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2are shortly explained. Finally, in Setion 3, the latest auray resultsonerning one-sided methods are presented.1. Two-sided MethodsHere we �rst give a short introdution to Jaobi-type proesses [36,17℄. Then we give a brief desription of the the most important methods:Hermitian Jaobi method and J-symmetri Jaobi method. For eah ofthe two methods, we introdue both the two- and one-sided versions.1.1 Jaobi-type ProessesJaobi-type methods are iterative proesses of the formA(k+1) = P �k A(k)Qk; k � 0; (1.1)where Pk , Qk are nonsingular elementary plane matries, P �k is the om-plex transpose of Pk and A(0) = A is the initial matrix of order n. Anelementary plane matrix E is a nonsingular matrix whih di�ers fromidentity matrix In in one prinipal submatrix of order two, denote it byÊ, whih is alled pivot submatrix or the (i; j)-restrition of E. The pairof indies i; j, i < j whih determine position of Ê within E are pivotindies and (i; j) is pivot pair . In (1.1) pivot indies depend on k, soi = i(k), j = j(k). When emphasis is on pivot indies we shall writePi(k)j(k) instead of Pk (similar for Qk) and when k is understood justPij . Transition from A(k) to A(k+1) is alled the kth step or iteration ofthe method.Jaobi methods are haraterized by the requirementa(k+1)i(k)j(k) = a(k+1)j(k)i(k) = 0; k � 0:whih implies that for eah k, P̂k and Q̂k are omputed from Âk.Pivot strategy is a rule for seleting pivot pairs. We identify eahpivot strategy with a funtion I : N0 ! Pn, where N0 = f0; 1; 2; : : :gand Pn = f(l;m); 1 � l < m � ng, n � 2. Among di�erent lassesof (pivot) strategies we onsider here only periodi strategies whih areperiodi funtions. This means I(k +M) = I(k), k � 0 for a positiveinteger M , the period of I. A periodi strategy I is quasi-yli iffI(k); 0 � k � M � 1g = Pn, and a quasi-yli strategy is yli ifM = N def= n(n�1)=2. The set ofM suessive iterations starting with kwhih is a multiple ofM , is usually alled a quasi-yle (yle for ylistrategies). In the sequel the term strategy means periodi strategy.The most ommon are the row-yli and olumn-yli strategies (oftenreferred to as serial) and the parallel ones.



Advanes in Jaobi Methods 3The olumn-yli strategy is de�ned by IC(k) = (i(k); j(k)), k � 0,where as k inreases, the pivot pair runs through the olumn-wise or-dering of Pn: (1; 2), (1; 3), (2; 3),: : : ,(1; n), (2; n), : : : ,(n � 1; n) of Pn.The row-yli strategy IR is de�ned in a similar way by the row-wiseordering of Pn: (1; 2), (1; 3), : : : ,(1; n), (2; 3), : : : ,(n � 1; n). By paral-lel strategy we mean a yli strategy for whih the de�ning ordering ofPn an be divided into p subsequenes eah ontaining mutually disjointpairs (pairs (l;m) and (p; q) are disjoint if fl;mg\fp; qg= ;). The planematries assoiated with eah suh subsequene mutually ommute, theyall an be omputed in the same time and all an be applied simultane-ously. Best eÆieny is obtained when p � n. Then eah subsequeneontains around n=2 pairs (see [3, 28, 18, 29℄). A yle then onsists ofp parallel steps and eah parallel step omprises � n=2 sequential steps.Another interesting periodi strategy is the quasi-yli strategy ofMasarenhas [30, 31, 37℄ whih enables ubi asymptoti onvergeneper quasi-yle and for whih M � 1:25N .The notion of onvergene depends on the method. For two-sidedmethods it usually means onvergene of the iterated matrix to a diag-onal matrix.1.2 Hermitian Jaobi MethodLet H = (hlm) be a (omplex) Hermitian matrix of order n. Jaobimethod for omputing the eigendeomposition of Hermitian matriesgenerates sequene of Hermitian matries by the rule (1.1) with Pk = Qk,k � 0 being unitary matries. Rewriting (1.1) with these assumptions,yields H(k+1) = V �k H(k)Vk; k � 0; H(0) = H;where Vk; k � 0 are unitary plane matries. If eigenvetors are wanted,then V (k) = V0V1 � � �Vk�1 is omputed by the rule V (k) = V (k�1)Vk�1,k � 1, V (0) = In. For eah k � 0 pivot submatrix of Vk,V̂k = " os'(k) � sin'(k)e{!ksin'(k)e�{!k os'(k) #is hosen to diagonalize the pivot submatrix Ĥ(k) ofH(k) = (h(k)lm ). Here {denotes the imaginary unit and z denotes the omplex onjugate of z 2C.Hene, '(k) and !k are hosen to produe h(k+1)ij = 0. For h(k)ij = 0, thek'th step is skipped i.e. !k = '(k) = 0 is presumed. Otherwise, the usualhoiee{!k = h(k)ijjh(k)ij j ; tan 2'(k) = 2jh(k)ij jh(k)ii � h(k)jj ; '(k) 2 [��=4 ; �=4℄ ; (1.2)



4is assumed. If H is real symmetri, !k is set zero, so that all V (k) areorthogonal and all H(k) are real symmetri. In this ase jh(k)ij j in therelation (1.2) is replaed by h(k)ij . Using (k) = os'(k), s(k) = sin'(k),t(k) = tan'(k), the transformation formulas readh(k+1)li = (k)h(k)li + e�{!ks(k)h(k)lj = h(k+1)il ; l =2 fi; jgh(k+1)lj = (k)h(k)lj � e{!ks(k)h(k)li = h(k+1)jl ; l =2 fi; jgh(k+1)ii = h(k)ii + jh(k)ij j t(k); h(k+1)jj = h(k)jj � jh(k)ij j t(k)h(k+1)ij = 0; h(k+1)lm = h(k)lm whenever l;m =2 fi; jg : (1.3)As a onsequene of the hoie of transformation parameters, we havek
(H(k+1))k2F = k
(H(k))k2F � 2 j h(k)ij j2 ; k � 0 ; (1.4)where generally, 
(X) = X � diag(X) stands for the o�-diagonal partof X and k � kF is the Frobenius (or Eulidean) matrix norm. By k � k2is denoted the spetral or matrix 2-norm. The quantity k
(X)kF issometimes referred to as (see [20℄) the o�-norm of X . The quantityk
(H(k))kF an be used to measure the progress of the proess.The serial Jaobi methods are globally onvergent, i.e. the sequene ofmatries H(k) is onvergent to diagonal matrix for any initial HermitianH (see [16℄ and [24℄). The asymptotially faster quasi-yli methodde�ned by Masarenhas strategy is also globally onvergent [37℄.If H 2Cn�n is positive de�nite, then all H(k), k � 0 are positivede�nite and Jaobi method delivers relatively aurate eigenvalues andeigenvetors (almost as aurate as H allows, see [6℄). Saled matriesH(k)S = [diag(H(k))℄�1=2H(k)[diag(H(k))℄�1=2; k � 0: (1.5)play important role onerning auray. Their o�-diagonal parts, andthe orresponding normsA(k) = 
(H(k)S ) = H(k)S � I; �k = kA(k)kF k � 0;are used in terminating of the proess (see (2.8)). This will be disussedlater. Note that the diagonal elements of A(k) = (a(k)lm ); k � 0 are zerosand the o�-diagonal elements are given bya(k)lm = h(k)lm =qh(k)ll h(k)mm; l 6= m; k � 0: (1.6)The property (1.4) is not shared with the sequene of saled matriessine H(k+1)S = (�(k+1))�1(V (k))��(k)H(k)S �(k)V (k)(�(k+1))�1



Advanes in Jaobi Methods 5is not a unitary transformation. Atually, the o�-norm of saled matriesan temporarily inrease during the proess. In [34℄ it has been provenja(k+1)il j2 + ja(k+1)jl j2 � ja(k)il j2+ja(k)jl j21�ja(k)ij j ; l 6= i; j ;kA(k+1)k2 � kA(k)k2 � ja(k)ij jkA(k)k2�2ja(k)ij j1�ja(k)ij j : (1.7)Hene, if kA(k+1)k > kA(k)k, then 0 < ja(k)ij j � 12kA(k)k2. We see thatonly quadratially small (in the saled sense) pivot element an ausethe growth of kA(k)k. The above estimates make it possible to �nd anupper bound for the �nite sequene �0; �1; : : : ; �N provided that �0 issmall enough.Saled iterates an be de�ned in inde�nite ase, whenever diagonalelements are nonzero. Then the saling matrix [diag(H(k))℄�1=2 shouldbe replaed by [ j diag(H(k)) j ℄�1=2 = [diag(jH(k)j)℄�1=2, the diagonalelements of H(k)S are �1, A(k) = 
(H(k)S ) and a(k)lm = h(k)lm =qj h(k)ll h(k)mm j,l 6= m, k � 0. Here jX j = (jxlmj) provided that X = (xlm).One-Sided Jaobi Method LetH = LLT be the Cholesky fatoriza-tion of positive de�nite H , and let L = U�V T be the SVD of L. Then,sine U is orthogonal and � diagonal, the deomposition H = U�2UTis the spetral deomposition of H . Hene, we an diagonalize H intwo steps: (1) ompute the Cholesky fatorization to get L and (2)ompute the SVD of L. For the seond task we an use the so alledone-sided (or right-handed) Jaobi method. This method appears nat-urally, when two-sided Jaobi method is applied to LTL. After k stepsone obtains the matrix (LV0 � � �Vk�1)TLV0 � � �Vk�1, hene it is suÆientto iterate the proess G(k+1) = G(k)Vk, k � 0, G(0) = L. To omputethe parameters of V̂k one needs (see (1.2)) to ompute salar produtof pivot olumns (G(k)ei j G(k)ej) and squares of pivot olumn normskG(k)eik2 and kG(k)ejk2 (el is the lth olumn of In). Fortunately, us-ing formulas for updating the diagonal elements from (1.3) the squaresof norms have to be omputed one or twie during the whole proess.The e�et of kth transformation is to orthogonalize the pivot olumnsof G(k). Assuming a \onvergent" (e.g. the serial) pivot strategy, thesequene G(k) approahes a set of matries with orthogonal olumns.Let G(k) = U (k)�(k), where U (k) has normalized olumns and �(k) isdiagonal positive de�nite. We an hoose any onvergent subsequeneof V (k) = V0 � � �Vk and an appropriate onvergent subsequene of U (k)to obtain in the limit U� = LV , the SVD of L. Left singular vetors ofL are eigenvetors of H and squares of the singular values of L are the



6eigenvalues of H . In the ontext of omputing the spetral deomposi-tion of H , right singular vetors are not needed, hene aumulation ofrotations an be skipped. This and several other attrative features ofthe one-sided method are �rst noted, analyzed and exploited by Veseli�and Hari [52℄. We shall address some of these features in Subsetion 3.1.1.3 J-Symmetri Jaobi MethodJ-symmetri Jaobi method, introdued by Veseli� in [51℄, is a diago-nalization method for the generalized eigenvalue problem Hx = �Jxwhere H 2 Rn�n is symmetri matrix and J = diag(Im; In�m) is diretsum of Im and �In�m. The method generates the sequene of matriesby the rule (1.1) with Pk = Qk , k � 0. Sine transformation matriesneed not be orthogonal, we denote them by Ck, k � 0 so that (1.1) takesform H(k+1) = CTk H(k)Ck; k � 0; H(0) = H:The method is so designed that CTk JCk = J holds for all k � 0. Wesee that transition from H(k) to H(k+1) is made by ongruene trans-formation whih preserves the symmetry and inertia of matries H(k)as well as the eigenvalues of the initial pair (H; J). Sine all Ck areJ � orthogonal, the method is sometimes alled J-orthogonal (see [43℄).Although the method an be generalized to omplex matries, all knownresults refer to real matries.For 1 � i < j � m and m + 1 � i < j � n, Ck is plane rotationand for 1 � i � m < j � n it is J-orthogonal plane matrix (hyperbolirotation). Their pivot submatries have formĈ(k) = " os'(k) � sin'(k)sin'(k) os'(k) # and Ĉ(k) = " osh'(k) sinh'(k)sinh'(k) osh'(k) # ;respetively. The angle '(k) is in either ase hosen to annihilate thepivot element h(k)i(k)j(k), whih leads to very simple angle formulastan 2'(k) = 2h(k)ijh(k)ii � h(k)jj ; tanh 2'(k) = �2h(k)ijh(k)jj + h(k)ii ;with '(k) 2 [��=4; �=4℄ for orthogonal rotation. Using (k), s(k) and t(k)for both the trigonometri and hyperboli funtions and � = 1 (� = �1)for hyperboli (orthogonal) rotation, we obtain the following transfor-mation formulas (ompare to the relation (1.3))



Advanes in Jaobi Methods 7h(k+1)il = (k)h(k)il + s(k)h(k)jl ; h(k+1)li = h(k+1)il ; l 62 fi; jgh(k+1)jl = (k)h(k)jl + � � s(k)h(k)il ; h(k+1)lj = h(k+1)jl ; l 62 fi; jgh(k+1)ii = h(k)ii + t(k)h(k)ij ; h(k+1)jj = h(k)jj + � � t(k)h(k)ij ;h(k+1)ij = 0; h(k+1)pr = h(k)pr if fp; rg \ fi; jg= ; (1.8)The transformation de�ned by � = �1 (� = 1) is alled kth trigono-metri (hyperboli) step or iteration of the method. If eigenvetors arewanted, the transformations are olleted as produt C0C1 � � �. Aftertrigonometri step the relation (1.4) holds. To see what happens afterhyperboli step, letH(k) = " H(k)11 H(k)12H(k)21 H(k)22 # ; J = � Im �In�m � ; H(k)11 is m by m;S2(H(k)) = k
(H(k)11 )k2F + k
(H(k)22 )k2F � 2kH(k)12 k2F :Then for the hyperboli step holds (see [51℄)S2(H(k+1)) = S2(H(k)) + 2(h(k)ij )2:We an say that hyperboli steps transfer the o�-diagonal weight fromthe bloks H(k)12 and H(k)21 to diagonal bloks H(k)11 and H(k)22 and trigono-metri steps diagonalize the diagonal bloks. Overall, H(k) onverges toa diagonal matrix. In [51℄ it has been proved that the method onvergesglobally under the serial strategies.If H is n by n positive de�nite, then all H(k), k � 0 are suh. Salediterate H(k)S and its o�-diagonal part A(k) are de�ned as above, so thatrelations (1.5) { (1.6) hold for this method too.Resemblane with symmetri Jaobi method is also seen from the rela-tions (1.7) whih hold not only for trigonometri, but also for hyperbolisteps (see [35℄). In partiular, (1.7) has formja(k+1)il j2 + ja(k+1)jl j2= ja(k)il j2 + ja(k)jl j2 � 2a(k)ij a(k)il a(k)jl1� ja(k)ij j2 � ja(k)il j2 + ja(k)jl j21� jaij j :One-Sided J-Symmetri Method J-symmetri Jaobi method alsohas its one-sided version whih is an exellent method for aurate eigen-solving of symmetri inde�nite eigenproblem. Let us briey derive thealgorithm (see [40, 42, 46℄).



8 Let H = PG1J1GT1 PT be the Bunh-Parlett fatorization [4℄ of anonsingular, inde�nite symmetri matrix H . Here P is permutation, G1lower blok-triangular with diagonal bloks of order one or two and J1diagonal with �1 on its diagonal. Using the seond permutation P1 inH = PG1J1GT1 PT = (PG1PT1 )(P1J1PT1 )(P1GT1 PT ) = GJGTone an obtain J = diag(Im; In�m). Now Hx = �x an be written asGJGT = �x and sine G is invertible, the last equation is equivalentto GTGJGTx = �GTx. This an be written as GTGz = �Jz withz = JGTx. Sine Gz = GJGTx = Hx = �x, one obtains x = (Gz)=�.In onlusion, the initial inde�nite symmetri eigenproblem Hx = �x isonverted to J � symmetri eigenproblem with positive de�nite matrixGTG. To solve the new problem one an apply J-symmetri Jaobimethod. As will be seen later, this transition makes sense if aurayof all eigenvalues and eigenvetors is important. A pleasant fat withthe new eigenproblem is that GTG need not be omputed. One simplypostmultiplies G by the J-orthogonal transformations,G(k+1) = G(k)Ck ; k � 0; G(0) = G :Using additional vetor to store the diagonal of (G(k))TG(k) and makingbene�t of simple updates of that vetor desribed in (1.8), only one salarprodut of the form (G(k)ei j G(k)ej) is needed to ompute the parame-ters of Ck. In addition, the matries Ck need not be aumulated sineG(k)S = G(k)��1k , �k = diag(kG(k)e1k; : : : ; kG(k)enk) approahes the setof eigenvetor matries of H and diagonal elements of �2k approah theeigenvalues of H .To see that, we have to assume a globally onvergent pivot strategy, sothat (G(k))TG(k) 7! �2 as k inreases, where � is diagonal with positivediagonal elements. Next, note that the sequene (G(k)S )k is bounded. So,let (G(ik)S )k be any onvergent subsequene and let limk G(ik)S = Q. SineQTQ = In +N , where N has zero diagonal, we haveIn +N = QTQ = limk ��1ik (G(ik))TG(ik)��1ik = �2 limk ��2ik ;implying limk�ik = � and orthogonality of Q. Sine G(ik) = G(ik)S �ik ,(G(ik))k is onvergent. Beause G is invertible, the produt C(ik) =C0 � � �Cik is also onvergent. Let limk!1 C(ik) = C. Sine J-orthogonalmatries make a losed group in the group of regular matries, C isJ-orthogonal. In partiular, this means that CJCT = J . We haveobtained Q = GC��1, so we an writeHQ = (GJGT )(GC��1) = G(CJCT )GTGC��1 = GCJ�2��1= GCJ� = GC��1�J� = QJ�2 :



Advanes in Jaobi Methods 9This proves that Q is an eigenvetor matrix of H . Sine we have thesame onlusion for any onvergent subsequene of G(k)S we have provedthat G(k)S approahes the set of eigenvetor matries of H .Finally, let us mention that the one-sided J-symmetri method is ofinterest on its own, not just as the part of the ompound algorithm.For example, this method an be used to solve the downdating problem,whih onsists of �nding the eigenvalue deomposition of the di�ereneof outer produts, H = AAT � BBT :The matrix H an be written in the produt formH = GJGT ; G = � A B � ; J = diag(I;�I);and the latter problem an be solved by the the one-sided J-symmetrimethod. For more details on this problem see [58, 43℄.2. Asymptoti ConvergeneIt is well-known that yli Jaobi-type methods onverge, under stan-dard onditions, asymptotially quadratially. This means that for largeenough k, k
(H(k+N)kF �  k
(H(k))k2F ; (2.1)where N = n(n� 1)=2. The onstant  does not depend on k. By stan-dard onditions we mean either simple eigenvalues or multiple eigenval-ues plus ordering of diagonal elements so that those ones onverging tothe same eigenvalue take suessive positions on diagonal plus speial(e.g. serial) pivot strategies. By an argument of Wilkinson [56℄, lassi-al Jaobi method and all kinds of optimal Jaobi methods for symmet-ri/Hermitian matries will onverge quadratially or better. Sine inpraxis one uses serial strategies, the relation (2.1) is modi�ed tok
(H((k+1)N)kF �  k
(H(kN))k2F ; k � k0; (2.2)where k0 is suÆiently large. The relation (2.2) shows that ultimately (inpraxis after several yles) the measure k
(H)kF redues quadratiallyper yle.The measure k
(H(k))kF appears naturally in asymptoti onver-gene results, sine k
(H(k))kF = 0 shows H(k) is diagonal. In addition,k
(H(k))kF is the upper bound for maxt ja(k)tt � �tj and therefore mea-sures the absolute distane between diagonal elements and the aÆliatedeigenvalues.Note however, that one of the most important properties of Jaobimethods is their relative auray. Hene, one would better look for a



10measure whih bounds maxt ja(k)tt ��tj=j�tj or maxt ja(k)tt ��tj=ja(k)tt j. Thatmeasure (see [22℄) has form k
(DHD)kF , where D = [ j diag(D)j ℄�1=2and it also appears in the auray estimates from [6℄. This has givenrise to reent researh of the quadrati onvergene of saled iterates byJaobi methods. The new results will be briey presented here.Sine one-sided methods an be viewed as intelligent implementationsof two-sided methods, their asymptoti onvergene amounts to that oftwo-sided methods.2.1 Hermitian Jaobi MethodLet us �rst show using " notation, the ubi onvergene of the row-yli Hermitian Jaobi method, when n = 4. Suppose the onsideredyle is not the �rst one (hene h34 = 0). Suppose the eigenvalues aredistint and all o�-diagonal elements are O(�). We assume that � is sosmall that all angles and their sines have the same order of magnitudeas the orresponding pivot elements. Then, we have# #! � " " "! " � " "" " � 0" " 0 � 7! # #! � Æ " "Æ � " "! " " � 0" " 0 � 7! # #! � "2 Æ ""2 � " "Æ " � "2! " " "2 � 7!# #� "2 "3 Æ! "2 � " "! "3 " � "2Æ " "2 � # #� "2 "3 Æ! "2 � Æ ""3 Æ � "2! Æ " "2 � # #� "2 "3 "3"2 � "3 Æ! "3 "3 � "2! "3 Æ "2 � 7!# #! � "2 "3 "3! "2 � "3 "5"3 "3 � Æ"3 "5 Æ � 7! afterthe nextyle # #! � "6 "9 "11! "6 � "11 "17"9 "11 � Æ"11 "17 Æ � 7!afterthe nextyle # #! � "20 "31 "37! "20 � "37 "57"31 "37 � Æ"37 "57 Æ � # Pivot olumn! Pivot row0 Initial zerosÆ Produed zeros"r O(�r) element.If the initial matrix has multiple eigenvalues, the above analysis is notorret sine almost diagonal matries with multiple eigenvalues havespeial struture whih inuenes the asymptoti rate of onvergene.



Advanes in Jaobi Methods 11Let�1 = � � � = �s1 ; �s1+1 = � � �= �s2 ; : : : ; �sp�1+1 = � � �= �sp (2.3)be the eigenvalues of Hermitian H and letÆi = minjj 6=i j�si � �sj j ; 1 � i � p; Æ = min1�i�p Æibe the absolute gaps in the spetrum of H . Suppose that H satis�esk
(H)kF � Æ3 ;and the diagonal elements of H aÆliated with the same multiple eigen-value oupy suessive positions on the diagonal. Then H an be parti-tioned as (Hij) where eah blok Hii has order ni = si� si�1, 1 � i � p,s0 = 0, sp = n. Here ni is the algebrai multipliity of �si . We anassume that p > 1, sine otherwise H = �1In. Let�i(H) = Hii; �i(H) = [Hi1; : : : ; Hi;i�1; Hi;i+1; : : : ; Hip℄�(H) = diag(H11; : : : ; Hpp); �(H) = H � �(H):The speial struture of an almost diagonal Hermitian matrix (see [56℄,[26, 27℄ and [19, 20, 21, 23℄) is revealed from the following result from[21℄. For 1 � i � p holdsk
(Hii)kF � kHii-�siInikF � 1:32Æi pXj=1j 6=i kHijk2F � 0:66k
(H)k2FÆi : (2.4)This relation implies that within diagonal bloks the o�-diagonal ele-ments are quadratially small ompared to those outside the diagonalbloks. When a Jaobi method is applied to suh H the relation (2.4)will hold for all iteration matries i.e. the partition will be preserved(see [21, Lemma 2.2℄). This implies that methods de�ned by the las-sial and other optimal strategies will never hoose at that stage, pivotelements from diagonal bloks and therefore all angles will ultimatelytend to zero.Suppose, n = 4, p = 2, n1 = 3, n2 = 1. Using the analysis as beforeand taking into aount (2.4), we obtain# #! � "2 "2 "! "2 � "2 ""2 "2 � 0" " 0 � # #! � Æ "2 "Æ � "2 "! "2 "2 � 0" " 0 � # #! � "2 Æ ""2 � "2 "Æ "2 � "! " " " � 7!



12 # #� "2 "2 Æ! "2 � "2 "! "2 "2 � "Æ " " � # #� "2 "2 Æ! "2 � Æ ""2 Æ � "! Æ " " � # #� "6 "6 "3"6 � "6 Æ! "6 "6 � "! "3 Æ " � 7!# #� "6 "6 "3"6 � "6 "7! "6 "6 � Æ! "3 "7 Æ � showing again the ubi onvergene.Note that ubi redution inside H11has ourred earlier than indiatedabove, probably after annihilating(1; 4) { element.In general, when n > 4, we have only quadrati onvergene for theserial Jaobi methods.Quadrati onvergene onsiderations of symmetri Jaobi methodsin the ase of simple and double eigenvalues originated from early worksof Wilkinson [55℄ and Sh�onhage [39℄ (see also [54℄ and [24℄).The harder ase of multiple eigenvalues was �rst onsidered by VanKempen [26, 27℄ and Wilkinson [56℄. Later, Hari [21℄ gave the �rstomplete proof of the quadrati onvergene of the serial Jaobi meth-ods. The proof in [21℄ broadens and ompletes the onsiderations ofvan Kempen from [27℄, who has not taken into aount some quantitieswhih inuene the bound. By sophistiated estimates it has been veri-�ed in [21℄ that the result stated in [27℄ indeed holds. The main resultfrom [21℄ has the formk
(H)kF � Æ3 ) k
(H(N))kF � 95 k
(H)k2FÆ : (2.5)It has been shown in [20℄ that in the ase of multiple eigenvalues, largeangles an be expeted during the proess, irrespetively of how tiny theo�-diagonal elements are. Hene, the ondition on diagonal elementswhih ensures that the relation (2.4) holds annot be omitted. If eigen-values form lusters of small width, one an inorporate perturbationtheory (see [21℄) to prove the quadrati redution of k
(H(kN)))kF peryle. As k
(H(kN)))kF approahes the width of lusters, the asymp-toti speed slows down, but further shrinking of k
(H(kN)))kF againinreases the speed to reah the quadrati rate.If Æ is tiny however, the estimate (2.5) beomes useless. In praxis thissometimes happens when eigenvalues luster around zero in suh a waythat it is diÆult or impossible to bound the luster.Later, in 1990 Masarenhas [30, 31℄ showed that using speial quasi-yli strategies Jaobi method an perform ubi asymptoti onver-gene per quasi-yle. Sine his quasi-yles onsist of around 1.25 y-les, this orresponds to the asymptoti rate of order 30:8 � 2:41, thus,



Advanes in Jaobi Methods 13between quadrati and ubi speed per yle. Rhee and Hari [37℄ provedthe global and the ubi (per quasi-yle) onvergene of his method.Reent Results Although reent researh of Jaobi methods has beenmostly onentrated on their auray properties, losely related are newmeasures of advaning of the proesses. These measures bound the max-imum relative distane between diagonal elements and the orrespondingeigenvalues. Therefore, they are inluded in the stopping riterions ofthe methods. They involve saled diagonally dominant (see [2℄, [22℄)matries and relative gaps.Suppose A = D +N , where D is diagonal and N has zero diagonal.Then A = (aij) is referred to as �{diagonally dominant with respet toa norm k � k if kNk � �min1�i�n jaiij, with 0 � � < 1. If A = D +Nwith jaiij = 1, 1 � i � n and �1, �2 are arbitrary nonsingular diagonalmatries, then B = �1A�2 is �{saled diagonally dominant ( �{s.d.d.)with respet to a given norm, provided that A is �{diagonally dominantwith respet to that norm. Note that an �{s.d.d. matrix has nonzerodiagonal elements. If A is Hermitian, it is presumed that �1 = �2 and�1 is real. Suh saling, whih is a ongruene transformation, will bealled symmetri.Relative gaps are in appliations often onneted with s.d.d. matries.Several de�nitions of relative gaps have been used (f. [40, 46, 25℄). Herewe use the one from [22℄.Let the eigenvalues of the Hermitian matrix H be ordered as in therelation (2.3). The relative gaps and the minimum relative gap in thespetrum of H are de�ned as followsi = min1�j�pj 6=i j �si � �sj jj �si j + j �sj j 1 � i � p ;  = min1�i�p i : (2.6)The following result an be used in seleting a measure for onvergeneof Hermitian Jaobi methods.Proposition 2.1 [22℄ Let H = H� be �-s.d.d. and H = �HHS�H ,where �H = [ jdiag(H)j ℄ 12 . Let i and  be as in the relation (2.6). If� < =(+ 3), thensiXj=si�1+1 j1� �sihjj j2 + k
 (�i(HS)) k2F � 162i k�i(HS)k4F ; 1 � i � p: (2.7)If H = H� is �-s.d.d. and positive de�nite, then the relation (2.7) holdswith onstant 4 instead of 16 and under less stringent assumption � <=3.



14Summing up the equations (2.7) over i, one obtains, say for positivede�nite matrix H (see [22, Collorary 3.2(ii)℄),nXj=1 j 1� �jhjj j2 +k
 (�(HS)) k2F � 22k�(HS)k4F : (2.8)Note that j1� �sihjj j � � implies j1� hjj�si j � �1� � . Hene, if k�(HS)k2F =is small, we have aurate estimates for both j(�si�hjj)=hjj j and j(hjj��si)=�si j. The relation (2.7) for positive de�nite matries implies thatlog10(2k�i(HS)k2F =i) indiates how many signi�ant deimal digits areorret in the appropriate diagonal elements as approximations of �si .As a global measure for all diagonals, one an also use p2k�(HS)k2F =or larger measures, k�(HS)kF and k
(HS)kF .Returning to Jaobi methods, note that  does not hange with iter-ation matrix. Usually, in the �rst few yles the partition (H(k)ij ) is notyet reognized and one prefers to use k
(HS)kF a simpler although (inrare situations) larger measure than k�(HS)kF .Suppose a serial Jaobi method is applied to a positive de�nite H pro-duing the sequene (H(k))k. By the result [6℄ we know that the methodomputes the eigenvalues and eigenvetors almost with the auray thatis warranted by the eigenproblem. After several yles the diagonal el-ements beome approximations of the eigenvalues and lower bounds ofabsolute or relative gaps an easily be omputed from diagonal elements(see Example 3.3 from [22℄). If the eigenvalues luster around zero, someabsolute gaps Æi and therefore Æ will be tiny and the result (2.5) beomesuseless for pratial purposes. The measure k
(H(k)kF alone boundsmaxt jh(k)tt � �tj. Hene, for tiny �si , maxsi�1+1�t�si jh(k)tt � �si j=�si isbounded by k
(H(k)kF =�si whih an be large. Thus, the measuresinvolving k
(H(k))kF and absolute gaps will not be appropriate.On the ontrary, for suh matries, all relative gaps i and  anbe large (lose to one). As the proess advanes one an use measuresk
(HS)kF and k
(HS)k2F =. This implies that after eah yle one hasto ompute k
(HS)kF and perhaps a lower bound of . For two-sidedJaobi methods this is appropriate sine it requires only O(n2) ops.However, in the ontext of one-sided methods, omputing k
(HS)kFrequires O(n3) ops. Hene, during the whole proess, one would notlike to ompute k
(HS)kF more than one. In suh a situation it isneessary to exploit the knowledge that serial Jaobi methods onvergeasymptotially quadratially. As we have just explained, the quadrationvergene result (2.5) is useless. In addition, in desribed situation,the relation between k
(HS)kF and k
(H)kF an be only very roughly



Advanes in Jaobi Methods 15estimated, so (2.5) would give even poorer result when translated interms of k
(HS)kF .We need a quadrati onvergene result for k
(HS)kF whih involvesrelative instead of absolute gaps. Fortunately, suh results an be formu-lated and derived in the ontext of two-sided methods and then diretlyapplied to one-sided methods.In his Ph. D. thesis [32℄ Mateja�s solved this problem for the serialJaobi methods for positive de�nite matries. The easier ase of distinteigenvalues (see [33℄) and real matries assumes form�N � 0:715�20 whenever �0 � 14 minf 1n; g ; (2.9)where �k = kA(k)kF as de�ned by the relations (1.5) { (1.6). In (2.9)it is assumed that the diagonal elements are dereasingly ordered. Theharder ase of multiple eigenvalues and omplex matries takes similarform (see [34℄)�N � r52 �20 whenever �0 � 16 minf 1n; g :A similar result holds for the ase of inde�nite Hermitian matrix H . Inthe ontext of one-sided methods, these results an be used for predit-ing the number of yles till onvergene. If eigenvetors are wanted onean use appropriate eigenvetor perturbation estimates (e.g. [6, Theo-rem 2.7℄) whih use ondition of saled matrix (whih is in our ase loseto one) and appropriate relative gaps.We end this subsetion by a brief disussion on stopping riterions.Jaobi methods are predominantly used when auray of the outputdata is important. Therefore, one will probably hoose the riterionk
(H(k)S kF � tol, where tolerane tol is hosen by the user. For one-sidedmethods, where N salar produts are needed to obtain k
(H(k)S )kF , tolan be set f(n)� where f is slowly inreasing funtion of n and � ismahine epsilon. For two-sided methods however, one an use a niestopping riterion of Rutishauser (see [57℄) whih is almost equivalent tok
(H(k)S )kF � �.2.2 J-Symmetri Jaobi MethodJ-Symmetri Jaobi method has similar asymptoti properties. Quad-rati onvergene is again de�ned by the relation (2.1) or (2.2). Theproof assumes that the diagonal elements of JH approximating the sameeigenvalue of (H; J) take suessive positions on the diagonal of JH .



16Absolute gaps Æi and Æ are de�ned as above. Drma� and Hari [10℄ haveshown thatk
(H(N))kF � 3k
(H)k2FÆ provided that k
(H)kF < Æ3m(n�m) ;where m is number of positive ones in J . Here the asymptoti assump-tion is stronger than for the symmetri Jaobi method. In estimatingnonorthogonal (hyperboli) transformations one uses mathematial in-dution. The numberm(n�m) in the denominator is used to ompensatea possible gradual inrease of k
(H(k))kF during the onsidered yle.J-symmetri method is very well suited to work with the aeler-ated strategy of Masarenhas, whih yields ubi rate of onvergeneper quasi-yle. For the proof, one ould ombine ideas from [10℄ and[37℄.Sine the J-symmetri quadrati onvergene result su�ers the sameshortomings as its symmetri ounterpart (2.5), one is hallenged to�nd a similar remedy. First, one needs a bound for the relative dis-tane between diagonal elements of JH and the eigenvalues of (H; J).This is done for the ase of positive de�nite H . In the following result,noninreasing ordering of the eigenvalues of the pair (H; J) is assumed.Relative gaps i, 1 � i � p and  are de�ned as in (2.6).Proposition 2.2 [35, Theorem 1(ii)℄ Let H = H� be �-s.d.d. positivede�nite. Let H = �HS�, where � = [ diag(H) ℄ 12 . Let � < =3 andlet the diagonal elements of JH aÆliated with the same eigenvalue of(H; J) oupy suessive positions on the diagonal. Then for the samepartition of A = HS � In and � holdskAii � j�si j��2ii kF � 2i k�i(A)k2F = 2i pXj=1j 6=i kAijk2F ; 1 � i � p:As earlier, one an deduenXr=1 ����1� j�rjhrr ����2 + k�(A)k2F � 22k�(A)k4F :Thus, saled diagonally dominant pair (H; J) has the same struture asthe pair (H; In) whih has been disussed earlier. Hene the rotationangles an be large if pivot pair happens to be inside a diagonal blok.On the ontrary, hyperboli angles ultimately tend to zero as k inreases.This follows from the fat that m = n1 + � � �+ nro for some 2 � ro �p�1 and that is a onsequene of the assumption that (H; J) is positive



Advanes in Jaobi Methods 17de�nite. We see that the measure k�(A)kF or k
(A)kF should be usedfor stopping of the proess.The new quadrati onvergene result from [35℄ has form�N � 3:5�20 whenever �0 � 16 minf 1n; g :Here �k = k
(A(k))kF , k � 0 and the result assumes that �1 � � � � ��m, j�m+1j � � � � � j�nj, whih requires blok-permutational similarityof the partition (2.3) and renumbering of the relative gaps.3. AurayAs notied by Rosano� et al [38℄, and theoretially explained by Dem-mel and Veseli� [6℄, the Jaobi algorithm is more aurate than anyalgorithm that starts with tridiagonalization of the symmetri matrix(bidiagonalization in the ase of SVD omputation). In this setion weexplain this important fat, using the results of Demmel, Veseli�, Hariand Drma�. As we will see, if the objetive is to ompute all eigenvalueswith small relative error, the de�nite and the inde�nite ase must betreated di�erently. We �rst analyze the3.1 Symmetri De�nite CaseNumerial analysis of thie two{stage diagonalization proedure is sim-ple but with far reahing onsequenes. We start with the analysis ofthe Cholesky fatorization.In oating point omputation, the omputed approximation of L is ~Land we need an estimate for the bakward error ~L~LT �H . The followingproposition is due to Demmel [7℄.Proposition 3.1 Suppose the Cholesky fatorization algorithm has su-essfully ompleted all steps in oating point arithmeti with unit round-o� �. If ~L is the omputed lover triangular matrix, then ~L~LT = H+ÆH,where ÆH is symmetri matrix suh that for all 1 � i; j � njÆHij j � �CqHiiHjj ; �C = (n)�1� 2(n)� ; (n) = maxf3; ng: (3.1)Note that the bakward error ÆH is bounded entry{wise, rather thannorm{wise.Now, we apply the one-sided Jaobi algorithm to the matrix ~L, thatis, we impliitly run the symmetri Jaobi on the matrix ~LT ~L. As hasbeen shown in subsetion 1.2, this iteration proess has form G(k+1) =



18G(k)V (k), k � 0, where V (k) is plane Jaobi rotation and G(0) = ~L.The proess terminates at index ` where the normalized olumns of G(`)are orthogonal up to a tolerane O(n�). The following proposition from[9℄ desribes the numerial behaviour of the right{handed Jaobi SVDalgorithm.Proposition 3.2 Let the yli one-sided Jaobi algorithm be applied to~L in oating point arithmeti with roundo� �. Let eah yle omprisep parallel steps and let the stopping riterion be satis�ed after s yles.Let ~G(k), k = 0; : : : ; ` = p � s, ~G(0) = ~L be the generated matries. Thenthere exists an orthogonal matrix V̂ and a bakward error Æ ~L suh that~G(`) = (~L+ Æ ~L)V̂ andkeTi Æ ~Lk2 � �JkeTi ~Lk2; 1 � i � n; �J � (1 + 6�)` � 1:Further, due to the stopping riterion, the olumns of ~G(`) are numeri-ally orthogonal, that ismaxi;j os 6 ( ~G(`)ei ; ~G(`)ej) � O(n�):It is important to note that the error analysis is done row{wise, whilethe onvergene is de�ned olumn{wise.>From Proposition 3.2 it follows that ~G(`) an be written as ~G(`) =~U ~�, where ~� is diagonal with olumn norms of ~G(`) along its diagonal,and ~U is numerially orthogonal, j ~UT ~U � Injij � O(n�).Combining Propositions 3.1 and 3.2, we get~U ~�2 ~UT = (~L+ Æ ~L)(~L+ Æ ~L)T = ~L~LT + ~LÆ ~LT + Æ ~L~LT + Æ ~LÆ ~LT= H + ÆH +E; E = ~LÆ ~LT + Æ ~L~LT + Æ ~LÆ ~LT :The perturbation matrix �H = ÆH + E is symmetri and it holdsmaxi;j j�HijjpHiiHjj � � � �C + 2�J +O(�2J):If we set ~� = ~�2, then we have H + �H = ~U ~� ~UT . This means thatthis variant of the Jaobi diagonalization method omputes the eigenval-ues and eigenvetors with entry{wise small bakward error. The meth-ods that �rst tridiagonalize the matrix do not share this important prop-erty .Let us estimate the forward error in the omputed approximations~�ii of the eigenvalues �i of H . Let ~�1 � � � � � ~�n be the eigenvaluesof H + �H and let the eigenvalues �i of H as well as the diagonals of~� be noninreasingly ordered. First we estimate the maximum relativedistane between �i and ~�i.



Advanes in Jaobi Methods 19We an presume that � is small enough so that kL�1�HL�Tk2 < 1holds, implying that the positive square root of In+L�1�HL�T is wellde�ned. Sine the matrixH + �H = LpI + L�1�HL�TpI + L�1�HL�TLTis similar to pI + L�1�HL�TLTLpI + L�1�HL�T ;and LTL is similar to H = LLT , an appliation of Ostrowsky's theoremyields ~�i = �i(1 + �i); j�ij � kL�1�HL�Tk2; 1 � i � n : The keyobservation in this estimate is as follows. If we set D = [diag(H)℄1=2,then L�1�HL�T = L�1D(D�1�HD�1)DL�T andkL�1�HL�Tk2 � kL�1Dk22kD�1�HD�1k2= k(D�1HD�1)�1k2kD�1�HD�1k2� n�k(D�1HD�1)�1k2:The matrix HS = D�1HD�1 has unit diagonal, o�-diagonals less thanone in modulus, and by the well{known result of van der Sluis [50℄ itholds kH�1S k2 � �2(HS) � n minS=diag;det(S)6=0�2(SHS) � n�2(H):Here �2(X) = kXk2kX�1k2 is the spetral ondition number. Therefore,we an write~�i = �i(1 + �i); j�ij � n�kH�1S k2; 1 � i � n: (3.2)Next, we estimate the relative distane between ~�i and ~�ii. The stoppingriterion ensures that ~UT ~U = I + X with maxi;j jxij j � O(n�), whereX = (xij). An easy alulus shows that there exists an orthogonalmatrix Û suh that ~U = (I+Y )1=2Û , where Y is symmetri and kY k2 =kXk2 � O(n2�). Hene,H + �H = ~U ~�~UT = (I + Y )1=2Û ~�ÛT (I + Y )1=2;and we an again apply the Ostrowsky's theorem to obtain ~�i = ~�ii(1+�0i), j�0ij = O(n2�)). This together with (3.2) implies~�ii = �i 1 + �i1 + �0i = �i(1 + �i) ; j�ij � O(n2�)kH�1S k2; 1 � i � n :This bound is nearly the best one an hope for in omputing with oat-ing point positive de�nite matries. For, Demmel [7℄ has shown that



20relative entry{wise perturbations of size 1=kH�1S k2 an make H exatlysingular, and that H an be onsidered numerially positive de�niteif kH�1S k2 < 1=(n�C). Moreover, Veseli� and Slapni�ar [53℄ have shownthat the spetrum of positive de�nite H is stable under entry{wise oat-ing point perturbations if and only if kH�1S k2 is moderate.We an onlude that the forward error in the omputed eigenvaluesdepends on �2(HS), and not on �2(H), as is in the ase of methods basedon tridiagonalization. Sine �2(HS) � n�2(H), and sine it is possible�2(HS) � �2(H), the Jaobi method is numerially learly superior toany method that �rst tridiagonalizes the matrix. This method is methodof hoie for omputing the eigenvalues of positive de�nite matries withhigh relative auray.The diagonalization proedure just desribed (Cholesky fatorizationfollowed by the right{handed Jaobi on L) impliitly diagonalizes LTL.This is more than just a nie observation. It atually means that thisJaobi method is preonditioned using one impliit (ost free) step ofthe Rutishauser LR method. Beause of diagonalizing e�et of preon-ditioning, the Jaobi method onverges faster, espeially if the Choleskyfatorization is omputed with pivoting. For more disussion see [52℄and [14℄.3.2 Inde�nite CaseHere we provide elements of perturbation analysis and error boundsfor the J-symmetri Jaobi method and one-sided J-symmetri om-pound Jaobi method desribed in Subsetion 1.3.Let us �rst onsider the J-symmetri eigenvalue problem Hx = �Jxwith positive de�nite H ,QTHQ = �; QTJQ = J; � = diag(�i):Let H = DAD, where D = diag(d11; : : : ; dnn) is diagonal and A ispositive de�nite with unit diagonal. Further, let ÆH = DÆAD. Bythe result of Veseli� and Slapni�ar [53, 46℄, if jÆHijj � �diidjj , and if~� � kÆAk2 kA�1k2 � n�kA�1k2 < 1, then1� ~� � ~�i�i � 1 + ~�: (3.3)The perturbation result for the invariant subspaes is given by Slapni�arand Truhar in [45℄. Let us partition the eigenvalue problem as" QT1QT2 # H [Q1 Q2℄ = � �1 �2 � ; " QT1QT2 # J [Q1 Q2℄ = � J1 J2 � ;



Advanes in Jaobi Methods 21and let the perturbed problem be partitioned aordingly. Let ~X1 andX2 be orthogonal bases for subspaes spanned by the olumns of ~Q1 andJQ2J2, respetively. Let U�V � be a singular value deomposition of thematrix XT2 ~X1. The diagonal entries of the matrix sin �(Q1; ~Q1) � � arethe sines of anonial angles between subspaes spanned by the olumnsof Q1 and ~Q1 (see [48℄). The relative gap is in this ase de�ned by(~�1;�2) = mini;j j [~�1℄ii[J1℄ii � [�2℄jj [J2℄jj jq [~�1℄ii � [�2℄jj : (3.4)Then, if kÆAk2 kA�1k2 < 1, we havek sin�(Q1; ~Q1)kF � kQk22 12 +r1 + 14 2!  (~�1;�2) ; (3.5)where  = kÆAk2 kA�1kFp1� kÆAk2 kA�1k2 :Clearly, when J = I , thenQ is orthogonal, and (3.5) is a subspae versionof the orresponding eigenvetor bounds from [6℄. However, when J 6= I ,then kQk22 � �2(Q) is the spetral ondition number. It is a remarkablefat that �2(Q) is bounded by the ondition number of A, the samequantity that governs the auray of the omputation. In [47℄, Slapni�arand Veseli� proved that�(Q) � r min�J=J� �2(�TA�) � q�2(A):We now desribe results of numerial analysis. Error analysis of asingle hyperboli rotation is tehnially more ompliated beause suhtransformations are nonorthogonal and possibly of large norm. One stepof the method, H(k+1) = CTk H(k)Ck, in oating point omputation is ofthe form ~H(k+1) = ~CTk ( ~H(k) + Æ ~H(k)) ~Ckwhere ~Ck is hyperboli rotation, and the bakward perturbation Æ ~H(k)is bounded as follows: If ~H(k) = DkAkDk, where Dk is diagonal andAk has unit diagonal, then we an write Æ ~H(k) as Æ ~H(k) = DkÆAkDk,where kÆAkk2 � �k". Here �k = O(p�2(Ak)pn). Thus, aording to(3.3), the perturbation of the eigenvalues due to single oating pointhyperboli rotation is determined by the valuekÆAkk2 kA�1k k2 � �k"kA�1k k2:



22Aumulating the e�et of a total of r rotations, gives the relative errorbound for the omputed eigenvalues of the order of" rXk=0�kkA�1k k2 +O(n2)":The error bound for the omputed eigenspaes follows by plugging theabove bound for kÆAkk2 into (3.5) and aumulating the e�et of a totalof r rotations in a similar manner. For details see [43℄.During the proess, kA�1k k2 and �2(Ak) tend to one, starting withkA�1k2 and �2(A), respetively. While the theoretial bound for thevalues of kA�1k k2 and �2(Ak), k = 1; 2; : : : is pessimisti, numerial evi-dene indiates that these values never grow too muh above the initialvalues. For more disussion see [40, 43, 41, 44℄.Next, we onsider the symmetri inde�nite eigenvalue problem Hx =�x, QTHQ = �; QTQ = I; � = diag(�i) nonsingular ;and the appropriate ompound method.The perturbation bound for the eigenvalues is given by Veseli� andSlapni�ar [53, 46℄. Let jH js = pH2 be the spetral absolute value ofH , and let jH js = DAD, where D = diag(d11; : : : ; dnn) is diagonal andA is positive de�nite with unit diagonal. Further, let ÆH = DÆAD. IfjÆHij j � �diidjj , and if ~� � kÆAk2 kA�1k2 � n�kA�1k2 < 1, then theperturbation of the eigenvalues is again bounded by (3.3).The perturbation theory for the invariant subspaes, given by Truharand Slapni�ar [49℄, assumes the following partition of the eigenvaluedeomposition " QT1QT2 #H � Q1 Q2 � = � �1 �2 � :Let the perturbed problem be partitioned aordingly. Similarly to (3.5),if kÆAk2 kA�1k2 < 1, thenk sin�(Q1; ~Q1)kF � kV k22 kÆAk2 kA�1kFp1� kÆAk2 kA�1k2 1(~�1;�2) : (3.6)Here (~�1;�2) is again de�ned as in (3.4), but without J1 and J2, andV is the hyperboli eigenvetor matrix of the pair (GTG; J).We now desribe numerial analysis of the fatorization. For the sakeof simpliity, we assume that the matrix is already pivoted so that theBunh{Parlett symmetri inde�nite fatorization PHPT = GJGT runs



Advanes in Jaobi Methods 23with P = I . Slapni�ar [42℄ has shown that in oating point, the om-puted matrix G satis�es GJGT = H + ÆHwith symmetri bakward perturbation ÆH bounded entry{wise byjÆH j � O(n)"(jH j+ jGjjGjT):The e�et of this bakward error to the eigenvalues of H is given by(3.3) with ~� � O(n)"k(D̂�1GV V TGT D̂�1)�1k2; (3.7)where D̂ is a diagonal saling matrix and the rows of the matrix D̂�1Gare of unit Eulidean norm. The details of this estimation an be foundin [40, 43℄. Also, by using (3.6) it an be shown that the error in theomputed invariant subspaes, whih is due to fatorization is boundedby (see [40, 43℄)k sin�(Q1; ~Q1)kF � O(kV k22) ~�(~�1;�2) : (3.8)The fatorization PHPT = GJGT has two more remarkable propertiesworth mentioning (see [42℄ for details). First, if the omputed fator ~Gis lower triangular (meaning that only 1� 1 pivots took plae), then thefatorization is also forward stable,j ~G� Gj � 3njGjtril(jG�1j(jH j+ jGj jGjT)jG�1jT )"+ O("2):Seond, let G = BD, where D is diagonal saling and the olumns of Bare of unit Eulidean norm. Then the ondition number of B is boundedby a funtion of n, irrespetive of the ondition number of G,�2(B) � 3:781np15n2 + n :Let us now onsider the iterative part of the method. Let ~H = ~GJ ~GTand ~G = (B+ ÆB)D. Then the eigenvalue perturbation an be boundedby (see [53℄) (1� �)2 � ~�i�i � (1 + �)2; � = kÆBByk2: (3.9)One step of the one{sided method, G(k+1) = G(k)Ck, in oating pointomputation is of the form~G(k+1) = ( ~G(k) + Æ ~G(k)) ~Ck



24where ~Ck is hyperboli rotation, and the bakward perturbation Æ ~G(k)is bounded as follows: If ~G(k) = BkDk, where Dk is diagonal and Bkhas unit olumns, then we an write Æ ~G(k) as Æ ~G(k) = ÆBkDk, wherekÆBkk2 � �k". Here �k is moderate onstant. Thus, the perturbation ofthe eigenvalues due to a single oating point rotation is determined bythe value of kÆBkBykk2 � �k"kBykk2. Aumulating the e�et of a totalof r rotations, where ~G(r) has olumns orthogonal up to O(n"), gives therelative error bound for the omputed eigenvalues of the order of~� = " rXk=0 �kkBykk2 +O(n2)": (3.10)By ombining (3.3), (3.7), (3.9) and (3.10), it follows that the relativeerror in the eigenvalues ~�i omputed by the ompound method (inde�-nite fatorization followed by the one-sided J-symmetri Jaobi method)is bounded by j ~�i � �ijj�ij � ~� + ~� +O("2): (3.11)Error bound for the omputed invariant subspaes is obtained by om-bining (3.8) with the bound for the errors due to iterative part of thealgorithm from [43℄, essentially givingk sin�(Q1; ~Q1)kF � O(kV k22) ~� + ~�(~�1;�2) : (3.12)Similarly to the two-sided method, during the proess, kBykk2 tendsto one, starting with kByk2. While the theoretial bound for the valuesof kBykk2, k = 1; 2; : : : is again pessimisti, numerial evidene indiatesthat these values never grow too muh above the initial value kByk2.Moreover, it has been observed in [40, 43℄, that kByk2 is in general verylow, primarily due to the rank revealing property of the fatorizationPHPT = GJGT . Consequently, the �nal errors in (3.11) and (3.12) aremainly due to the fatorization part of the algorithm, that is, to ~�. Formore disussion see [40, 43, 41, 44℄.3.3 Computing SVDHere we disuss relative auray issues in one-sided Jaobi methodfor omputing singular value deomposition of a general m � n matrixA, m � n. The simplest variant of the method is simply impliit formof the symmetri Jaobi on H = ATA. More sophistiated versions usepreonditioning to enhane numerial auray and eÆieny (speed).



Advanes in Jaobi Methods 25For instane, the QR fatorization with pivoting is an exellent pre-onditioner in the following sense. If A = QR is the QR fatorizationwith standard Businger{Golub olumn pivoting (A AP , P permuta-tion matrix), then the SVD Jaobi applied to RT onverges muh fasterthan applied to A or R. This is beause of impliitly performed stepof Rutishauser's LR method (transition from RTR to RRT ). Moreover,the omputed ~R satis�es A + ÆA = Q̂ ~R, where Q̂ is orthonormal andkÆAeik2 � �QRkAeik2, 1 � i � n. Here �QR is bounded by a modestpolynomial times the roundo� unit �. Note that the relative bakwarderror is small in eah olumn of A. For more details see [9℄.If we apply the SVD Jaobi on ~L = ~RT , then by Proposition 3.2, forsome orthogonal V̂ it holds ~R+ Æ ~R = V̂ ~�~UT . Here ~U is numerially or-thogonal, ~� is diagonal, and kÆ ~Reik2 � �Jk ~Reik, 1 � i � n. Combiningthe results we obtain the relationA+�A = Q̂V̂ ~� ~UT ; �A = ÆA+ Q̂Æ ~R;where k�Aeik2 � (�QR + �J + �QR�J)kAeik2; 1 � i � n:Here we note that the angle of Jaobi rotation underows if the ondi-tion number �2(A) overows, and that standard onstrution of Jaobirotation an lead to misonvergene of the algorithm. To avoid this,Jaobi rotation must be modi�ed as shown in [11℄. Also, instead of Q̂,V̂ we will have omputed numerially orthogonal matries ~Q, ~V suhthat k ~Q� Q̂k2 and k ~V � V̂ k2 are bounded by moderate polynomials ofthe dimensions times the roundo� �.Let �1 � � � � � �n > 0 and ~�1 � � � � � ~�n be the eigenvalues of A andA+ �A, respetively. Write D = diag(kAe1k2; : : : ; kAe1k2) andA +�A = (I +�AAy)A = (I + (�AD�1)(AD�1)y)A :>From the variational haraterization of the singular values, we imme-diately onludemaxi j~�i � �ij�i � � � k�AAyk2 � pn(�QR + �J + �QR�J)kAysk2;where As = AD�1. On the other hand, one an show that, for all i,~�i = ~�ii(1 +O(n2�).By a theorem due to van der Sluis [50℄, we know that�2(As) � kAsk2kAysk2 � pn minS=diag;det(S)6=0�2(AS) � pn�2(A):



26Thus, the SVD Jaobi algorithm omputes the singular values with smallrelative bakward error in eah olumn of A. This means that smallolumns are preserved. The relative error in the omputed singular val-ues depends on the ondition number of the olumn equilibrated matrixAs, and not on the ondition number of the initial A. These propertiesare not shared by bidiagonalization based methods . (Reent modi�ationof the bidiagonalization proess, due to Barlow [1℄, improves the au-ray of the bidiagonalization, but not to the level of the Jaobi SVDalgorithm.)The bakward error in the Jaobi algorithm an be put into multiplia-tive form (I + �AAy)A with small � = k�AAyk if �2(As) is moderate.This fat also has important impliations to the auray of the om-puted singular vetors. Let �i be simple with singular vetors ui and vi.If ui + Æui, vi + Ævi are the singular vetors of A + �A, orrespondingto ~�i, thenmaxfsin 6 (ui; ui + Æui); sin 6 (vi; vi + Ævi)g � O(�)gapi (3.13)where gapi = min�minj 6=i j�i � ~�j j�i ; 2� :Thus, the approximation error for the singular vetors of A + �A de-pends on the ondition number �2(As) and the relative separation ofthe singular values. Sine our omputed vetors are lose to those ofA + �A, we an onlude that the SVD Jaobi omputes the singularvetors with a bound like (3.13). The same onlusion then holds forthe eigenvetors omputed by the previously explained diagonalizationproedure of symmetri positive de�nite matrix.>From the above analysis we an see that the SVD Jaobi an omputewith high relative auray the SVD of any matrix A of the form A =BS, where S is any diagonal matrix, and B is well onditioned (�2(B)moderate). A simple devie an preserve this property if A is moregeneral, for instane if A = S1BS2, where S1, S2 are arbitrary diagonalsalings, and B is well onditioned. In that ase, the QR fatorizationin the �rst step should be omputed with olumn and row pivoting. Forthe details see [14℄, [5℄. We only note that our theoretial understandingis one step behind numerial experiene.The SVD Jaobi method an be generalized e.g. to the SVD of theprodut of two matries. For instane, if A = BS, C = GD with wellonditioned full olumn rank B, G with equilibrated olumns, and arbi-trary diagonal matries S, D, then the SVD of ACT = BSDGT an beomputed as follows. First, we ompute QR fatorization with olumn
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