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Abstract  Two-sided and especially one-sided Jacobi methods for solving eigen-
problems of Hermitian positive definite and symmetric indefinite matri-
ces are reviewed. SV one-sided methods are included in this survey.
Special attention is paid to the latest results on accuracy and on asymp-
totic convergence of scaled iterates by these methods.
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Introduction

It is known that diagonalization methods deliver output data with
high relative accuracy, a property which is not shared with faster meth-
ods such as Divide and Conquer or QR methods which require tridi-
agonalization or bidiagonalization as a preprocessing step. After the
pioneering research of Demmel and Veseli¢ [6], accuracy of other meth-
ods for solving different matrix eigenproblems has been inspected (see
[25, 41]). Closely related stopping criterions and measures of conver-
gence have also been reinvestigated.

In this overview paper we present the latest research of Jacobi meth-
ods for solving Hermitian/symmetric eigenvalue problem and the sin-
gular value problem. The new results mostly address accuracy and the
asymptotic convergence of scaled iterates.

The paper is divided into three sections. In Section 1 are briefly
described two- and one-sided Jacobi methods for Hermitian /symmetric
eigenvalue problem. A special attention is paid to J-symmetric Jacobi
method of Veseli¢ [51] and its one-sided version which is an excellent
tool for accurate eigensolving of indefinite symmetric matrices. In Sec-
tion 2, their asymptotic convergence is reviewed and several new results
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are shortly explained. Finally, in Section 3, the latest accuracy results
concerning one-sided methods are presented.

1. Two-sided Methods

Here we first give a short introduction to Jacobi-type processes [36,
17]. Then we give a brief description of the the most important methods:
Hermitian Jacobi method and J-symmetric Jacobi method. For each of
the two methods, we introduce both the two- and one-sided versions.

1.1 Jacobi-type Processes

Jacobi-type methods are iterative processes of the form
AED = prAR Qp k>0, (1.1)

where Py, Qi are nonsingular elementary plane matrices, P is the com-
plex transpose of P, and A = A is the initial matrix of order n. An
elementary plane matrix F is a nonsingular matrix which differs from
identity matrix I, in one principal submatrix of order two, denote it by
ﬁ], which is called pivot submatriz or the (i, j)-restriction of F. The pair
of indices 7,7, ¢+ < 7 which determine position of 7 within F are pivot
indices and (i,7) is pivot pair. In (1.1) pivot indices depend on k, so
i = i(k), 7 = j(k). When emphasis is on pivot indices we shall write
Piryj(x) instead of P (similar for Q1) and when & is understood just

P;;. Transition from A to AR+ ig called the kth step or iteration of
the method.

Jacobi methods are characterized by the requirement

Uity = i = 0 k>0,
which implies that for each k, P, and Qk are computed from Ag.

Pivot strategy is a rule for selecting pivot pairs. We identify each
pivot strategy with a function I : Ng — P,,, where Nog = {0,1,2,...}
and P, = {(I,m);1 <1 < m < n}, n > 2. Among different classes
of (pivot) strategies we consider here only periodic strategies which are
periodic functions. This means [(k + M) = I(k), k > 0 for a positive
integer M, the period of 1. A periodic strategy I is quasi-cyclic if

{I(k);0 < k < M — 1} = P,, and a quasi-cyclic strategy is cyclic if

M=N% n(n—1)/2. The set of M successive iterations starting with k

which is a multiple of M, is usually called a quasi-cycle (cycle for cyclic
strategies). In the sequel the term strategy means periodic strategy.
The most common are the row-cyclic and column-cyclic strategies (often
referred to as serial) and the parallel ones.
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The column-cyclic strategy is defined by I (k) = (i(k), j(k)), & > 0,
where as k increases, the pivot pair runs through the column-wise or-
dering of P,,: (1,2), (1,3), (2,3),...,(1,n), (2,n), ...,(n — 1,n) of P,,.
The row-cyclic strategy I is defined in a similar way by the row-wise
ordering of P,,: (1,2), (1,3), ...,(1,n), (2,3), ...,(n — 1,n). By paral-
lel strategy we mean a cyclic strategy for which the defining ordering of
P., can be divided into p subsequences each containing mutually disjoint
pairs (pairs (I, m) and (p, ¢) are disjoint if {I, m}n{p,q} = 0). The plane
matrices associated with each such subsequence mutually commute, they
all can be computed in the same time and all can be applied simultane-
ously. Best efficiency is obtained when p &~ n. Then each subsequence
contains around n/2 pairs (see [3, 28, 18, 29]). A cycle then consists of
p parallel steps and each parallel step comprises & n/2 sequential steps.

Another interesting periodic strategy is the quasi-cyclic strategy of
Mascarenhas [30, 31, 37] which enables cubic asymptotic convergence
per quasi-cycle and for which M a~ 1.25N.

The notion of convergence depends on the method. For two-sided
methods it usually means convergence of the iterated matrix to a diag-
onal matrix.

1.2 Hermitian Jacobi Method

Let H = (hi,) be a (complex) Hermitian matrix of order n. Jacobi
method for computing the eigendecomposition of Hermitian matrices
generates sequence of Hermitian matrices by the rule (1.1) with P, = Qy,
k > 0 being unitary matrices. Rewriting (1.1) with these assumptions,
yields

A —vea®y, k>0, HO=H
where Vi, k& > 0 are unitary plane matrices. If eigenvectors are wanted,
then V(*) = VoVi -+ - Vi1 is computed by the rule V) — V(k*])qu7
E>1, VO =71, Foreach k> 0 pivot submatrix of Vj,

1

V- cos k) ~sin (R et
ET ] sin WMo cos o)

is chosen to diagonalize the pivot submatrix A®) of HK) = (h;fn)) Here 2

denotes the imaginary unit and Z denotes the complex conjuga,fe of z €C.

Hence, ©*) and wy, are chosen to produce hng) = 0. For hff) =0, the
E'th step is skipped i.e. wy = ©*) = 0is presumed. Otherwise, the usual
choice
p ) 21h{F)|
twp 2] (k) — 2]
C Ty W
i j

i U 1.

3 @(k) € [777/47 77/4] s (]'2)
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is assumed. If H is real symmetric, wy is set zero, so that aH V( ) are
orthogonal and all H*) are real symmetric. In this case |h | in the

(k)

relation (1.2) is replaced by h;.”. Using B = cos B §F) = gin (),

+F) — tan cp(k), the transformation formulas read
) AN T T

R+ (k) (B) e (B (B W7 I gé {i,7}

1 1 i (1.3)
h7(7k+1) 7h77 +|h |f hglj_l—]) |h |f
hng) =0, h;f)j—]) = h;ql;) whenever [,m ¢ {i, j}.
As a consequence of the choice of transformation parameters, we have
lQHEED = QHO)E —2 [ P k>0, (14)
where generally, Q(X) = X — diag(X) stands for the off-diagonal part
of X and || -||r is the Frobenius (or Euclidean) matrix norm. By || -||2

is denoted the spectral or matrix 2-norm. The quantity ||[Q(X)||# is
sometimes referred to as (see [20]) the off-norm of X. The quantity
|QH®)|[7 can be used to measure the progress of the process.

The serial Jacobi methods are globally convergent, i.e. the sequence of
matrices H(*) is convergent to diagonal matrix for any initial Hermitian
H (see [16] and [24]). The asymptotically faster quasi-cyclic method
defined by Mascarenhas strategy is also globally convergent [37].

If H eC™ " is positive definite, then all H*) k> 0 are positive
definite and Jacobi method delivers relatively accurate eigenvalues and
eigenvectors (almost as accurate as H allows, see [6]). Scaled matrices

1 = [diag(HO) V2 HO[diag(HEN) V2 k>0, (15)
play important role concerning accuracy. Their off-diagonal parts, and

the corresponding norms

AW = o(u)y = il 1 = A k>0,

are used in terminating of the process (see (2.8)). This will be discussed

later. Note that the diagonal elements of AK) = (agfn)), k> 0 are zeros
and the off-diagonal elements are given by

ol =B B EEL 1w, k>0, (1.6)

The property (1.4) is not shared with the sequence of scaled matrices
since

D = (AGFD) =1 ()« A ) Ay () A (1)) =1
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is not a unitary transformation. Actually, the off-norm of scaled matrices
can temporarily increase during the process. In [34] it has been proven

(B) 2 (E) 2
L e L e N
” 1.7
(k) 1A ]2 —2]al?)| (1-7)
|a; |7(1<)|

/7,,7 17|(J,1:7

[ATFD]2 — jla®) 2

A

Hence, if [JAFED|| > [JAK)|| then 0 < |a7(f)| < 1§||A(]“)||2. We see that
only quadratically small (in the scaled sense) pivot element can cause
the growth of [|[A(%)||. The above estimates make it possible to find an
upper bound for the finite sequence ag, aq, ..., an provided that ag is
small enough.

Scaled iterates can be defined in indefinite case, whenever diagonal
elements are nonzero. Then the scaling matrix [dia,gzg(f-f(]“))]*]/2 should

be replaced by [| diag(H®) |]71/? = [diag(|H |)]71/2 the diagonal

elements of H( ) are £1, Ak — =Q(H (')) and (1 S h/m/\/ 11 mm

I+ m, k>0. Here |X| = (|#im]) provided ‘rha‘r X = (21m)-

One-Sided Jacobi Method Tet H = LL7 he the Cholesky factoriza-
tion of positive definite H, and let I, = ULV be the SVD of I.. Then,
since U/ is orthogonal and ¥ diagonal, the decomposition H = UX?U7
is the spectral decomposition of H. Hence, we can diagonalize H in
two steps: (1) compute the Cholesky factorization to get I and (2)
compute the SVD of L. For the second task we can use the so called
one-sided (or right-handed) Jacobi method. This method appears nat-
urally, when two-sided Jacobi method is applied to LTL. After k steps
one obtains the matrix (LVy---V, )T LVy--- Vi 4, hence it is sufficient
to iterate the process GE+) = GOV k> 0, GO = . To compute
the parameters of Vk one needs (see (1.2)) to compute scalar product
of pivo‘r columns ( Fe, | G* ) and squares of pivot column norms
|GHFe;||? and ||GHFe; i|I? (e; is the Ith column of 7,,). Fortunately, us-
ing formulas for upda‘rmg the diagonal elements from (1.3) the squares
of norms have to be computed once or twice during the whole process.
The effect of kth transformation is to orthogonalize the pivot columns
of G®) . Assuming a “convergent” (e.g. the serial) pivot strategy, the
sequence GF) approaches a set of matrices with orthogonal columns.
Let G = U®ESH) | where U®) has normalized columns and ©(*) is
diagonal positive definite. We can choose any convergent subsequence
of V!) = V. .-V} and an appropriate convergent, subsequence of k)
to obtain in the limit UX = LV, the SVD of L. Left singular vectors of
I, are eigenvectors of H and squares of the singular values of I are the
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eigenvalues of H. In the context of computing the spectral decomposi-
tion of H, right singular vectors are not needed, hence accumulation of
rotations can be skipped. This and several other attractive features of
the one-sided method are first noted, analyzed and exploited by Veselié¢
and Hari [52]. We shall address some of these features in Subsection 3.1.

1.3 J-Symmetric Jacobi Method

J-symmetric Jacobi method, introduced by Veseli¢ in [51], is a diago-
nalization method for the generalized eigenvalue problem Hzx = AJz
where I € R" ™ is symmetric matrix and .J = diag(7,,, I,_) is divect
sum of I, and —1I,_,,. The method generates the sequence of matrices
by the rule (1.1) with P, = Q, k > 0. Since transformation matrices
need not be orthogonal, we denote them by C, k& > 0 so that (1.1) takes
form

HUED —cTH®Cy, k>0, HO=H.

The method is so designed that CZJCk = .J holds for all & > 0. We
see that transition from H®) to H*+1) is made by congruence trans-
formation which preserves the symmetry and inertia of matrices (%)
as well as the eigenvalues of the initial pair (H,.J). Since all C} are
J — orthogonal, the method is sometimes called J-orthogonal (see [43]).
Although the method can be generalized to complex matrices, all known
results refer to real matrices.

For1 <1< j<mand m+1 <1 < j<n, (}is plane rotation
and for 1 <i < m < j < nitis J-orthogonal plane matrix (hyperbolic
rotation). Their pivot submatrices have form

cos P —gin o*) cosh %) ginh ()

Filk)

1

and ) _ [

sin B cos k) sinh ©®)  cosh ()

respectively. The angle ©(*) is in either case chosen to annihilate the

(k)

pivot element hi(k)j(k)’ which leads to very simple angle formulas

2h(}) _op®
tan 299(]“) =7 tanh 299(]“) = __

with o®) e [—7/4, = /4] for orthogonal rotation. Using ¢%), (%) and ()
for both the trigonometric and hyperbolic functions and 7 =1 (r = —1)
for hyperbolic (orthogonal) rotation, we obtain the following transfor-
mation formulas (compare to the relation (1.3))
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e . A S (%)

"7l
Bt 1 3o (k 3o (k Bt 1 Bt 1 .
h;l ) _ C(k)h,gl) L7 S(k)hfj] )7 h;j ) _ hﬂg‘l )7 1¢{i j} s
(k+1) _ (k) k), (k) (k+1) _ ¢ (k) k) p, (k) ’
by = by O Y = B R,
BT =0, Rl = ey i = 0
The transformation defined by 7 = —1 (7 = 1) is called kth trigono-
metric (hyperbolic) step or iteration of the method. If eigenvectors are
wanted, the transformations are collected as product CoCly---. After

trigonometric step the relation (1.4) holds. To see what happens after
hyperbolic step, let

i 7 (k)
[77’], k) .
17 (%) l 1(}() 1(2) ] 7 J = [ o ] , Hf1) is m by m,
Hy' Hyg :

. k k k
S*(HW) = 1HIDIF 1T — 201351
Then for the hyperbolic step holds (see [51])

2 E41)y _ o2 k (k)y2
S(HEY = §2(H Ry 4 2(hi)2,

We can say that hyperbolic steps transfer the off-diagonal weight from

the blocks Hf];) and Héf) to diagonal blocks Hﬁ) and HQ(];) and trigono-
metric steps diagonalize the diagonal blocks. Overall, H*) converges to
a diagonal matrix. In [51] it has been proved that the method converges
globally under the serial strategies.

If [l is n by n positive definite, then all H*) % > 0 are such. Scaled
iterate H‘(gk) and its off-diagonal part A) are defined as above, so that
relations (1.5)  (1.6) hold for this method too.

Resemblance with symmetric Jacobi method is also seen from the rela-
tions (1.7) which hold not only for trigonometric, but also for hyperbolic
steps (see [35]). In particular, (1.7) has form

s ey i 1) — 20l el + )

a0 4 ol 3 <
il il 1_ |aff)|2 1 — |aij]

One-Sided J-Symmetric Method J-symmetric Jacobi method also
has its one-sided version which is an excellent method for accurate eigen-
solving of symmetric indefinite eigenproblem. let us briefly derive the
algorithm (see [40, 42, 46]).



Let H = PG1.JiGTPT be the Bunch-Parlett factorization [4] of a
nonsingular, indefinite symmetric matrix H. Here P is permutation, (7,
lower block-triangular with diagonal blocks of order one or two and .J4
diagonal with £+1 on its diagonal. Using the second permutation Py in

H = PG, ,GTPT = (PGP (P PTY(P,GTPTY = GaG”

one can obtain J = diag(/l,,, I,—). Now Hx = Az can be written as
GJGT = Xz and since G is invertible, the last equation is equivalent,
to GTGIG 2 = AGTx. This can be written as G7 Gz = AJz with
2= JGTz. Since Gz = GJGT2 = Ha = Az, one obtains z = (G2)/A\.
In conclusion, the initial indefinite symmetric eigenproblem Hz = Az is
converted to .J — symmetric eigenproblem with positive definite matrix
GTG. To solve the new problem one can apply J-symmetric Jacobi
method. As will be seen later, this transition makes sense if accuracy
of all eigenvalues and eigenvectors is important. A pleasant fact with
the new eigenproblem is that G7'( need not be computed. One simply
postmultiplies G by the J-orthogonal transformations,

GUD — W, k>0, GO =q.

Using additional vector to store the diagonal of (G(k))TG(k) and making
benefit of simple updates of that vector described in (1.8), only one scalar
product of the form (G(k)ei | G(k)ej) is needed to compute the parame-
ters of C}. In addition, the matrices (', need not be accumulated since
G(gk) Gk )A VAL = dlag(H@ P1|| ||@ PWH) approaches the set
of PlanVP('TOT’ ma‘rrweq of H and dlagonal elements of A? approach the
eigenvalues of H.

To see that, we have to assume a globally convergent pivot strategy, so
that (G(k))TG(k) — A% as k increases, where A is diagonal with positive

diagonal elements. Next, note that the sequence (G(k))k iq bounded So,

let (@( ))k be any convergent subsequence and let limy, @ = (. Since
QTQ =1, + N, where N has zero diagonal, we have

LN = QTQ=1lim AL (G GIIALT = A%lim AL,

implying lim; A;, = A and orthogonality of (). Since GUx) = G(ék)Aik,
(G(’:’f))k is convergent. Because (7 is invertible, the product CU») =
Co---C};, is also convergent. Let limy_, CUx) = (. Since J-orthogonal
matrices make a closed group in the group of regular matrices, ' is
J-orthogonal. In particular, this means that C.JCT = J. We have

obtained Q = GCA™', so we can write
HQ = (GIGTYGCAN ") =GCICT)GTGON " = GCIA? A
= GCJAN=GCA 'AJA = QJA?.



Advances in Jacobi Methods 9

This proves that @ is an eigenvector matrix of H. Since we have the

(k)

same conclusion for any convergent subsequence of GGy we have proved

that ng) approaches the set of eigenvector matrices of H.

Finally, let us mention that the one-sided J-symmetric method is of
interest on its own, not just as the part of the compound algorithm.
For example, this method can be used to solve the downdating problem,
which consists of finding the eigenvalue decomposition of the difference
of outer products,

H=AA" - BBT.
The matrix H can be written in the product form
H=GJGT, G=[A B, J=dag(, -TI),

and the latter problem can be solved by the the one-sided J-symmetric
method. For more details on this problem see [58, 43].

2. Asymptotic Convergence

It is well-known that cyclic Jacobi-type methods converge, under stan-
dard conditions, asymptotically quadratically. This means that for large

enough k,
QN < e |1, (2.1)

where N = n(n — 1)/2. The constant ¢ does not depend on k. By stan-
dard conditions we mean either simple eigenvalues or multiple eigenval-
ues plus ordering of diagonal elements so that those ones converging to
the same eigenvalue take successive positions on diagonal plus special
(e.g. serial) pivot strategies. By an argument of Wilkinson [56], classi-
cal Jacobi method and all kinds of optimal Jacobi methods for symmet-
ric/Hermitian matrices will converge quadratically or better. Since in
praxis one uses serial strategies, the relation (2.1) is modified to

Q(H FHIN) < e[ QUHENY1Z k> ko, 2.2
F

where kg is sufficiently large. The relation (2.2) shows that ultimately (in
praxis after several cycles) the measure ||[Q(H)||r reduces quadratically
per cycle.

The measure ||Q(H(k))||p‘ appears naturally in asymptotic conver-
gence results, since ||Q(H®) ||z = 0 shows H*) is diagonal. Tn addition,
IQ(H¥N|| - is the upper bound for max, |a£f) — X and therefore mea-
sures the absolute distance between diagonal elements and the affiliated
eigenvalues.

Note however, that one of the most important properties of Jacobi
methods is their relative accuracy. Hence, one would better look for a
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measure which bounds max; |a£f)f)\t|/|)\t| or max; |a£f)f)\t|/|a£f)|. That
measure (see [22]) has form ||Q(DHD)||p, where D = [|diag(D)|]~"/?
and it also appears in the accuracy estimates from [6]. This has given
rise to recent research of the quadratic convergence of scaled iterates by
Jacobi methods. The new results will be briefly presented here.

Since one-sided methods can be viewed as intelligent implementations
of two-sided methods, their asymptotic convergence amounts to that of
two-sided methods.

2.1 Hermitian Jacobi Method

et us first show using £ notation, the cubic convergence of the row-
cyclic Hermitian Jacobi method, when n = 4. Suppose the considered
cycle is not the first one (hence hsy = 0). Suppose the eigenvalues are
distinct and all off-diagonal elements are O(¢). We assume that ¢ is so
small that all angles and their sines have the same order of magnitude
as the corresponding pivot elements. Then, we have

1 l l l l
— e £ ¢ ¢ -~ e 0 & ¢ — e &2 o ¢
— £ e £ £ — o ® £ £ 2 e & &£
e g o 0 — £ ¢ o 0 o £ e g2
e e 0 e e € 0 o — e 2 o
l l l
g2 3 o e2 & o o 2 3 3
— 2 e £ £ — 2 e o ¢ €2 o £ o
— 82 £ o 52 53 o ° 52 — 83 52 ° 82
o € €2 o — o £ €2 o —= g2 o £2 o
o l
- e 2 2 &3 after - e 5 P gl
— &2 e 3 &P — thenext — 5 o 1 17
et 3 e o cycle 9 el o
3 5 o e el 17 o
bl 4 Pivot column
after — e g2 31 37 — Pivot row
the next — 20 o 37 57 0 Initial zeros
cycle g & o Produced zeros
g3 7 e’ O(€") element.

If the initial matrix has multiple eigenvalues, the above analysis is not
correct since almost diagonal matrices with multiple eigenvalues have
special structure which influences the asymptotic rate of convergence.
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Let

M= =, A== Ay ey A ==, (2.3)
be the eigenvalues of Hermitian H and let

('Si:rninp\,gi—)\57|7 1<i<p, 6= min §;
; .

: 1<i<p
J#
be the absolute gaps in the spectrum of H. Suppose that H satisfies
)
[l < 5.

and the diagonal elements of H affiliated with the same multiple eigen-
value occupy successive positions on the diagonal. Then H can be parti-
tioned as (H,;;) where each block Hj; has order n; = s, — 5,1, 1 <1 < p,
s0 = 0, s, = n. Here n; is the algebraic multiplicity of X;,. We can
assume that p > 1, since otherwise H = A\ 1,. let

mi(H) = Hj, n(H)=[Hy., ..., Hij1, Hiipq, ..., Hyyp)
T(H) = dia,g(Hn,... H )7 T(H):H—W(H)

+ 1Ipp

The special structure of an almost diagonal Hermitian matrix (see [56],
[26, 27] and [19, 20, 21, 23]) is revealed from the following result from
[21]. For 1 <7 < p holds

1.32 & 12(H)|I7
1) |7 < | Hii-ds, Tl < = leﬁi,fll%éo-ﬁﬁ%- (2.4)
b= '
i

This relation implies that within diagonal blocks the off-diagonal ele-
ments are quadratically small compared to those outside the diagonal
blocks. When a Jacobi method is applied to such H the relation (2.4)
will hold for all iteration matrices i.e. the partition will be preserved
(see [21, Lemma 2.2]). This implies that methods defined by the clas-
sical and other optimal strategies will never choose at that stage, pivot
elements from diagonal blocks and therefore all angles will ultimately
tend to zero.

Suppose, n =4, p =2, ny = 3, no = 1. Using the analysis as before
and taking into account (2.4), we obtain

UG l l l l
— o 2 2 & S5 e o 2 & — e &2 o =
— 2 o g2 ¢ o 2 e 2 o £2 £

€2 2 o 0 — 2 2 o 0 o 2 e ¢

e € 0 e e e 0 e — £ £ £ e
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\ \ \ !
o 2 2 o o 2 2 o o 6 6 3
— 22 e 2 & 5 22 e o ¢ 5 e o
— g2 2 e ¢ 2 o e g = 5 5 e ¢
0 £ £ ® = 0 £ £ o — g o £ e
G showing again the cubic convergence.
o b 6 3 Note that cubic reduction inside Hy,
S has occurred earlier than indicated
— % 5 e o above, probably after annihilating
— 2 T o e (1,4) element.

In general, when n > 4, we have only quadratic convergence for the
serial Jacobi methods.

Quadratic convergence considerations of symmetric Jacobi methods
in the case of simple and double eigenvalues originated from early works
of Wilkinson [55] and Schénhage [39] (see also [54] and [24]).

The harder case of multiple eigenvalues was first considered by Van
Kempen [26, 27] and Wilkinson [56]. TLater, Hari [21] gave the first
complete proof of the quadratic convergence of the serial Jacobi meth-
ods. The proof in [21] broadens and completes the considerations of
van Kempen from [27], who has not taken into account some quantities
which influence the bound. By sophisticated estimates it has been veri-
fied in [21] that the result stated in [27] indeed holds. The main result
from [21] has the form

2

[omle <t = e < 2D
It has been shown in [20] that in the case of multiple eigenvalues, large
angles can be expected during the process, irrespectively of how tiny the
off-diagonal elements are. Hence, the condition on diagonal elements
which ensures that the relation (2.4) holds cannot be omitted. If eigen-
values form clusters of small width, one can incorporate perturbation
theory (see [21]) to prove the quadratic reduction of ||Q(H*NY))|[F per
cycle. As [|Q(HEN)))||F approaches the width of clusters, the asymp-
totic speed slows down, but further shrinking of ||Q(H* V)| again
increases the speed to reach the quadratic rate.

If § is tiny however, the estimate (2.5) becomes useless. In praxis this
sometimes happens when eigenvalues cluster around zero in such a way
that it is difficult or impossible to bound the cluster.

Later, in 1990 Mascarenhas [30, 31] showed that using special quasi-
cyclic strategies Jacobi method can perform cubic asymptotic conver-
gence per quasi-cycle. Since his quasi-cycles consist of around 1.25 cy-
cles, this corresponds to the asymptotic rate of order 3°% a~ 2.41, thus,

(2.5)
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between quadratic and cubic speed per cycle. Rhee and Hari [37] proved
the global and the cubic (per quasi-cycle) convergence of his method.

Recent Results Although recent research of Jacobi methods has been
mostly concentrated on their accuracy properties, closely related are new
measures of advancing of the processes. These measures bound the max-
imum relative distance between diagonal elements and the corresponding
eigenvalues. Therefore, they are included in the stopping criterions of
the methods. They involve scaled diagonally dominant (see [2], [22])
matrices and relative gaps.

Suppose A = D + N, where D is diagonal and N has zero diagonal.
Then A = (a;;) is referred to as o diagonally dominant with respect to
anorm || - || if ||N]]| < aminjcicp |au], with 0 <a < 1. fA=D4+ N
with |a;| =1, 1 <i<n and Ay, Ay are arbitrary nonsingular diagonal
matrices, then B = AyAAy is a scaled diagonally dominant (o s.d.d.)
with respect to a given norm, provided that A is o diagonally dominant
with respect to that norm. Note that an o s.d.d. matrix has nonzero
diagonal elements. If A is Hermitian, it is presumed that Ay = Ay and
Ay is real. Such scaling, which is a congruence transformation, will be
called symmetric.

Relative gaps are in applications often connected with s.d.d. matrices.
Several definitions of relative gaps have been used (cf. [40, 46, 25]). Here
we use the one from [22].

et the eigenvalues of the Hermitian matrix H be ordered as in the
relation (2.3). The relative gaps and the minimum relative gap in the
spectrum of H are defined as follows

|)\s,'7)‘s | . .
: / 1<i<p; vy = min ;. (2.6)

= min ———
TS T T | 1<
JF#1 ' ‘

The following result can be used in selecting a measure for convergence
of Hermitian Jacobi methods.

Proposition 2.1 [22] let H = H* be w-s.d.d. and H = AgHsAy,
where A = [ |diag(H)| ];_ Let v; and v be as in the relation (2.6). If
a<v/(v+3), then

A, 16 ,
> P I E(H)) e < Slin(Hs)le, 1<i<p. (27)
i=sii 4 i i

If H= H* is a-s.d.d. and positive definite, then the relation (2.7) holds
with constant 4 instead of 16 and under less stringent assumption o <

v/3. m
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Summing up the equations (2.7) over i, one obtains, say for positive
definite matrix H (see [22, Collorary 3.2(ii)]),

n A 2
dol1- h_7 >+ (= (Hs) |7 < S5l (Hs) |- (2.8)
= 4 Y

2l < mples 1 324 < . Hence i [ (113) 3/
is small, we have accurate estimates for both [(As, —hj;)/h;;| and |(h;; —
As; )/ As; |- The relation (2.7) for positive definite matrices implies that
log,0(2||7:(Hs)||3/7;) indicates how many significant decimal digits are
correct in the appropriate diagonal elements as approximations of Ag,.
As a global measure for all diagonals, one can also use \/2||7(Hs)||%/v
or larger measures, ||[7(Hg)||r and ||2(Hs)| F-

Returning to Jacobi methods, note that + does not change with iter-

S

Note that |1 —

ation matrix. Usually, in the first few cycles the partition (ij)) is not
yet recognized and one prefers to use ||Q(Hg)||r a simpler although (in
rare situations) larger measure than ||[7(Hg)|| 7.

Suppose a serial Jacobi method is applied to a positive definite H pro-
ducing the sequence (H®),. By the result [6] we know that the method
computes the eigenvalues and eigenvectors almost with the accuracy that
is warranted by the eigenproblem. After several cycles the diagonal el-
ements become approximations of the eigenvalues and lower bounds of
absolute or relative gaps can easily be computed from diagonal elements
(see Example 3.3 from [22]). If the eigenvalues cluster around zero, some
absolute gaps §; and therefore & will be tiny and the result (2.5) becomes
useless for practical purposes. The measure ||Q(H(k)||p' alone bounds
max; |h£f) — A¢|. Hence, for tiny A, maxg, |, y1<i<s, hgf) — As. |/ As, 8
bounded by [|Q(H®||r/A,, which can be large. Thus, the measures
involving [|Q(H®))||z and absolute gaps will not be appropriate.

On the contrary, for such matrices, all relative gaps v; and ~ can
be large (close to one). As the process advances one can use measures
IQ(Hs)||F and ||Q2(Hs)||3-/v- This implies that after each cycle one has
to compute ||[2(Hg)||r and perhaps a lower bound of v. For two-sided
Jacobi methods this is appropriate since it requires only O(n?) flops.
However, in the context of one-sided methods, computing ||Q(Hs)||r
requires O(n?) flops. Hence, during the whole process, one would not
like to compute [|2(Hg)||m more than once. In such a situation it is
necessary to exploit the knowledge that serial Jacobi methods converge
asymptotically quadratically. As we have just explained, the quadratic
convergence result (2.5) is useless. In addition, in described situation,
the relation between ||Q(Hg)||r and ||Q(H)||F can be only very roughly
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estimated, so (2.5) would give even poorer result when translated in
terms of ||Q(Hg)|| .

We need a quadratic convergence result for ||Q(Hg)||r which involves
relative instead of absolute gaps. Fortunately, such results can be formu-
lated and derived in the context of two-sided methods and then directly
applied to one-sided methods.

In his Ph. D. thesis [32] Matejas solved this problem for the serial
Jacobi methods for positive definite matrices. The easier case of distinct
eigenvalues (see [33]) and real matrices assumes form

2 1 1
ay < 0.71520 whenever g < Zmin{—7 v}, (2.9)
0% n

where ap = ||A(k)||p‘ as defined by the relations (1.5)  (1.6). In (2.9)
it is assumed that the diagonal elements are decreasingly ordered. The
harder case of multiple eigenvalues and complex matrices takes similar
form (see [34])

2
5 o

ay < y/=-— whenever ag < —min{—, v} .
2 v 6 n

A similar result holds for the case of indefinite Hermitian matrix H. In
the context of one-sided methods, these results can be used for predict-
ing the number of cycles till convergence. If eigenvectors are wanted one
can use appropriate eigenvector perturbation estimates (e.g. [6, Theo-
rem 2.7]) which use condition of scaled matrix (which is in our case close
to one) and appropriate relative gaps.

We end this subsection by a brief discussion on stopping criterions.
Jacobi methods are predominantly used when accuracy of the output
data is important. Therefore, one will probably choose the criterion

||Q(H‘(§«k)||p‘ < tol, where tolerance tol is chosen by the user. For one-sided

methods, where N scalar products are needed to obtain ||Q(Hgk))||p‘7 tol
can be set f(n)e where f is slowly increasing function of n and € is
machine epsilon. For two-sided methods however, one can use a nice
stopping criterion of Rutishauser (see [57]) which is almost equivalent to

k
1QH) |- < e

2.2 J-Symmetric Jacobi Method

J-Symmetric Jacobi method has similar asymptotic properties. Quad-
ratic convergence is again defined by the relation (2.1) or (2.2). The
proof assumes that the diagonal elements of .JH approximating the same
eigenvalue of (H,.J) take successive positions on the diagonal of JH.
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Absolute gaps 4; and § are defined as above. Drmac and Hari [10] have
shown that

2
IQHMN)||F < 3% provided that ||Q(H)||r < #,
& 3m(n —m)

where m is number of positive ones in .J. Here the asymptotic assump-
tion is stronger than for the symmetric Jacobi method. In estimating
nonorthogonal (hyperbolic) transformations one uses mathematical in-
duction. The number m(n—m) in the denominator is used to compensate
a possible gradual increase of ||Q(H"))|| during the considered cycle.

J-symmetric method is very well suited to work with the acceler-
ated strategy of Mascarenhas, which yields cubic rate of convergence
per quasi-cycle. For the proof, one could combine ideas from [10] and
[37].

Since the J-symmetric quadratic convergence result suffers the same
shortcomings as its symmetric counterpart (2.5), one is challenged to
find a similar remedy. First, one needs a bound for the relative dis-
tance between diagonal elements of JH and the eigenvalues of (H,.J).
This is done for the case of positive definite H. In the following result,
nonincreasing ordering of the eigenvalues of the pair (H,.J) is assumed.
Relative gaps v, 1 <i < p and v are defined as in (2.6).

Proposition 2.2 [35, Theorem 1(ii)] Let H = H* be a-s.d.d. positive

definite. Let H = AHgA, where A = [ diag(H) ];_ Let o < /3 and
let the diagonal elements of JH affiliated with the same eigenvalue of
(H,.J) occupy successive positions on the diagonal. Then for the same
partition of A= Hg — I, and A holds

| Aii — | A,

_ 2 2 & .
A < ;Iln(%\)ll% = ;Z |AillF  1<i<p.
7 L

=1 n
JF#1
As earlier, one can deduce

A
hrr

n 2

D

r=1

1 —

2
+lm (A7 < ?HT(A)II“F-

Thus, scaled diagonally dominant pair (H,.J) has the same structure as
the pair (H,I,) which has been discussed earlier. Hence the rotation
angles can be large if pivot pair happens to be inside a diagonal block.
On the contrary, hyperbolic angles ultimately tend to zero as k increases.
This follows from the fact that m = ny 4+ --- 4+ n,_ for some 2 < r, <

p—1 and that is a consequence of the assumption that (H,.J) is positive
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definite. We see that the measure ||[7(A)||F or ||2(A)]|# should be used
for stopping of the process.
The new quadratic convergence result from [35] has form

(y% 1 . 1
ay < 3.5— whenever ag < =min{—, v}.
- 0 -6 n
Here o = ||Q( )||p k > 0 and the result assumes that Ay > --- >
Ay [Amat| > -+ > |A,l, which requires block-permutational similarity

of the partition (2.3) and renumbering of the relative gaps.

3. Accuracy

As noticed by Rosanoff et al [38], and theoretically explained by Dem-
mel and Veseli¢ [6], the Jacobi algorithm is more accurate than any
algorithm that starts with tridiagonalization of the symmetric matrix
(bidiagonalization in the case of SVD) computation). In this section we
explain this important fact, using the results of Demmel, Veseli¢, Hari
and Drmac. As we will see, if the objective is to compute all eigenvalues
with small relative error, the definite and the indefinite case must be
treated differently. We first analyze the

3.1 Symmetric Definite Case

Numerical analysis of thie two stage diagonalization procedure is sim-
ple but with far reaching consequences. We start with the analysis of
the Cholesky factorization.

In floating point computation, the computed approximation of I is I,
and we need an estimate for the backward error L7 — H. The following
proposition is due to Demmel [7].

Proposition 3.1 Suppose the Cholesky factorization algorithm has suc-
cessfully completed all steps in floating point arithmetic with unit round-
off . If L is the computed lover triangular matriz, then LLT = H+6H,
where 0 H is symmetric matriz such that for all 1 <i,7 <mn

c(n)e
|0H;| < mey/HiHjiw ne = #, c(n) = max{3,n}. (3.1)

1 —2¢(n)e .

Note that the backward error §H is bounded entry wise, rather than
norm wise.

Now, we apply the one-sided Jacobi algorithm to the matrix I, that
is, we 1mphmﬂy run the symmetric Jacobi on the matrix L7 1. Aq has
been shown in subsection 1.2, this iteration process has form G*+1) —
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GROVE) k> 0, where V*) is plane Jacobi rotation and GO = [.
The process terminates at index £ where the normalized columns of G(¥)
are orthogonal up to a tolerance O(ne). The following proposition from
[9] describes the numerical behaviour of the right handed Jacobi SVD
algorithm.

Proposition 3.2 lLet the cyclic one-sided Jacobi algorithm be applied to
I in floating point arithmetic with roundoff €. Let each cycle comprise
p parallel steps and let the stopping criterion be satisfied after s cycles.
Let GO k=0,....0 =p-s, GO =T be the generated matrices. Then
there exists an orthogonal matriz V and a backward error 81, such that

G = (f,+5f,)f/ and

el §L|l2 < mlle] T2, 1<i<mn, ns<(1+66)" 1.

Further, due to the stopping criterion, the columns of GO are numeri-
cally orthogonal, that is

max cos A(@(Z)ei, (N;(/‘)ej) < O(ne). -

ij
It is important to note that the error analysis is done row wise, while
the convergence is defined column wise. .
_ iFrom Proposition 3.2 it follows that GO can be written as GO =
U3, where ¥ is diagonal with column norms of G along its diagonal,
and U is numerically orthogonal, |[UTU — TI,|;; < O(ne).
Combining Propositions 3.1 and 3.2, we get,

USP0" = (L+6D)(L+60)T = LET + LT + 6LLT + 51517
H+8H+FE, F=L5LT +6LLT + 61817,
The perturbation matrix AH = §H + F is symmetric and it holds

|AH;| — 2
M <n=ne+ 205+ 0(n))-

If we set A — 22, then we have H -+ AH = UAUT. This means that
this variant of the Jacobi diagonalization method computes the eigenval-
wes and eigenvectors with entry wise small backward error. The meth-
ods that first tridiagonalize the matriz do not share this important prop-
erty.

let us estimate the forward error in the computed approximations
/N\M of the eigenvalues X; of H. let 5\1 > e > S\n be the eigenvalues
of H+ AH and let the eigenvalues A; of H as well as the diagonals of
A be nonincreasingly ordered. First we estimate the maximum relative
distance between A; and 5\7
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We can presume that g is small enough so that ||[L-"TAHL™T||y < 1
holds, implying that the positive square root of I, + L7 'AH L™ is well
defined. Since the matrix

H+AH=IVT+TL 'AHL-TVT+ L 'AHL-TLT

is similar to

VIH L AHL TETIN T+ L VAHL-T,

and LTNL is similar to H = LLT, an application of Ostrowsky’s theorem
vields A; = N (14+6;), 18] < ||L7'AHL™T||5, 1 <4 < n. The key
observation in this estimate is as follows. If we set D = [diag(H)]'/?,

then L'AHL=T = L7 "D(D'AHD"YDL=" and

L'ARL T, < |[L7'DIRDTAHED ||,
= (DT HDT) LD AHDT,
< (D7D o

The matrix Hg = D"'H D~ has unit diagonal, off-diagonals less than
one in modulus, and by the well known result of van der Sluis [50] it

holds

H 2 < wo(Hg) <m ' 2(SHS) < nkq(H).
[Hg |2 < r2(Hs) < WS:diag'(}l]t(s#oﬁz( ) < nkz(H)
Here 1o (X) = || X||2]| X ~"||2 is the spectral condition number. Therefore,
we can write

A= X(146), (6] <nnllH |2, 1<i<n. (3.2)

Next, we estimate the relative distance between A; and A;;. The stopping
criterion ensures that U0 = T + X with max; ; |z;;] < O(ne), where
X = (x;;). An easy calculus shows that there exists an orthogonal
matrix [ such that [/ = (T+Y)1/QT7, where Y is symmetric and ||V =
IIX|l2 < O(n?c). Hence,

H+AH=UANT = (1 + V)" 2OAOT(1+v)'/?,
and we can again apply the Ostrowsky’s theorem to obtain A= /N\“;(] +
6%), 10" = O(n?¢)). This together with (3.2) implies

N 146,
A )\‘l‘z

=X = M+, 7] < O*6)|[Hg ]2, 1<i<m.

o

This bound is nearly the best one can hope for in computing with float-
ing point positive definite matrices. For, Demmel [7] has shown that
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relative entry wise perturbations of size 1/||Hg'||; can make H exactly
singular, and that H can be considered numerically positive definite
if ||[Hg'l]2 < 1/(nnc). Moreover, Veseli¢ and Slapnicar [53] have shown
that the spectrum of positive definite H is stable under entry wise float-
ing point perturbations if and only if ||H§1 |2 is moderate.

We can conclude that the forward error in the computed eigenvalues
depends on ko (Hg), and not on ko (H), as is in the case of methods based
on tridiagonalization. Since ko(Hg) < nky(H), and since it is possible
ko(Hg) < ko(H), the Jacobi method is numerically clearly superior to
any method that first tridiagonalizes the matriz. This method is method
of choice for computing the eigenvalues of positive definite matrices with
high relative accuracy.

The diagonalization procedure just described (Cholesky factorization
followed by the right handed Jacobi on I) implicitly diagonalizes LT L.
This is more than just a nice observation. It actually means that this
Jacobi method is preconditioned using one implicit (cost free) step of
the Rutishauser LR method. Because of diagonalizing effect of precon-
ditioning, the Jacobi method converges faster, especially if the Cholesky
factorization is computed with pivoting. For more discussion see [52]
and [14].

3.2 Indefinite Case

Here we provide elements of perturbation analysis and error bounds
for the J-symmetric Jacobi method and one-sided J-symmetric com-
pound Jacobi method described in Subsection 1.3.

et us first consider the J-symmetric eigenvalue problem Hz = AJzx
with positive definite H,

QTHQ=A, Q"JQ=1J, A=diag()\).

Let H = DAD, where D = diag(dyy,...,d,,) is diagonal and A is
positive definite with unit diagonal. Further, let §H = DJAD. By

the result of Veseli¢ and Slapnicar [53, 46], if [0H;;| < nd;d;;, and if
7= [5A 1A 2 < nflA~"l> < 1. then
DY )
T=n<<T+mn (3.3)

3

The perturbation result for the invariant subspaces is given by Slapnicar
and Truhar in [45]. Let us partition the eigenvalue problem as

(8] = ] [E] e[ L],
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and let the perturbed problem be partitioned accordingly. Let X, and
X, be orthogonal bases for subspaces spanned by the columns of Q¢ and
JQo.J5, respectively. Let UXV™* be a singular value decomposition of the
matrix XQT)NG. The diagonal entries of the matrix sin O(Q, Q1) =Y are
the sines of canonical angles between subspaces spanned by the columns
of Q1 and Q; (see [48]). The relative gap is in this case defined by

(Ar Ag) = min LAl (Aol ]|

i [Adlii - [Aalys

Then, if |[§A]|2||[A7"||2 < 1, we have

.o 3 2 (1 Ty ¥
| 5in ©(Q1,Q1)||F < |1Ql3 (2¢+\/1 + 4¢2) A (3.5)

where

(3.4)

o= BN 1A Ml
V1= I0A[2 [[A=T2

Clearly, when J = I, then Q) is orthogonal, and (3.5) is a subspace version
of the corresponding eigenvector bounds from [6]. However, when .J #£ T,
then ||Q||3 = #2(Q) is the spectral condition number. Tt is a remarkable
fact that k(Q) is bounded by the condition number of A, the same
quantity that governs the accuracy of the computation. Tn [47], Slapnicar
and Veseli¢ proved that

K(Q) < ﬁ@h ko (ATAA) < /ra(A).

We now describe results of numerical analysis. FError analysis of a
single hyperbolic rotation is technically more complicated because such
transformations are nonorthogonal and possibly of large norm. One step
of the method, H+1) — CZH(k)Ck, in floating point computation is of
the form

D — ET 5 L s,

where C}, is hyperbolic rotation, and the backward perturbation & H (%)
is bounded as follows: Tf H(*) — Dy Ap Dy, where Dy, is diagonal and
Ap has unit diagonal, then we can write SH® as sHKF) = D8 ALDy,
where ||[§Ag|l2 < agre. Here ap = O(\/k2(Ag)\/n). Thus, according to
(3.3), the perturbation of the eigenvalues due to single floating point
hyperbolic rotation is determined by the value

184Kl 114, 2 < ol Ao
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Accumulating the effect of a total of r rotations, gives the relative error
bound for the computed eigenvalues of the order of

=3 anll A, 2 + O(n?)e.

k=0

The error bound for the computed eigenspaces follows by plugging the
above bound for ||[§ A¢||2 into (3.5) and accumulating the effect of a total
of r rotations in a similar manner. For details see [43].

During the process, ||A,;1||2 and ky(Ag) tend to one, starting with
I|A7"|2 and ka(A), respectively. While the theoretical bound for the
values of ||A,;1 |2 and ko(Ag), k= 1,2,...1s pessimistic, numerical evi-
dence indicates that these values never grow too much above the initial
values. For more discussion see [40, 43, 41, 44].

Next, we consider the symmetric indefinite eigenvalue problem Hz =

AT

1

QTHQ=A, QTQ=1, A= diag(X;) nonsingular,

and the appropriate compound method.

The perturbation bound for the eigenvalues is given by Veseli¢ and
Slapnicar [53, 46]. Tet |H|, = VH? be the spectral absolute value of
H,and let |H|; = DAD, where D = diag(dy,...,d,,) is diagonal and
A is positive definite with unit diagonal. Further, let §H = DSAD. If
|($H7j'7‘| < 77(1“;(1'7"7‘, and if n = ||(§A||2||A71||2 < 77/77”/471”2 < 1, then the
perturbation of the eigenvalues is again bounded by (3.3).

The perturbation theory for the invariant subspaces, given by Truhar
and Slapnicar [49], assumes the following partition of the eigenvalue
decomposition

EIEEX3SN]

Let the perturbed problem be partitioned accordingly. Similarly to (3.5),
if ||8A]|2|]A7 |2 < 1, then

18 A2 (1A~ "]| o
VI=8AN[[A~ 2 v (A1, A2)

Here 'y(/~\1, Ag) is again defined as in (3.4), but without .J; and .J,, and
V is the hyperbolic eigenvector matrix of the pair (GTG,.T).

We now describe numerical analysis of the factorization. For the sake
of simplicity, we assume that the matrix is already pivoted so that the
Bunch Parlett symmetric indefinite factorization PHPT = GJGT runs

[[sin ©(Q1, Qu)llF < VI3 (3.6)
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with P = I. Slapnicar [42] has shown that in floating point, the com-
puted matrix (7 satisfies

GIGT = H +6H
with symmetric backward perturbation d H bounded entry wise by
5H| < Om)=(1H]+ GG,

The effect of this backward error to the eigenvalues of H is given by
(3.3) with
7 < O@mel|[(D'GVVTGTD N1, (3.7)

where D is a diagonal scaling matrix and the rows of the matrix DG
are of unit Fuclidean norm. The details of this estimation can be found
in [40, 43]. Also, by using (3.6) it can be shown that the error in the
computed invariant subspaces, which is due to factorization is bounded
by (see [40, 43])

sin0(Q1,ONlr < O([V]|2) —2—. 3.8
I5in©(@1, @)l < OUVIE) (39

The factorization PHPT = GJG7 has two more remarkable properties
worth mentioning (see [42] for details). First, if the computed factor
is lower triangular (meaning that only 1 x 1 pivots took place), then the
factorization is also forward stable,

G — GI < 3nlGll(G | (H |+ 1G] GG e+ OE).

Second, let G = BD, where D) is diagonal scaling and the columns of B
are of unit Euclidean norm. Then the condition number of B is bounded
by a function of n, irrespective of the condition number of G,

ko(B) < 3.781"\/15n? + n.

Let us now consider the iterative part of the method. Let iH=GJGT
and G = (B+48B)D. Then the eigenvalue perturbation can be bounded
by (see [53])

(1-n)?<Z<(1+n)? n=[6BBY.. (3.9)

>

One step of the one sided method, GH+Y) = Gy in floating point
computation is of the form

G — (G 4 3G,
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where ('}, is hyperbolic rotation, and the backward perturbation §G/(%)
is bounded as follows: Tf G(*) = Br Dy, where Dy is diagonal and By
has unit columns, then we can write 6G*) as §G*) = §BL Dy, where
|6 B||2 < Bire. Here B is moderate constant. Thus, the perturbation of
the eigenvalues due to a single floating point rotation is determined by
the value of ||(§BkB;£||2 < 5k5||BZ||2. Accumulating the effect of a total
of r rotations, where G(") has columns orthogonal up to O(ne), gives the
relative error bound for the computed eigenvalues of the order of

B=e3" Bl Bllls + O(n?)e. (3.10)
k=0

By combining (3.3), (3.7), (3.9) and (3.10), it follows that the relative
error in the eigenvalues A; computed by the compound method (indefi-
nite factorization followed by the one-sided J-symmetric Jacobi method)

is bounded by
[Ai — Adl
| A
Error bound for the computed invariant subspaces is obtained by com-

bining (3.8) with the bound for the errors due to iterative part of the
algorithm from [43], essentially giving

< i+ B+ 0(7). (3.11)

L s RS
[[sin ©(Q1, Q1)llF < O(||V||2)7(/“\17A2)' (3.12)

Similarly to the two-sided method, during the process, ||B;£||2 tends
to one, starting with ||Bf||,. While the theoretical bound for the values
of ||B;£||27 k=1,2,...1s again pessimistic, numerical evidence indicates
that these values never grow too much above the initial value ||Bf||;.
Moreover, it has been observed in [40, 43], that || BY||3 is in general very
low, primarily due to the rank revealing property of the factorization
PHPT = GJGT. Consequently, the final errors in (3.11) and (3.12) are
mainly due to the factorization part of the algorithm, that is, to 7. For
more discussion see [40, 43, 41, 44].

3.3 Computing SVD

Here we discuss relative accuracy issues in one-sided Jacobi method
for computing singular value decomposition of a general m X n matrix
A, m > n. The simplest variant of the method is simply implicit form
of the symmetric Jacobi on H = AT A. More sophisticated versions use
preconditioning to enhance numerical accuracy and efficiency (speed).
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For instance, the QR factorization with pivoting is an excellent pre-
conditioner in the following sense. If A = QR is the QR factorization
with standard Businger Golub column pivoting (A < AP, P permuta-
tion matrix), then the SVD) Jacobi applied to R"T converges much faster
than applied to A or R. This is because of implicitly performed step
of Rutishauser’s LR method (‘rranqmon from RTR to RRT) Moreover,
the computed R satisfies A + 54 = QR where Q is orthonormal and
[6Ae;ll2 < norllAeillz, T < i < n. Here ngpr is bounded by a modest
polynomial times the roundoff unit e. Note that the relative backward
error is small in each column of A. For more details see [9].

If we apply the SVD Jacobi on I = R”, then by Proposition 3.2, for
some or‘rhogonal V it holds R4 SR — VEUT Here [ is m]merlcaﬂy or-
thogonal, ¥ is diagonal, and ||(§Re,||2 < 77J||Re,||7 1 < i < n. Combining
the results we obtain the relation

A+ AA=QVSU", AA=38A+OQFR,
where

IAAe|l2 < (ngr+ 17+ norna)l|Aellz, 1 <i<mn.

Here we note that the angle of Jacobi rotation underflows if the condi-
tion number k2(A) overflows, and that standard construction of Jacobi
rotation can lead to misconvergence of the algorithm. To avoid this,
Jacobi rotation must be modified as shown in [11]. Also, instead of Q,
V we will have computed numerically orthogonal matrices Q, V such
that ||Q — Q||2 and ||V — V||2 are bounded by moderate polynomials of
the dimensions times the roundoff e.

let oy > ---> 0, >0and &y > ---> G, be the eigenvalues of A and

A4+ AA, respectively. Write D = diag(||Aeq]|2,-- -, || Aer]|2) and
A+ AA=(T+AAANA = (T 4+ (AAD Y (AD YN A.

i From the variational characterization of the singular values, we imme-
diately conclude
lo; — o +
max ———— < = [[AAAT, < Vulnor + s+ ngrn) || All2,
where A; = AD~'. On the other hand, one can show that, for all i,
o; = EH(] + 0(77/2().
By a theorem due to van der Sluis [50], we know that

ia(A2) = Al ALl < v min a(AS) < Vo (A).

=diag,det(S)#0
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Thus, the SVD Jacobi algorithm computes the singular values with small
relative backward error in each column of A. This means that small
columns are preserved. The relative error in the computed singular val-
ues depends on the condition number of the column equilibrated matriz
As, and not on the condition number of the initial A. These properties
are not shared by bidiagonalization based methods. (Recent modification
of the bidiagonalization process, due to Barlow [1], improves the accu-
racy of the bidiagonalization, but not to the level of the Jacobi SVD
algorithm.)

The backward error in the Jacobi algorithm can be put into multiplica-
tive form (I 4+ AAAN) A with small = ||AAAT|| if ka(A,) is moderate.
This fact also has important implications to the accuracy of the com-
puted singular vectors. et o; be simple with singular vectors u; and v;.
If u; + Su;, v; + dv; are the singular vectors of A + A A, corresponding
to a;, then

max{sin £(u;, u; + du;),sin L(v;, v; + dv;)} < On)
gap;

: { . oi — o] }
gap;, = min { min ———— 2.
JF#1 a;

Thus, the approximation error for the singular vectors of A + AA de-
pends on the condition number ky(A) and the relative separation of
the singular values. Since our computed vectors are close to those of
A+ AA, we can conclude that the SVD Jacobi computes the singular
vectors with a bound like (3.13). The same conclusion then holds for
the eigenvectors computed by the previously explained diagonalization
procedure of symmetric positive definite matrix.

i From the above analysis we can see that the SVD) Jacobi can compute
with high relative accuracy the SVD of any matrix A of the form A =
BS, where S is any diagonal matrix, and B is well conditioned (k9(B)
moderate). A simple device can preserve this property if A is more
general, for instance if A = .51 BS,, where Sy, Sy are arbitrary diagonal
scalings, and B is well conditioned. In that case, the QR factorization
in the first step should be computed with column and row pivoting. For
the details see [14], [5]. We only note that our theoretical understanding
is one step behind numerical experience.

The SVD Jacobi method can be generalized e.g. to the SVD of the
product of two matrices. For instance, if A = BS, ' = G'D with well
conditioned full column rank B, (G with equilibrated columns, and arbi-
trary diagonal matrices S, I, then the SVD of ACT = BSDGT can be
computed as follows. First, we compute QR factorization with column

(3.13)

where
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pivoting of GDS, (GDS)P = QR. Due to pivoting, the matrix R is
structured as B = DyR,, where Dy is diagonal and R, is well condi-
tioned. In fact, ko(R,) is bounded by a function of the dimension, for
any initial matrix. Then, ACT = BPRTQT, and the product BPR"
is BPR! Dy, where BPR! is again well conditioned. Because of that,
explicit computation of the product BPRT will cause no loss of infor-
mation and the Jacobi SVD will compute accurate SVD of the explicitly
computed matrix product. For more details see [13], [12], [15].

In some cases, the matrix A is rather ill conditioned, but with special
structure that allows accurate .U decomposition with complete pivoting,
PiAP, = DU, where P, P, are permutations, I is diagonal, and I,
U are well conditioned. This means that computed matrices I, D, U
are such that the SVD of the product P/ LDUP] is highly accurate
approximation of the SVD of A. On the other hand, (P f/)(f?f]PQT) has
the structure of the product of two matrices that allow accurate SVD
by the Jacobi method. For more details see [8].
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