k
(H(k))kF is the upper bound for maxt ja(k)tt � �tj and therefore mea-sures the absolute distan
e between diagonal elements and the aÆliatedeigenvalues.Note however, that one of the most important properties of Ja
obimethods is their relative a

ura
y. Hen
e, one would better look for a



10measure whi
h bounds maxt ja(k)tt ��tj=j�tj or maxt ja(k)tt ��tj=ja(k)tt j. Thatmeasure (see [22℄) has form k
(DHD)kF , where D = [ j diag(D)j ℄�1=2and it also appears in the a

ura
y estimates from [6℄. This has givenrise to re
ent resear
h of the quadrati
 
onvergen
e of s
aled iterates byJa
obi methods. The new results will be brie
y presented here.Sin
e one-sided methods 
an be viewed as intelligent implementationsof two-sided methods, their asymptoti
 
onvergen
e amounts to that oftwo-sided methods.2.1 Hermitian Ja
obi MethodLet us �rst show using " notation, the 
ubi
 
onvergen
e of the row-
y
li
 Hermitian Ja
obi method, when n = 4. Suppose the 
onsidered
y
le is not the �rst one (hen
e h34 = 0). Suppose the eigenvalues aredistin
t and all o�-diagonal elements are O(�). We assume that � is sosmall that all angles and their sines have the same order of magnitudeas the 
orresponding pivot elements. Then, we have# #! � " " "! " � " "" " � 0" " 0 � 7! # #! � Æ " "Æ � " "! " " � 0" " 0 � 7! # #! � "2 Æ ""2 � " "Æ " � "2! " " "2 � 7!# #� "2 "3 Æ! "2 � " "! "3 " � "2Æ " "2 � # #� "2 "3 Æ! "2 � Æ ""3 Æ � "2! Æ " "2 � # #� "2 "3 "3"2 � "3 Æ! "3 "3 � "2! "3 Æ "2 � 7!# #! � "2 "3 "3! "2 � "3 "5"3 "3 � Æ"3 "5 Æ � 7! afterthe next
y
le # #! � "6 "9 "11! "6 � "11 "17"9 "11 � Æ"11 "17 Æ � 7!afterthe next
y
le # #! � "20 "31 "37! "20 � "37 "57"31 "37 � Æ"37 "57 Æ � # Pivot 
olumn! Pivot row0 Initial zerosÆ Produ
ed zeros"r O(�r) element.If the initial matrix has multiple eigenvalues, the above analysis is not
orre
t sin
e almost diagonal matri
es with multiple eigenvalues havespe
ial stru
ture whi
h in
uen
es the asymptoti
 rate of 
onvergen
e.



Advan
es in Ja
obi Methods 11Let�1 = � � � = �s1 ; �s1+1 = � � �= �s2 ; : : : ; �sp�1+1 = � � �= �sp (2.3)be the eigenvalues of Hermitian H and letÆi = minjj 6=i j�si � �sj j ; 1 � i � p; Æ = min1�i�p Æibe the absolute gaps in the spe
trum of H . Suppose that H satis�esk
(H)kF � Æ3 ;and the diagonal elements of H aÆliated with the same multiple eigen-value o

upy su

essive positions on the diagonal. Then H 
an be parti-tioned as (Hij) where ea
h blo
k Hii has order ni = si� si�1, 1 � i � p,s0 = 0, sp = n. Here ni is the algebrai
 multipli
ity of �si . We 
anassume that p > 1, sin
e otherwise H = �1In. Let�i(H) = Hii; �i(H) = [Hi1; : : : ; Hi;i�1; Hi;i+1; : : : ; Hip℄�(H) = diag(H11; : : : ; Hpp); �(H) = H � �(H):The spe
ial stru
ture of an almost diagonal Hermitian matrix (see [56℄,[26, 27℄ and [19, 20, 21, 23℄) is revealed from the following result from[21℄. For 1 � i � p holdsk
(Hii)kF � kHii-�siInikF � 1:32Æi pXj=1j 6=i kHijk2F � 0:66k
(H)k2FÆi : (2.4)This relation implies that within diagonal blo
ks the o�-diagonal ele-ments are quadrati
ally small 
ompared to those outside the diagonalblo
ks. When a Ja
obi method is applied to su
h H the relation (2.4)will hold for all iteration matri
es i.e. the partition will be preserved(see [21, Lemma 2.2℄). This implies that methods de�ned by the 
las-si
al and other optimal strategies will never 
hoose at that stage, pivotelements from diagonal blo
ks and therefore all angles will ultimatelytend to zero.Suppose, n = 4, p = 2, n1 = 3, n2 = 1. Using the analysis as beforeand taking into a

ount (2.4), we obtain# #! � "2 "2 "! "2 � "2 ""2 "2 � 0" " 0 � # #! � Æ "2 "Æ � "2 "! "2 "2 � 0" " 0 � # #! � "2 Æ ""2 � "2 "Æ "2 � "! " " " � 7!



12 # #� "2 "2 Æ! "2 � "2 "! "2 "2 � "Æ " " � # #� "2 "2 Æ! "2 � Æ ""2 Æ � "! Æ " " � # #� "6 "6 "3"6 � "6 Æ! "6 "6 � "! "3 Æ " � 7!# #� "6 "6 "3"6 � "6 "7! "6 "6 � Æ! "3 "7 Æ � showing again the 
ubi
 
onvergen
e.Note that 
ubi
 redu
tion inside H11has o

urred earlier than indi
atedabove, probably after annihilating(1; 4) { element.In general, when n > 4, we have only quadrati
 
onvergen
e for theserial Ja
obi methods.Quadrati
 
onvergen
e 
onsiderations of symmetri
 Ja
obi methodsin the 
ase of simple and double eigenvalues originated from early worksof Wilkinson [55℄ and S
h�onhage [39℄ (see also [54℄ and [24℄).The harder 
ase of multiple eigenvalues was �rst 
onsidered by VanKempen [26, 27℄ and Wilkinson [56℄. Later, Hari [21℄ gave the �rst
omplete proof of the quadrati
 
onvergen
e of the serial Ja
obi meth-ods. The proof in [21℄ broadens and 
ompletes the 
onsiderations ofvan Kempen from [27℄, who has not taken into a

ount some quantitieswhi
h in
uen
e the bound. By sophisti
ated estimates it has been veri-�ed in [21℄ that the result stated in [27℄ indeed holds. The main resultfrom [21℄ has the formk
(H)kF � Æ3 ) k
(H(N))kF � 95 k
(H)k2FÆ : (2.5)It has been shown in [20℄ that in the 
ase of multiple eigenvalues, largeangles 
an be expe
ted during the pro
ess, irrespe
tively of how tiny theo�-diagonal elements are. Hen
e, the 
ondition on diagonal elementswhi
h ensures that the relation (2.4) holds 
annot be omitted. If eigen-values form 
lusters of small width, one 
an in
orporate perturbationtheory (see [21℄) to prove the quadrati
 redu
tion of k
(H(kN)))kF per
y
le. As k
(H(kN)))kF approa
hes the width of 
lusters, the asymp-toti
 speed slows down, but further shrinking of k
(H(kN)))kF againin
reases the speed to rea
h the quadrati
 rate.If Æ is tiny however, the estimate (2.5) be
omes useless. In praxis thissometimes happens when eigenvalues 
luster around zero in su
h a waythat it is diÆ
ult or impossible to bound the 
luster.Later, in 1990 Mas
arenhas [30, 31℄ showed that using spe
ial quasi-
y
li
 strategies Ja
obi method 
an perform 
ubi
 asymptoti
 
onver-gen
e per quasi-
y
le. Sin
e his quasi-
y
les 
onsist of around 1.25 
y-
les, this 
orresponds to the asymptoti
 rate of order 30:8 � 2:41, thus,
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obi Methods 13between quadrati
 and 
ubi
 speed per 
y
le. Rhee and Hari [37℄ provedthe global and the 
ubi
 (per quasi-
y
le) 
onvergen
e of his method.Re
ent Results Although re
ent resear
h of Ja
obi methods has beenmostly 
on
entrated on their a

ura
y properties, 
losely related are newmeasures of advan
ing of the pro
esses. These measures bound the max-imum relative distan
e between diagonal elements and the 
orrespondingeigenvalues. Therefore, they are in
luded in the stopping 
riterions ofthe methods. They involve s
aled diagonally dominant (see [2℄, [22℄)matri
es and relative gaps.Suppose A = D +N , where D is diagonal and N has zero diagonal.Then A = (aij) is referred to as �{diagonally dominant with respe
t toa norm k � k if kNk � �min1�i�n jaiij, with 0 � � < 1. If A = D +Nwith jaiij = 1, 1 � i � n and �1, �2 are arbitrary nonsingular diagonalmatri
es, then B = �1A�2 is �{s
aled diagonally dominant ( �{s.d.d.)with respe
t to a given norm, provided that A is �{diagonally dominantwith respe
t to that norm. Note that an �{s.d.d. matrix has nonzerodiagonal elements. If A is Hermitian, it is presumed that �1 = �2 and�1 is real. Su
h s
aling, whi
h is a 
ongruen
e transformation, will be
alled symmetri
.Relative gaps are in appli
ations often 
onne
ted with s.d.d. matri
es.Several de�nitions of relative gaps have been used (
f. [40, 46, 25℄). Herewe use the one from [22℄.Let the eigenvalues of the Hermitian matrix H be ordered as in therelation (2.3). The relative gaps and the minimum relative gap in thespe
trum of H are de�ned as follows
i = min1�j�pj 6=i j �si � �sj jj �si j + j �sj j 1 � i � p ; 
 = min1�i�p 
i : (2.6)The following result 
an be used in sele
ting a measure for 
onvergen
eof Hermitian Ja
obi methods.Proposition 2.1 [22℄ Let H = H� be �-s.d.d. and H = �HHS�H ,where �H = [ jdiag(H)j ℄ 12 . Let 
i and 
 be as in the relation (2.6). If� < 
=(
+ 3), thensiXj=si�1+1 j1� �sihjj j2 + k
 (�i(HS)) k2F � 16
2i k�i(HS)k4F ; 1 � i � p: (2.7)If H = H� is �-s.d.d. and positive de�nite, then the relation (2.7) holdswith 
onstant 4 instead of 16 and under less stringent assumption � <
=3.



14Summing up the equations (2.7) over i, one obtains, say for positivede�nite matrix H (see [22, Collorary 3.2(ii)℄),nXj=1 j 1� �jhjj j2 +k
 (�(HS)) k2F � 2
2k�(HS)k4F : (2.8)Note that j1� �sihjj j � � implies j1� hjj�si j � �1� � . Hen
e, if k�(HS)k2F =
is small, we have a

urate estimates for both j(�si�hjj)=hjj j and j(hjj��si)=�si j. The relation (2.7) for positive de�nite matri
es implies thatlog10(2k�i(HS)k2F =
i) indi
ates how many signi�
ant de
imal digits are
orre
t in the appropriate diagonal elements as approximations of �si .As a global measure for all diagonals, one 
an also use p2k�(HS)k2F =
or larger measures, k�(HS)kF and k
(HS)kF .Returning to Ja
obi methods, note that 
 does not 
hange with iter-ation matrix. Usually, in the �rst few 
y
les the partition (H(k)ij ) is notyet re
ognized and one prefers to use k
(HS)kF a simpler although (inrare situations) larger measure than k�(HS)kF .Suppose a serial Ja
obi method is applied to a positive de�nite H pro-du
ing the sequen
e (H(k))k. By the result [6℄ we know that the method
omputes the eigenvalues and eigenve
tors almost with the a

ura
y thatis warranted by the eigenproblem. After several 
y
les the diagonal el-ements be
ome approximations of the eigenvalues and lower bounds ofabsolute or relative gaps 
an easily be 
omputed from diagonal elements(see Example 3.3 from [22℄). If the eigenvalues 
luster around zero, someabsolute gaps Æi and therefore Æ will be tiny and the result (2.5) be
omesuseless for pra
ti
al purposes. The measure k
(H(k)kF alone boundsmaxt jh(k)tt � �tj. Hen
e, for tiny �si , maxsi�1+1�t�si jh(k)tt � �si j=�si isbounded by k
(H(k)kF =�si whi
h 
an be large. Thus, the measuresinvolving k
(H(k))kF and absolute gaps will not be appropriate.On the 
ontrary, for su
h matri
es, all relative gaps 
i and 
 
anbe large (
lose to one). As the pro
ess advan
es one 
an use measuresk
(HS)kF and k
(HS)k2F =
. This implies that after ea
h 
y
le one hasto 
ompute k
(HS)kF and perhaps a lower bound of 
. For two-sidedJa
obi methods this is appropriate sin
e it requires only O(n2) 
ops.However, in the 
ontext of one-sided methods, 
omputing k
(HS)kFrequires O(n3) 
ops. Hen
e, during the whole pro
ess, one would notlike to 
ompute k
(HS)kF more than on
e. In su
h a situation it isne
essary to exploit the knowledge that serial Ja
obi methods 
onvergeasymptoti
ally quadrati
ally. As we have just explained, the quadrati

onvergen
e result (2.5) is useless. In addition, in des
ribed situation,the relation between k
(HS)kF and k
(H)kF 
an be only very roughly



Advan
es in Ja
obi Methods 15estimated, so (2.5) would give even poorer result when translated interms of k
(HS)kF .We need a quadrati
 
onvergen
e result for k
(HS)kF whi
h involvesrelative instead of absolute gaps. Fortunately, su
h results 
an be formu-lated and derived in the 
ontext of two-sided methods and then dire
tlyapplied to one-sided methods.In his Ph. D. thesis [32℄ Mateja�s solved this problem for the serialJa
obi methods for positive de�nite matri
es. The easier 
ase of distin
teigenvalues (see [33℄) and real matri
es assumes form�N � 0:715�20
 whenever �0 � 14 minf 1n; 
g ; (2.9)where �k = kA(k)kF as de�ned by the relations (1.5) { (1.6). In (2.9)it is assumed that the diagonal elements are de
reasingly ordered. Theharder 
ase of multiple eigenvalues and 
omplex matri
es takes similarform (see [34℄)�N � r52 �20
 whenever �0 � 16 minf 1n; 
g :A similar result holds for the 
ase of inde�nite Hermitian matrix H . Inthe 
ontext of one-sided methods, these results 
an be used for predi
t-ing the number of 
y
les till 
onvergen
e. If eigenve
tors are wanted one
an use appropriate eigenve
tor perturbation estimates (e.g. [6, Theo-rem 2.7℄) whi
h use 
ondition of s
aled matrix (whi
h is in our 
ase 
loseto one) and appropriate relative gaps.We end this subse
tion by a brief dis
ussion on stopping 
riterions.Ja
obi methods are predominantly used when a

ura
y of the outputdata is important. Therefore, one will probably 
hoose the 
riterionk
(H(k)S kF � tol, where toleran
e tol is 
hosen by the user. For one-sidedmethods, where N s
alar produ
ts are needed to obtain k
(H(k)S )kF , tol
an be set f(n)� where f is slowly in
reasing fun
tion of n and � isma
hine epsilon. For two-sided methods however, one 
an use a ni
estopping 
riterion of Rutishauser (see [57℄) whi
h is almost equivalent tok
(H(k)S )kF � �.2.2 J-Symmetri
 Ja
obi MethodJ-Symmetri
 Ja
obi method has similar asymptoti
 properties. Quad-rati
 
onvergen
e is again de�ned by the relation (2.1) or (2.2). Theproof assumes that the diagonal elements of JH approximating the sameeigenvalue of (H; J) take su

essive positions on the diagonal of JH .



16Absolute gaps Æi and Æ are de�ned as above. Drma�
 and Hari [10℄ haveshown thatk
(H(N))kF � 3k
(H)k2FÆ provided that k
(H)kF < Æ3m(n�m) ;where m is number of positive ones in J . Here the asymptoti
 assump-tion is stronger than for the symmetri
 Ja
obi method. In estimatingnonorthogonal (hyperboli
) transformations one uses mathemati
al in-du
tion. The numberm(n�m) in the denominator is used to 
ompensatea possible gradual in
rease of k
(H(k))kF during the 
onsidered 
y
le.J-symmetri
 method is very well suited to work with the a

eler-ated strategy of Mas
arenhas, whi
h yields 
ubi
 rate of 
onvergen
eper quasi-
y
le. For the proof, one 
ould 
ombine ideas from [10℄ and[37℄.Sin
e the J-symmetri
 quadrati
 
onvergen
e result su�ers the sameshort
omings as its symmetri
 
ounterpart (2.5), one is 
hallenged to�nd a similar remedy. First, one needs a bound for the relative dis-tan
e between diagonal elements of JH and the eigenvalues of (H; J).This is done for the 
ase of positive de�nite H . In the following result,nonin
reasing ordering of the eigenvalues of the pair (H; J) is assumed.Relative gaps 
i, 1 � i � p and 
 are de�ned as in (2.6).Proposition 2.2 [35, Theorem 1(ii)℄ Let H = H� be �-s.d.d. positivede�nite. Let H = �HS�, where � = [ diag(H) ℄ 12 . Let � < 
=3 andlet the diagonal elements of JH aÆliated with the same eigenvalue of(H; J) o

upy su

essive positions on the diagonal. Then for the samepartition of A = HS � In and � holdskAii � j�si j��2ii kF � 2
i k�i(A)k2F = 2
i pXj=1j 6=i kAijk2F ; 1 � i � p:As earlier, one 
an dedu
enXr=1 ����1� j�rjhrr ����2 + k�(A)k2F � 2
2k�(A)k4F :Thus, s
aled diagonally dominant pair (H; J) has the same stru
ture asthe pair (H; In) whi
h has been dis
ussed earlier. Hen
e the rotationangles 
an be large if pivot pair happens to be inside a diagonal blo
k.On the 
ontrary, hyperboli
 angles ultimately tend to zero as k in
reases.This follows from the fa
t that m = n1 + � � �+ nro for some 2 � ro �p�1 and that is a 
onsequen
e of the assumption that (H; J) is positive
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es in Ja
obi Methods 17de�nite. We see that the measure k�(A)kF or k
(A)kF should be usedfor stopping of the pro
ess.The new quadrati
 
onvergen
e result from [35℄ has form�N � 3:5�20
 whenever �0 � 16 minf 1n; 
g :Here �k = k
(A(k))kF , k � 0 and the result assumes that �1 � � � � ��m, j�m+1j � � � � � j�nj, whi
h requires blo
k-permutational similarityof the partition (2.3) and renumbering of the relative gaps.3. A

ura
yAs noti
ed by Rosano� et al [38℄, and theoreti
ally explained by Dem-mel and Veseli�
 [6℄, the Ja
obi algorithm is more a

urate than anyalgorithm that starts with tridiagonalization of the symmetri
 matrix(bidiagonalization in the 
ase of SVD 
omputation). In this se
tion weexplain this important fa
t, using the results of Demmel, Veseli�
, Hariand Drma�
. As we will see, if the obje
tive is to 
ompute all eigenvalueswith small relative error, the de�nite and the inde�nite 
ase must betreated di�erently. We �rst analyze the3.1 Symmetri
 De�nite CaseNumeri
al analysis of thie two{stage diagonalization pro
edure is sim-ple but with far rea
hing 
onsequen
es. We start with the analysis ofthe Cholesky fa
torization.In 
oating point 
omputation, the 
omputed approximation of L is ~Land we need an estimate for the ba
kward error ~L~LT �H . The followingproposition is due to Demmel [7℄.Proposition 3.1 Suppose the Cholesky fa
torization algorithm has su
-
essfully 
ompleted all steps in 
oating point arithmeti
 with unit round-o� �. If ~L is the 
omputed lover triangular matrix, then ~L~LT = H+ÆH,where ÆH is symmetri
 matrix su
h that for all 1 � i; j � njÆHij j � �CqHiiHjj ; �C = 
(n)�1� 2
(n)� ; 
(n) = maxf3; ng: (3.1)Note that the ba
kward error ÆH is bounded entry{wise, rather thannorm{wise.Now, we apply the one-sided Ja
obi algorithm to the matrix ~L, thatis, we impli
itly run the symmetri
 Ja
obi on the matrix ~LT ~L. As hasbeen shown in subse
tion 1.2, this iteration pro
ess has form G(k+1) =



18G(k)V (k), k � 0, where V (k) is plane Ja
obi rotation and G(0) = ~L.The pro
ess terminates at index ` where the normalized 
olumns of G(`)are orthogonal up to a toleran
e O(n�). The following proposition from[9℄ des
ribes the numeri
al behaviour of the right{handed Ja
obi SVDalgorithm.Proposition 3.2 Let the 
y
li
 one-sided Ja
obi algorithm be applied to~L in 
oating point arithmeti
 with roundo� �. Let ea
h 
y
le 
omprisep parallel steps and let the stopping 
riterion be satis�ed after s 
y
les.Let ~G(k), k = 0; : : : ; ` = p � s, ~G(0) = ~L be the generated matri
es. Thenthere exists an orthogonal matrix V̂ and a ba
kward error Æ ~L su
h that~G(`) = (~L+ Æ ~L)V̂ andkeTi Æ ~Lk2 � �JkeTi ~Lk2; 1 � i � n; �J � (1 + 6�)` � 1:Further, due to the stopping 
riterion, the 
olumns of ~G(`) are numeri-
ally orthogonal, that ismaxi;j 
os 6 ( ~G(`)ei ; ~G(`)ej) � O(n�):It is important to note that the error analysis is done row{wise, whilethe 
onvergen
e is de�ned 
olumn{wise.>From Proposition 3.2 it follows that ~G(`) 
an be written as ~G(`) =~U ~�, where ~� is diagonal with 
olumn norms of ~G(`) along its diagonal,and ~U is numeri
ally orthogonal, j ~UT ~U � Injij � O(n�).Combining Propositions 3.1 and 3.2, we get~U ~�2 ~UT = (~L+ Æ ~L)(~L+ Æ ~L)T = ~L~LT + ~LÆ ~LT + Æ ~L~LT + Æ ~LÆ ~LT= H + ÆH +E; E = ~LÆ ~LT + Æ ~L~LT + Æ ~LÆ ~LT :The perturbation matrix �H = ÆH + E is symmetri
 and it holdsmaxi;j j�HijjpHiiHjj � � � �C + 2�J +O(�2J):If we set ~� = ~�2, then we have H + �H = ~U ~� ~UT . This means thatthis variant of the Ja
obi diagonalization method 
omputes the eigenval-ues and eigenve
tors with entry{wise small ba
kward error. The meth-ods that �rst tridiagonalize the matrix do not share this important prop-erty .Let us estimate the forward error in the 
omputed approximations~�ii of the eigenvalues �i of H . Let ~�1 � � � � � ~�n be the eigenvaluesof H + �H and let the eigenvalues �i of H as well as the diagonals of~� be nonin
reasingly ordered. First we estimate the maximum relativedistan
e between �i and ~�i.



Advan
es in Ja
obi Methods 19We 
an presume that � is small enough so that kL�1�HL�Tk2 < 1holds, implying that the positive square root of In+L�1�HL�T is wellde�ned. Sin
e the matrixH + �H = LpI + L�1�HL�TpI + L�1�HL�TLTis similar to pI + L�1�HL�TLTLpI + L�1�HL�T ;and LTL is similar to H = LLT , an appli
ation of Ostrowsky's theoremyields ~�i = �i(1 + �i); j�ij � kL�1�HL�Tk2; 1 � i � n : The keyobservation in this estimate is as follows. If we set D = [diag(H)℄1=2,then L�1�HL�T = L�1D(D�1�HD�1)DL�T andkL�1�HL�Tk2 � kL�1Dk22kD�1�HD�1k2= k(D�1HD�1)�1k2kD�1�HD�1k2� n�k(D�1HD�1)�1k2:The matrix HS = D�1HD�1 has unit diagonal, o�-diagonals less thanone in modulus, and by the well{known result of van der Sluis [50℄ itholds kH�1S k2 � �2(HS) � n minS=diag;det(S)6=0�2(SHS) � n�2(H):Here �2(X) = kXk2kX�1k2 is the spe
tral 
ondition number. Therefore,we 
an write~�i = �i(1 + �i); j�ij � n�kH�1S k2; 1 � i � n: (3.2)Next, we estimate the relative distan
e between ~�i and ~�ii. The stopping
riterion ensures that ~UT ~U = I + X with maxi;j jxij j � O(n�), whereX = (xij). An easy 
al
ulus shows that there exists an orthogonalmatrix Û su
h that ~U = (I+Y )1=2Û , where Y is symmetri
 and kY k2 =kXk2 � O(n2�). Hen
e,H + �H = ~U ~�~UT = (I + Y )1=2Û ~�ÛT (I + Y )1=2;and we 
an again apply the Ostrowsky's theorem to obtain ~�i = ~�ii(1+�0i), j�0ij = O(n2�)). This together with (3.2) implies~�ii = �i 1 + �i1 + �0i = �i(1 + �i) ; j�ij � O(n2�)kH�1S k2; 1 � i � n :This bound is nearly the best one 
an hope for in 
omputing with 
oat-ing point positive de�nite matri
es. For, Demmel [7℄ has shown that



20relative entry{wise perturbations of size 1=kH�1S k2 
an make H exa
tlysingular, and that H 
an be 
onsidered numeri
ally positive de�niteif kH�1S k2 < 1=(n�C). Moreover, Veseli�
 and Slapni�
ar [53℄ have shownthat the spe
trum of positive de�nite H is stable under entry{wise 
oat-ing point perturbations if and only if kH�1S k2 is moderate.We 
an 
on
lude that the forward error in the 
omputed eigenvaluesdepends on �2(HS), and not on �2(H), as is in the 
ase of methods basedon tridiagonalization. Sin
e �2(HS) � n�2(H), and sin
e it is possible�2(HS) � �2(H), the Ja
obi method is numeri
ally 
learly superior toany method that �rst tridiagonalizes the matrix. This method is methodof 
hoi
e for 
omputing the eigenvalues of positive de�nite matri
es withhigh relative a

ura
y.The diagonalization pro
edure just des
ribed (Cholesky fa
torizationfollowed by the right{handed Ja
obi on L) impli
itly diagonalizes LTL.This is more than just a ni
e observation. It a
tually means that thisJa
obi method is pre
onditioned using one impli
it (
ost free) step ofthe Rutishauser LR method. Be
ause of diagonalizing e�e
t of pre
on-ditioning, the Ja
obi method 
onverges faster, espe
ially if the Choleskyfa
torization is 
omputed with pivoting. For more dis
ussion see [52℄and [14℄.3.2 Inde�nite CaseHere we provide elements of perturbation analysis and error boundsfor the J-symmetri
 Ja
obi method and one-sided J-symmetri
 
om-pound Ja
obi method des
ribed in Subse
tion 1.3.Let us �rst 
onsider the J-symmetri
 eigenvalue problem Hx = �Jxwith positive de�nite H ,QTHQ = �; QTJQ = J; � = diag(�i):Let H = DAD, where D = diag(d11; : : : ; dnn) is diagonal and A ispositive de�nite with unit diagonal. Further, let ÆH = DÆAD. Bythe result of Veseli�
 and Slapni�
ar [53, 46℄, if jÆHijj � �diidjj , and if~� � kÆAk2 kA�1k2 � n�kA�1k2 < 1, then1� ~� � ~�i�i � 1 + ~�: (3.3)The perturbation result for the invariant subspa
es is given by Slapni�
arand Truhar in [45℄. Let us partition the eigenvalue problem as" QT1QT2 # H [Q1 Q2℄ = � �1 �2 � ; " QT1QT2 # J [Q1 Q2℄ = � J1 J2 � ;
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obi Methods 21and let the perturbed problem be partitioned a

ordingly. Let ~X1 andX2 be orthogonal bases for subspa
es spanned by the 
olumns of ~Q1 andJQ2J2, respe
tively. Let U�V � be a singular value de
omposition of thematrix XT2 ~X1. The diagonal entries of the matrix sin �(Q1; ~Q1) � � arethe sines of 
anoni
al angles between subspa
es spanned by the 
olumnsof Q1 and ~Q1 (see [48℄). The relative gap is in this 
ase de�ned by
(~�1;�2) = mini;j j [~�1℄ii[J1℄ii � [�2℄jj [J2℄jj jq [~�1℄ii � [�2℄jj : (3.4)Then, if kÆAk2 kA�1k2 < 1, we havek sin�(Q1; ~Q1)kF � kQk22 12 +r1 + 14 2!  
(~�1;�2) ; (3.5)where  = kÆAk2 kA�1kFp1� kÆAk2 kA�1k2 :Clearly, when J = I , thenQ is orthogonal, and (3.5) is a subspa
e versionof the 
orresponding eigenve
tor bounds from [6℄. However, when J 6= I ,then kQk22 � �2(Q) is the spe
tral 
ondition number. It is a remarkablefa
t that �2(Q) is bounded by the 
ondition number of A, the samequantity that governs the a

ura
y of the 
omputation. In [47℄, Slapni�
arand Veseli�
 proved that�(Q) � r min�J=J� �2(�TA�) � q�2(A):We now des
ribe results of numeri
al analysis. Error analysis of asingle hyperboli
 rotation is te
hni
ally more 
ompli
ated be
ause su
htransformations are nonorthogonal and possibly of large norm. One stepof the method, H(k+1) = CTk H(k)Ck, in 
oating point 
omputation is ofthe form ~H(k+1) = ~CTk ( ~H(k) + Æ ~H(k)) ~Ckwhere ~Ck is hyperboli
 rotation, and the ba
kward perturbation Æ ~H(k)is bounded as follows: If ~H(k) = DkAkDk, where Dk is diagonal andAk has unit diagonal, then we 
an write Æ ~H(k) as Æ ~H(k) = DkÆAkDk,where kÆAkk2 � �k". Here �k = O(p�2(Ak)pn). Thus, a

ording to(3.3), the perturbation of the eigenvalues due to single 
oating pointhyperboli
 rotation is determined by the valuekÆAkk2 kA�1k k2 � �k"kA�1k k2:



22A

umulating the e�e
t of a total of r rotations, gives the relative errorbound for the 
omputed eigenvalues of the order of" rXk=0�kkA�1k k2 +O(n2)":The error bound for the 
omputed eigenspa
es follows by plugging theabove bound for kÆAkk2 into (3.5) and a

umulating the e�e
t of a totalof r rotations in a similar manner. For details see [43℄.During the pro
ess, kA�1k k2 and �2(Ak) tend to one, starting withkA�1k2 and �2(A), respe
tively. While the theoreti
al bound for thevalues of kA�1k k2 and �2(Ak), k = 1; 2; : : : is pessimisti
, numeri
al evi-den
e indi
ates that these values never grow too mu
h above the initialvalues. For more dis
ussion see [40, 43, 41, 44℄.Next, we 
onsider the symmetri
 inde�nite eigenvalue problem Hx =�x, QTHQ = �; QTQ = I; � = diag(�i) nonsingular ;and the appropriate 
ompound method.The perturbation bound for the eigenvalues is given by Veseli�
 andSlapni�
ar [53, 46℄. Let jH js = pH2 be the spe
tral absolute value ofH , and let jH js = DAD, where D = diag(d11; : : : ; dnn) is diagonal andA is positive de�nite with unit diagonal. Further, let ÆH = DÆAD. IfjÆHij j � �diidjj , and if ~� � kÆAk2 kA�1k2 � n�kA�1k2 < 1, then theperturbation of the eigenvalues is again bounded by (3.3).The perturbation theory for the invariant subspa
es, given by Truharand Slapni�
ar [49℄, assumes the following partition of the eigenvaluede
omposition " QT1QT2 #H � Q1 Q2 � = � �1 �2 � :Let the perturbed problem be partitioned a

ordingly. Similarly to (3.5),if kÆAk2 kA�1k2 < 1, thenk sin�(Q1; ~Q1)kF � kV k22 kÆAk2 kA�1kFp1� kÆAk2 kA�1k2 1
(~�1;�2) : (3.6)Here 
(~�1;�2) is again de�ned as in (3.4), but without J1 and J2, andV is the hyperboli
 eigenve
tor matrix of the pair (GTG; J).We now des
ribe numeri
al analysis of the fa
torization. For the sakeof simpli
ity, we assume that the matrix is already pivoted so that theBun
h{Parlett symmetri
 inde�nite fa
torization PHPT = GJGT runs
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obi Methods 23with P = I . Slapni�
ar [42℄ has shown that in 
oating point, the 
om-puted matrix G satis�es GJGT = H + ÆHwith symmetri
 ba
kward perturbation ÆH bounded entry{wise byjÆH j � O(n)"(jH j+ jGjjGjT):The e�e
t of this ba
kward error to the eigenvalues of H is given by(3.3) with ~� � O(n)"k(D̂�1GV V TGT D̂�1)�1k2; (3.7)where D̂ is a diagonal s
aling matrix and the rows of the matrix D̂�1Gare of unit Eu
lidean norm. The details of this estimation 
an be foundin [40, 43℄. Also, by using (3.6) it 
an be shown that the error in the
omputed invariant subspa
es, whi
h is due to fa
torization is boundedby (see [40, 43℄)k sin�(Q1; ~Q1)kF � O(kV k22) ~�
(~�1;�2) : (3.8)The fa
torization PHPT = GJGT has two more remarkable propertiesworth mentioning (see [42℄ for details). First, if the 
omputed fa
tor ~Gis lower triangular (meaning that only 1� 1 pivots took pla
e), then thefa
torization is also forward stable,j ~G� Gj � 3njGjtril(jG�1j(jH j+ jGj jGjT)jG�1jT )"+ O("2):Se
ond, let G = BD, where D is diagonal s
aling and the 
olumns of Bare of unit Eu
lidean norm. Then the 
ondition number of B is boundedby a fun
tion of n, irrespe
tive of the 
ondition number of G,�2(B) � 3:781np15n2 + n :Let us now 
onsider the iterative part of the method. Let ~H = ~GJ ~GTand ~G = (B+ ÆB)D. Then the eigenvalue perturbation 
an be boundedby (see [53℄) (1� �)2 � ~�i�i � (1 + �)2; � = kÆBByk2: (3.9)One step of the one{sided method, G(k+1) = G(k)Ck, in 
oating point
omputation is of the form~G(k+1) = ( ~G(k) + Æ ~G(k)) ~Ck



24where ~Ck is hyperboli
 rotation, and the ba
kward perturbation Æ ~G(k)is bounded as follows: If ~G(k) = BkDk, where Dk is diagonal and Bkhas unit 
olumns, then we 
an write Æ ~G(k) as Æ ~G(k) = ÆBkDk, wherekÆBkk2 � �k". Here �k is moderate 
onstant. Thus, the perturbation ofthe eigenvalues due to a single 
oating point rotation is determined bythe value of kÆBkBykk2 � �k"kBykk2. A

umulating the e�e
t of a totalof r rotations, where ~G(r) has 
olumns orthogonal up to O(n"), gives therelative error bound for the 
omputed eigenvalues of the order of~� = " rXk=0 �kkBykk2 +O(n2)": (3.10)By 
ombining (3.3), (3.7), (3.9) and (3.10), it follows that the relativeerror in the eigenvalues ~�i 
omputed by the 
ompound method (inde�-nite fa
torization followed by the one-sided J-symmetri
 Ja
obi method)is bounded by j ~�i � �ijj�ij � ~� + ~� +O("2): (3.11)Error bound for the 
omputed invariant subspa
es is obtained by 
om-bining (3.8) with the bound for the errors due to iterative part of thealgorithm from [43℄, essentially givingk sin�(Q1; ~Q1)kF � O(kV k22) ~� + ~�
(~�1;�2) : (3.12)Similarly to the two-sided method, during the pro
ess, kBykk2 tendsto one, starting with kByk2. While the theoreti
al bound for the valuesof kBykk2, k = 1; 2; : : : is again pessimisti
, numeri
al eviden
e indi
atesthat these values never grow too mu
h above the initial value kByk2.Moreover, it has been observed in [40, 43℄, that kByk2 is in general verylow, primarily due to the rank revealing property of the fa
torizationPHPT = GJGT . Consequently, the �nal errors in (3.11) and (3.12) aremainly due to the fa
torization part of the algorithm, that is, to ~�. Formore dis
ussion see [40, 43, 41, 44℄.3.3 Computing SVDHere we dis
uss relative a

ura
y issues in one-sided Ja
obi methodfor 
omputing singular value de
omposition of a general m � n matrixA, m � n. The simplest variant of the method is simply impli
it formof the symmetri
 Ja
obi on H = ATA. More sophisti
ated versions usepre
onditioning to enhan
e numeri
al a

ura
y and eÆ
ien
y (speed).
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obi Methods 25For instan
e, the QR fa
torization with pivoting is an ex
ellent pre-
onditioner in the following sense. If A = QR is the QR fa
torizationwith standard Businger{Golub 
olumn pivoting (A AP , P permuta-tion matrix), then the SVD Ja
obi applied to RT 
onverges mu
h fasterthan applied to A or R. This is be
ause of impli
itly performed stepof Rutishauser's LR method (transition from RTR to RRT ). Moreover,the 
omputed ~R satis�es A + ÆA = Q̂ ~R, where Q̂ is orthonormal andkÆAeik2 � �QRkAeik2, 1 � i � n. Here �QR is bounded by a modestpolynomial times the roundo� unit �. Note that the relative ba
kwarderror is small in ea
h 
olumn of A. For more details see [9℄.If we apply the SVD Ja
obi on ~L = ~RT , then by Proposition 3.2, forsome orthogonal V̂ it holds ~R+ Æ ~R = V̂ ~�~UT . Here ~U is numeri
ally or-thogonal, ~� is diagonal, and kÆ ~Reik2 � �Jk ~Reik, 1 � i � n. Combiningthe results we obtain the relationA+�A = Q̂V̂ ~� ~UT ; �A = ÆA+ Q̂Æ ~R;where k�Aeik2 � (�QR + �J + �QR�J)kAeik2; 1 � i � n:Here we note that the angle of Ja
obi rotation under
ows if the 
ondi-tion number �2(A) over
ows, and that standard 
onstru
tion of Ja
obirotation 
an lead to mis
onvergen
e of the algorithm. To avoid this,Ja
obi rotation must be modi�ed as shown in [11℄. Also, instead of Q̂,V̂ we will have 
omputed numeri
ally orthogonal matri
es ~Q, ~V su
hthat k ~Q� Q̂k2 and k ~V � V̂ k2 are bounded by moderate polynomials ofthe dimensions times the roundo� �.Let �1 � � � � � �n > 0 and ~�1 � � � � � ~�n be the eigenvalues of A andA+ �A, respe
tively. Write D = diag(kAe1k2; : : : ; kAe1k2) andA +�A = (I +�AAy)A = (I + (�AD�1)(AD�1)y)A :>From the variational 
hara
terization of the singular values, we imme-diately 
on
ludemaxi j~�i � �ij�i � � � k�AAyk2 � pn(�QR + �J + �QR�J)kAysk2;where As = AD�1. On the other hand, one 
an show that, for all i,~�i = ~�ii(1 +O(n2�).By a theorem due to van der Sluis [50℄, we know that�2(As) � kAsk2kAysk2 � pn minS=diag;det(S)6=0�2(AS) � pn�2(A):



26Thus, the SVD Ja
obi algorithm 
omputes the singular values with smallrelative ba
kward error in ea
h 
olumn of A. This means that small
olumns are preserved. The relative error in the 
omputed singular val-ues depends on the 
ondition number of the 
olumn equilibrated matrixAs, and not on the 
ondition number of the initial A. These propertiesare not shared by bidiagonalization based methods . (Re
ent modi�
ationof the bidiagonalization pro
ess, due to Barlow [1℄, improves the a

u-ra
y of the bidiagonalization, but not to the level of the Ja
obi SVDalgorithm.)The ba
kward error in the Ja
obi algorithm 
an be put into multipli
a-tive form (I + �AAy)A with small � = k�AAyk if �2(As) is moderate.This fa
t also has important impli
ations to the a

ura
y of the 
om-puted singular ve
tors. Let �i be simple with singular ve
tors ui and vi.If ui + Æui, vi + Ævi are the singular ve
tors of A + �A, 
orrespondingto ~�i, thenmaxfsin 6 (ui; ui + Æui); sin 6 (vi; vi + Ævi)g � O(�)gapi (3.13)where gapi = min�minj 6=i j�i � ~�j j�i ; 2� :Thus, the approximation error for the singular ve
tors of A + �A de-pends on the 
ondition number �2(As) and the relative separation ofthe singular values. Sin
e our 
omputed ve
tors are 
lose to those ofA + �A, we 
an 
on
lude that the SVD Ja
obi 
omputes the singularve
tors with a bound like (3.13). The same 
on
lusion then holds forthe eigenve
tors 
omputed by the previously explained diagonalizationpro
edure of symmetri
 positive de�nite matrix.>From the above analysis we 
an see that the SVD Ja
obi 
an 
omputewith high relative a

ura
y the SVD of any matrix A of the form A =BS, where S is any diagonal matrix, and B is well 
onditioned (�2(B)moderate). A simple devi
e 
an preserve this property if A is moregeneral, for instan
e if A = S1BS2, where S1, S2 are arbitrary diagonals
alings, and B is well 
onditioned. In that 
ase, the QR fa
torizationin the �rst step should be 
omputed with 
olumn and row pivoting. Forthe details see [14℄, [5℄. We only note that our theoreti
al understandingis one step behind numeri
al experien
e.The SVD Ja
obi method 
an be generalized e.g. to the SVD of theprodu
t of two matri
es. For instan
e, if A = BS, C = GD with well
onditioned full 
olumn rank B, G with equilibrated 
olumns, and arbi-trary diagonal matri
es S, D, then the SVD of ACT = BSDGT 
an be
omputed as follows. First, we 
ompute QR fa
torization with 
olumn
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es in Ja
obi Methods 27pivoting of GDS, (GDS)P = QR. Due to pivoting, the matrix R isstru
tured as R = D1Rr, where D1 is diagonal and Rr is well 
ondi-tioned. In fa
t, �2(Rr) is bounded by a fun
tion of the dimension, forany initial matrix. Then, ACT = BPRTQT , and the produ
t BPRTis BPRTr D1, where BPRTr is again well 
onditioned. Be
ause of that,expli
it 
omputation of the produ
t BPRT will 
ause no loss of infor-mation and the Ja
obi SVD will 
ompute a

urate SVD of the expli
itly
omputed matrix produ
t. For more details see [13℄, [12℄, [15℄.In some 
ases, the matrix A is rather ill 
onditioned, but with spe
ialstru
ture that allows a

urate LU de
omposition with 
omplete pivoting,P1AP2 = LDU , where P1, P2 are permutations, D is diagonal, and L,U are well 
onditioned. This means that 
omputed matri
es ~L, ~D, ~Uare su
h that the SVD of the produ
t PT1 ~L ~D ~UPT2 is highly a

urateapproximation of the SVD of A. On the other hand, (PT1 ~L)( ~D ~UPT2 ) hasthe stru
ture of the produ
t of two matri
es that allow a

urate SVDby the Ja
obi method. For more details see [8℄.Referen
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