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Abstract

We give relative perturbation bounds for singular values and perturbation
bounds for singular subspaces of a hyperbolic singular value problem for the
pair (G,.J), where G is a full rank matrix and .J is a diagonal matrix of signs.
We consider two types of relative perturbations: G+ dG = (B+ dB)D and
G 4+ 6G = D(B + 6B), depending whether G has full column or full row rank,
respectively. In both cases we also consider relative element-wise perturbations
of G which typically occur in numerical computations.
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1 Introduction

Let G be m x n full rank matrix, and let J be n x n diagonal matrix of signs, that
is Ji; € {—1,1}. The hyperbolic singular value decomposition (HSVD) of the pair
(G, J) is given by [10, 20]

G=UxV"".

Here U is unitary, ¥ is non-negative diagonal m x n matrix, and
VIV =,

where .J is some permutation of .J. Diagonal entries of ¥ are the hyperbolic singular
values of the pair (G, .J), and the columns of I/ and V are the left (unitary) and right
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(hyperbolic) singular vectors, respectively. The matrix V is also called the hyper-
exchange matrix, and its columns are called the hyperbolic singular vectors. Also, if
(7 1s has full column rank, then V*JV = .J, in which case we say that V is J-unitary
or hypernormal with respect to .J [10].

Clearly, for .J = I the HSVD is equal to the classical singular value decomposition
since V' is unitary. There are several similarities between the HSVI) and the classical
SVD. First, the HSVD can be written in economical form depending upon dimen-
sion. Second, the HSVD is closely related to two eigenvalue problems: the Hermitian
eigenvalue problem

GJG = UAU™, A =NJ¥", (1)
and the J-Hermitian or hyperbolic eigenvalue problem for the pair (G*G,.J) [12],

VGGV =378, VRV = . (2)

Notice that for general (7, ¥ is not always diagonal. The necessary and sufficient
condition for a diagonal 3 according to [20, Remark 5] is

rank GJG" = rank (7,

that is, the matrix GJG* is required to be be non-singular. A similar assumption is
used in [18] and is used here, as well. Also, the hyperbolic eigenvalue problem (2)
can be viewed as the eigenvalue problem for the non-Hermitian matrix (see [19, 18])

H = JG*G.

In [10] the HSVD was proposed as a more suitable way for numerical solution of
the downdating problem: the Hermitian eigenvalue problem for the matrix

AA* — BB*, AecCcm™r  pegm

can be solved as the hyperbolic singular value problem for the pair (G,.J), where

G=[A B, J—l“ h}

The HSVD is also part of the highly accurate algorithm for symmetric eigenvalue
problem [11]. Tn this algorithm the given matrix H is first factorized as H = GJGT,
which is followed by the computation of the HSVD of the pair (G,.J). Similar appli-
cation of the HSVD is found in the eigenvalue decomposition algorithm for definite
matrix pairs [17].

In this paper we derive the bounds for hyperbolic singular values o; = ¥;; and
for the left and right singular vectors. For hyperbolic singular values we present
relative perturbation bounds of Weyl and Wielandt-Hoffman type, and for singular
vectors we give bounds in terms of sin ® theorems for the subspaces spanned by
columns of U/ and V', respectively. The cases when (¢ has full column and full row



rank are treated separately. Clearly, a square, non-singular (7 is included in both
cases. In the full column rank case we consider the right scaling G = B, thus
assuming the perturbation of the form G + G = (R + 5]?)]77 and in the full row
rank case we consider the left scaling ¢ = DB, thus assuming the perturbation of
the form G + 6G = D(R + 5]?). In both cases our bounds can be applied to the
important case of relative element-wise perturbations of the form |6G,;| < |Gy,
which typically occurs in numerical computations. Since the HSVD is closely related
to the eigenvalue problems (1) and (2), some of our bounds follow from the existing
results from [12, 16, 18, 19].

Throughout the paper all the perturbed quantities will be denoted by tilde. For
example, the hyperbolic singular values of the pair (G, .J) will be denoted by o;, and
the hyperbolic singular values of the perturbed pair ((?, J) will be denoted by ;. In
Sections 2.1 and 2.2, which deal with the perturbation bounds for hyperbolic singular
values, we assume that o; and a; are in the increasing order. In Sections 2.2 and 3.2,
which deal with the perturbation bounds for hyperbolic singular vectors, o; and a;
can be in any order, but the ordering must be the same. AT denotes the pseudoinverse
of A, || - || denotes the spectral matrix norm, || - || denotes the Frobenius norm, and
w(A) = [|A]| ||AT]| denotes the spectral condition number. Similarly to the Matlab
notation, A, denotes the k-th column of A, A, . denotes the k-th row of A, and A, ;.
denotes the columns [ to k of A.

The rest of the paper is organized as follows. In Section 2 we consider G with full
column rank. We first give relative perturbation bounds for hyperbolic singular values.
We then give perturbation bounds for the left and right singular vectors. In Section 3
we consider (7 with full row rank. We give relative perturbation bounds for hyperbolic
singular values and perturbation bounds for the left and right singular vectors. In
both sections we compare our bounds with the existing relative perturbation results
for the classical SVD. Finally, in Section 4 we discuss some issues which involve the
application of the bounds and give three numerical examples.

2  Full column rank case

Let G € C™*" have full column rank, that is, rank(G) = n < m,and let J;; € {—1,1},
i =1,...,n. Then the HSDV of the pair (,.J) can be written as

G—U[%]V‘, (3)
where U € C™*™ is unitary, V € C"*" is J-unitary, > = diag(oy,...,0,) and o; > 0
fori=1,...,n. The corresponding eigenvalue problem (1) can be written as
* /\ * 2
GJGT=U 0 U-, AN=3¥"] (4)



and the corresponding hyperbolic eigenvalue problem (2) can be written as
VGGV = |A|, VIV = J. (5)

Notice that inversion of equation V*JV = .J together with J=' = .J implies that
VIV = ], so V7= is J-unitary, too. Further, we easily see that the matrix V
given by (5), or even more generally, by (2), satisfies

(V) = IVIHIVHE = VP (6)

Moreover, all V' which perform the diagonalization (5) have the same condition num-
ber [17].
Notice that [/, ¥ and V are related as follows. et us partition U/ as

U=[Us U],

where the columns of Us = U. ., and Uy = U.,41.m span the non-zero and zero
subspaces of the matrix (G.JG*, respectively. Then

Us =GV

As already mentioned, here we will consider (& scaled from the right-hand side.
Let G = BD, where D is n X n non-singular matrix. For the structured perturbation

§G =38BD (7)
we have
G=G+6G=(B+6B)D = (1 +§GGHG = (1 4+ §BBHG. (8)
For the ease of the presentation, define
F =68§BBT, B =|FE

=6BBY,  Br=|F

p=18BBYs (9)

Obviously, if |[§B|| or ||6 B||r are known, then

198

<
B < e (B)’

168~
< — .
BF - O-min(B)

In particular, for the element-wise perturbation of G of the form
0G| < e, (10)
we can choose D to be a diagonal matrix, in which case (10) is equivalent to

08| < <|B].



Additionally, if this diagonal D is such that ||B.;|| =1,7=1,... n, we have
B WaBlr _ 119BlI» ~ Bl _ V5
O-min(B) o O-min(B) O-min(B) o O-min(B) O-min(B)

Notice that both types of structured perturbations, (10) and (7) with 1) as above,
appear in numerical computations. The first type appears when the matrix is being

g <

stored in computer memory, and the second type appears in some algorithms during
floating-point computations [1, 3, 11]. In particular, one part of the algorithm for
highly accurate symmetric eigenreduction from [11] is a one-sided Jacobi-type algo-
rithm for computing the HSVD of the pair (G,.J), and the perturbation bounds of
this section can be used to analyze that algorithm.

2.1 Singular value bounds

In this section we assume that the unperturbed and the perturbed hyperbolic singular
values, o; and a;, respectively, are arranged in the increasing order. The relative
Weyl-type perturbation bound for hyperbolic singular values follows directly from
[19, Theorem 3.3].

Theorem 1 Let G, G, §G and B be as in (3), (8) and (9), respectively. If 3 <1, then
the unperturbed and the perturbed hyperbolic singular values o; and &;, respectively,
satisfy the inequalities

1—p<Z<i48

3

Proof. Let H = GJG* be as in (4) and let H = GJG* be corresponding perturbed

matrix. Since

|Gl = 5B Dall = |5BBBDal| < |§BB| | BDx] = 8| Gal,

H and H fulfill the assumptions of [19, Theorem 3.3], and the theorem follows by
taking the square root of the bound of [19, Theorem 3.3]. |

The following theorem gives a relative Wielandt Hoffman-type perturbation bound
for hyperbolic singular values.

Theorem 2 Let i, G, §G, FE, B and Br be as in (3), (8) and (9), respectively. If
2Br + 7 < 2/3, then the unperturbed and the perturbed hyperbolic singular values o;
and a;, respectively, satisfy the inequalily

n 0_7275_72 2 ] ] 2
JZ( 75, ) <¢(§¢+m),

25/?4-5%
V1 —-25 - 3%

where

) =



Proof. Let H' = G*( be as in (5), and let /' = H' + §H' = G*(. According to (8)
H =G (14 E)(I+ E)G =G(I+ F*+ E+ E*E)G.
We can now apply [12, Theorem 3] with D = (i, A =TI, and
SA=FE*"4+FE+ F*F,

and the theorem follows. [}
Since
of — &} _ loi — ailloi + 5] o — o
oo, (max{e;,;})? T max{o;, o}

the bound of Theorem 2 further implies

- o, — 0; ’ 1 1
e ]

Notice that the hyperbolic singular values behave as well as the singular values.

Namely, the relative perturbations in Theorems 1 and 2 depend on norms of 6B
and BT as do the bounds from [3, Theorem 2.14] and [8, Theorem 4.4, Remark 4.2],

respectively.

2.2 Singular vector bounds

In this section we present relative variants of the well-known sin @ theorems [2] for
left and right singular subspaces of the pair (G,.J). Let U and U be two subspaces
of the same dimension. The sin © theorems give the bound for || sin (“)(L[,Zj[)”7 where
sin @(U,Z]) is diagonal matrix whose diagonal elements are the sines of canonical
angles between the subspaces U and U. The matrix sin @(U,Z]) is defined as follows
[14, Corollary 1.5.4]: let U/} and U7 form orthonormal basis for 2, and U, respectively,
where U, is the orthogonal complement of U, and let QSW™ be a singular value
decomposition of Ujﬁ. Then sin @(U,Z]) = 5.

Throughout this section we assume that the unperturbed and the perturbed hy-
perbolic singular values are in the same order. More precisely, o; denotes the k-th
largest hyperbolic singular value of the pair (G,.J), and 7; denotes the k-th largest
hyperbolic singular value of the perturbed pair ((?, J).

Let the HSVD from (3) be written as

¥
G=[u U, U] vl (12)
L 0 0 .
where Uy = U. ;4 and the rest of the matrices have the corresponding dimensions.
Similarly, let N
~ ~ ~ ~ _21 ~ ] ~ ~ —1
G=\|o 0, U, S0 k] (13)
0 0




Also, let
e]:e]1®e]27 /\:/\169/\27 /\:/\169/\27

be partitioned accordingly. Thus,

/\1 - 212.]17 /\2 - 23.]27 K] - 212.]17 KQ - ig.IQ. (]4)

In order to state and prove our theorems we need to define a relative gap between
the singular values from ¥; and those from ¥,. We shall use two kinds of relative
gap,

|&Z']m? - 03']00|

rg,(S1,%;) = min ) (15)

~9 2
1<p<k o+ o
k+1<g<n p q
and , ,
. 52T, — 02,
. PP q* 99
rg, (X1, Y2) = min — ) (16)
1<p<k TpT,
k+1<g<n

The relative gap rg, is based on the relative distance ,01()\7X) defined by [9, (2.2)]
between the unperturbed and perturbed eigenvalues of the corresponding Hermitian
eigenvalue problem (4). Notice that p; is a metricon R [9, Appendix B]. The relative
gap rg, is based on the relative distance X(MX) defined by [9, (2.3)] between the
unperturbed and perturbed eigenvalues of the problem (4).

The first theorem contains the perturbation bound for the left (unitary) singular
subspace spanned by the first £ columns of [/. Notice that, since we do not assume
any particular order for hyperbolic singular values, the first k& columns can correspond
to any subset of k singular values. The same remark applies to all subsequent singular
vector theorems.

Theorem 3 Let G and G be as in (12) and (13), respectively, and let 6G, B and

Br be defined by (8) and (9), respectively. Further, let Uy and Uy be the subspaces
spanned by the columns of Uy and Uy, respectively, and let vg, (1, %2) be defined by
(15). If B <1 and vrg,(¥1,%2) > 0, then

Br 1
[ +6F) T’Qh(ihzz).

Proof. Let H = GJG* be as in (1). By using (8) we can write

||sin (“)(UMZ/Z)HF < (

H=0GJG"=(T+E)GJG(I+ E), FE=4§BR.

Since _

rrx { TT /\ % % /\
U(Hﬂyw—[ JUUUU[ oy

and also

U (H—H)U =0 (H(I+E)"E+EH) U,

7



by using (4) we have
[A 0] (7*U(7*U[A 0]—[A 0](7*([+E)*E(J+(7*E(J[A 0]. (17)

Writing this equality block-wise in the partition from (12), (13) and (14), for the
(1,2)-block we obtain

Ay UiUy — U Uy Ny = MUF(T + E) 7 EU, + U EUSA,.
Now, using this component-wise for all pairs of indices (p, ¢), we have

|([71*U2)m| |(K1)mﬁ - (A1)qq| < |(K1)fp| |([71*)p,:([ + E)i*E(UQ):,tA
+ O7)p: F (V)| [(A2)gql- (18)

Similarly, writing (17) block-wise for the (1,3)-block we obtain
Ay Uil = MU (T + E)Y ™ ElU,.
Using this component-wise for all pairs of indices (p, ), we have
(U7 U0)pal = [(T7)pa(T+ E) 7 E(Up).. (19)

Since (717 U, and Uy are matrices with orthonormal columns, combining (18) and
(19), taking norms, and using the definition (15), gives the upper bound

1

U1, U, < -
U7 [ U "]"F*rg](zhzz)

T+ B) " B+ |7

F+

P

Using this, N N
lsin @@, )llr = I 102 o]l

and

. Br
(I +FE)F K 3

P+ F <

+6F7

completes the proof. [
The second theorem gives the perturbation bound for the right (hyperbolic) sin-
gular subspace spanned by the first £ columns of V.

Theorem 4 Lel G and (7 be as in (12) and (13), respectively, and let §G, 5 and Br
be defined by (8) and (9), respectively. Further, let Vi and Vi be the subspaces spanned
by the columns of Vi and Vi, respectively. Also, let ¢ and T’gQ(i1722) be defined by
(11) and (15), respectively. If 23 + B3> <1 and rgQ(ihzg) > 0, then

N 1 1 ¥
A‘ @ V 7V < v 2 _ + \/H_i _
| sin @V, Vi)|le < ||V (21/) 4¢ g, (31, X2)



Proof. Since the matrix V = { Vi W } simultaneously diagonalizes the pair (G*G, .J),
the theorem follows directly from [12, Theorem 4]. |

Notice that the left (unitary) singular vectors in the HSVD behave as well as the
left singular vectors in the classical SVD. Namely, the bound of Theorem 3 essentially
depends on norms of §B and BT and the relative gap, as do the bounds from [3,
Theorem 2.16, Corollary 2.17] and [9, Theorem 4.3].

On the other side, the bound of Theorem 4 for the right (hyperbolic) singular
vectors has an additional factor ||V||* over the corresponding hounds from [3, The-
orem 2.16, Corollary 2.17] and [9, Theorem 4.3]. When applying Theorem 4 to the
classical SVD) with J = [ this term vanishes since V is unitary. According to (6),
IV|I*> = x(V). However, the spectral condition number of the non-unitary eigenvec-
tors appears naturally in various other absolute and relative perturbation results like
[19, Theorem 3.17], [4, 5, 7, 12, 18].

In order to simplify the computation of the bound of Theorem 4, we can further
bound |[V]| as follows: according to [13, Theorem 3], V which diagonalizes the pair
(G*G, J) satisfies

IVII? < miny/(A*G=GA),
A

where the minimum is over all matrices which commute with .J. By taking A = D',

where (¢ = BD, we have

V|2 < \/e(D1G=GD-1) = \/k(B*B) = (B). (20)

3 Full row rank case

This case is more complicated then the full column case. As we have mentioned in the
introduction, the HSVD exists only if G.JG™ is non-singular. Also, all bounds have
the factor |V, and unlike the full column rank case, this factor can be estimated

only in some special cases.
Let G € C™*" have full row rank, rank(G) = m < n, and let J; € {—1,1},
i =1,...,n. The HSVD for the pair (G, .J) can be written as

G=U[% o]v. (21)
Here [/ € C™*™ is unitary,

VIV = J = Js & Jo, (22)
where .J is some permutation of J, and 3 = diag(cy,. .., a,), where o; > 0.

The corresponding non-singular eigenvalue problem (1) can be written as

GJG* = UANU™, (23)



where A = Y2 J5,. The corresponding hyperbolic eigenvalue problem (2) can be written
as

VGGV = [ A 0 ] . VIV = (24)

Let us partition V' as

V=1 Wl (25)

where Vs = Vi1, Then, for all V' which perform the diagonalization (24), the parts
Vs have the same spectral norm (see [18, Proof of Theorem 1]). Clearly, if V performs
the diagonalization (24), then any V of the form

~

[ ~
v—v[ VO]—[VE VoVol,

where %*.]0% = .Jy, does the same.

As already mentioned in the introduction, here we will consider (G scaled from
the left-hand side. TLet ¢ = DB, where D is m x m non-singular matrix. For the
structured perturbation

0G=DéB
we have N
G=G+0G=GT+G6G)=G(T + BY%SB). (26)
For the ease of presentation, define
E=B%B,  p=|E|=B%B|,  Br=IFE|lr=I|BéB|r (27)

Obviously, if |[§B|| or ||6 B||r are known, then

16 5]]
o-min(B)7

5 < 138l

< .
6 B B O-min(B>

In particular, for the element-wise perturbation of G of the form
0G| < e,

we can choose D to be a diagonal matrix, in which case the above inequality is
equivalent to

58] < <1B].
Additionally, if this diagonal D is such that ||B;.||=1,7=1,...,m, we have

OBl o _evim
O-min(B) - O-min(B).

g <

10



3.1 Singular value bounds

In this section we assume that the unperturbed and the perturbed hyperbolic singular
values, o; and a;, respectively, are arranged in the increasing order. The relative
Weyl-type perturbation bound for hyperbolic singular values follows directly from
[18, Theorem 1].

Theorem 5 el (7, G, §G and B be as in (21), (26) and (27), respectively. [If
28+ 5% < 1, then the unperturbed and the perturbed hyperbolic singular values o; and
a;, respectively, satisfy the inequalities

=28+ ||V2||2<—<\/1+ (28 + 8[| Vs 1%

Proof. Let H = GJG* be non-singular as in (23). Since,
[8G=21] = 5B Dall = 6B (B) B*Dal < 8B (B Gl = G2

the bound follows by taking the square root of the bound of [18, Theorem 1]. [
The following theorem gives a relative Wielandt Hoffman-type perturbation bound
for hyperbolic singular values.

Theorem 6 et (7, G, 8G, E, B and Br be as in (21), (26) and (27), respectively.
Let the HSVD of G be given by

G=0[% o]0

and let V be partitioned according to (25). If B < 1, then the unperturbed and the
perturbed hyperbolic singular values o; and &;, respectively, satisfy the inequality

N A 2
JZ( ) <l 7 22

=1 L

provided that the right-hand side is less than 2.

Proof. l.et H = GJG* and H = (.JG" be the corresponding unperturbed and the
perturbed eigenvalue problems (23). Then

H=G(I+ E)J(I+ E)G.
Write SH = H — H as

H—H=GUJI+FE— I+ NG =0=G7,

where

E=J(I+E—(I+E)"L

11



By pre- and post-multiplying this equality by U and U, respectively, and using (23),
we obtain

"GEGU = U (H — HYU = US(UAUT* — UNUSU = NU*U — U*UN. (28)
From (21), (22) and (25), we have
UG =2 0]V ' =SJV

Analogous equalities hold for the perturbed problem, as well. Inserting the above
equality into (28) gives

AU — U UA = |A|"V2IsVET 2 IV Js A2 (29)

Set § = U*U. By interpreting the above equality component-wise and taking the
Frobenius norm we obtain

m )\ _ _
> ( ') 1S3l = 1 T3 = TV ds 2.
S=AWOYDW

Define the matrix Y by Yi; = |5;;]%. Since Y is a doubly stochastic matrix (see [6, 8]),
by applying [8, Lemma 5.1] we have

2
Z ( L ') < sV 2 Vs, (30)
S\l
for some permutation 7 of {1,2,...,m}. Since

= = (I+E)"((I+E)J+E) )
= (I+E)y (EJ+JE*+ EJE),

(27) implies
- 28r + B
2y < ————. 31
=i < 202 (31)
Inserting into (30) gives
DR 26p + B
— P AL F+
) (Mi()) < Vel Vsl 76F (32)
=1\ Ail[A]
By assumption, the right-hand side of (32) is less then 2. Thus,
5‘7 - )‘T 7
P Aol oy
[Ail[Ar il

12



which implies that the permutation 7 does not mix eigenvalues of different signs.
Applying [8, Proposition 2.4, (2.12)] separately to the parts of the left hand-side of
(32) which contain only positive and only negative eigenvalues, respectively, gives

— 2 —~— 2
i(mM) § i(wm)l)
i=1 |A: | Al i=1 [l Az

which completes the proof. [
Notice that the bound of Theorem 6 has a factor ||Vs|||Vs|| which is essentially
the condition number of a diagonalizing non-unitary matrix. Similar factors are

also present in other relative perturbation bounds for problems with non-unitary

diagonalizing matrices as in [18], [12, Theorem 5], [19, Theorem 3.17] and [4].

Remark 1 The fact that the additional factor || Vs|| ||‘72|| involves the perturbed and
the unperturbed quantity is rather inconvenient in applying the bound of Theorem
6. Also, contrary to the full column rank case of Section 2 where we have an upper
bound (20), the norm |[Vs|

in some special cases. In Section 4 we describe how the norm |[V]| can be bounded

by [[V]|-

which appears in Theorems 5 and 6 can be estimated only

3.2 Singular vector bounds

Now we present the relative sin @ theorems for left and right singular subspaces of

the pair (G, .J). Let the HSVD from (21) be written as

X 0 0 —1
G=]0 Uz][o 5, 0][v1v2v0] . (33)
where Uy = U. ;4 and the rest of the matrices have the corresponding dimensions.
Similarly, let N
~ . X 0 0 e
G-[0 UQHO 5 0][\4%%} . (34)

Also, let .J be partitioned accordingly,
.] - .]1 @ .]2 @ .]0.

Similarly as in Section 2.2, we assume that the unperturbed and the perturbed
hyperbolic singular values are in the same order. That is, o; and 7; denote the k-th
largest hyperbolic singular values of the pairs (G, .J) and ((?, J), respectively.

The first theorem contains the perturbation bound for left (unitary) singular sub-
space spanned by the first £ columns of /.

13



Theorem 7 Let G and G be as in (33) and (34), respectively, and let §G, 5 and Br
be defined by (26) and (27), respectively. Let Uy and Uy be the subspaces spanned by
the columns of Uy and Uy, respectively. Let rgz(ih ,22) be defined as in (16), but with
k4+1<g<m.Ifg<v2—1 andrgz(ihzg) > 0, then

QBF‘I-BF ) 1
6 rg?(ihE?).

Isin @42l < Vi ][Val]

Proof. The proof is similar to the proof of [16, Theorem 3]. As in the proof of
Theorem 6, (29) holds, where = is bounded by (31). For the (1,2) block of (29) we
have

MUy — UrUsAy = [M |2 VP T 2 0Vado | A2
By interpreting this equality component-wise and taking the Frobenius norm, we have

1

|50l < IVHIVaIE D — =
2 T gy (%)

as desired. ]

Notice that the eigenvector bound of Theorem 7 complements the eigenvalue
bounds given in [18]. Also, as already mentioned in Remark 1, in Section 4 we
describe how to bound the perturbed quantity ||‘71 || by the unperturbed one, ||V,
and give bounds for ||[V]| in some special cases.

Finally, we present the bound for the right (hyperbolic) singular subspace spanned
by the first k& columns of the matrix V.

Theorem 8 Let G and G be as in (33) and (34), respectively, and let 5G, B and Br
be defined by (26) and (27), respectively. Let Vi and Vi be the subspaces spanned by
the columns of Vi and Vi, respectively. Let rg1(2172 ) be defined as in (15), but with
E+1<qg<m.Ifg<1 anf]rg1(21,§] ) >0, then

, [ Br R
[sin @V, V)|le < [VIP V] ( 5+5F) rgy (S, %)

Proof. Since the columns of Vj and V, are not orthonormal, in order to apply the
definition of canonical angles from Section 2.2, we first have to find the orthogonal
basis for the subspaces Vy and (V). We do this by using QR factorization. Let

= QR,
be the economical QR factorization of Vi. Then, the columns of Q form the orthogonal
basis for the subspace Vy. Further, let

s vl ] =en

14



be the respective economical QR factorization. Then, the columns of ) form the
orthogonal basis for the subspace (Vy),. Indeed,

* _ —% ']2 ‘/2*:| _
ovi=r-| JOHVO* Th =0

The definition of canonical angles from Section 2.2 now implies

IsinOVL Vllr = Q70 = IR (h e o) [Vs Vol" JTR 5
< RIENV: Vol e (35)
Since
R = ] <— =
ool (Va Vo)~ omin(V)
B = — <Ly =, (36)

Jmin(‘Z) ~ omin(V)

it remains to bound ||[[Vo  V4]" JV, ||
By using (26), we have

G =(1+EyGG(I+E), FE=B'$B.

Further, o o
GG — GG =GGT+E)'E+ GG, (37)

From (24) we have

. o= [IA] ]_ [/\ ]
GGV =V [ J=v [t

Ve va valn |K| :|~1_|:A :|~*
VGra - [ Jr= e

Pre- and post-multiplying (37) by V= and V, respectively, and using the above equal-
ities, gives

[A 0] VIV - VIV [A

_ K o —1
1= 1% Josremosy

+ VR IV [A 0] . (38)
For the (1,2)-block in the partition from (33) and (34), we have
M VEIVy — VETVaAy = M\VEJ (T + E) T EVy + VEE*JViA,. (39)
Similarly, for the (1,3)-block of (38) we have

M Vi Ve = N\VEJ (T + E) RV, (40)
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Using (39) and (40) component-wise (similarly as in (18) and (19)), taking norms,
and using the definition of the relative gap, gives the upper bound

Br
1=p

The theorem now follows by inserting this and (36) into (35). ]

T Wl < T ( +5F).

g4 (i1 ) 22)

4 Applying the bounds

As we already explained in Remark 1, the bounds of Theorems 6, 7 and 8, contain
norms of (parts of) hyperbolic singular vector matrices V' and V. These terms are
inconvenient since having both perturbed and unperturbed quantities makes it im-
possible to compute the bound in the case when only norm of perturbation 4B and
not the perturbation itself is known.

To solve this problem, we have to bound ||‘7|| in terms of |V||. First notice that
if m < n — 1, then the matrices V and V from (33) and (34), respectively, are not
unique. More precisely, any matrix of the form

Vi=[vi vowy ],

where Vg is a (n—m) x (n —m) Jo-unitary matrix, is also a hyperbolic singular vector
matrix of the pair (G, .J). Similarly, any matrix of the form

Vel T ni ] (41)

where ‘70' is a (n —m) x (n —m) Jounitary matrix, is also a hyperbolic singular
vector matrix of the pair (G,.J). The proof of the following theorem, which is long
and technical, is similar to the one in [16, Section 3], and is therefore omitted.

Theorem 9 Let G, G, V and V be as in (33) and (34), respectively. Let 6G, 3
and Br be defined by (26) and (27), respectively, and set v = Br/(1 — ). If 0 <

44[|V]|?> < 1, then we can choose a Jo-unitary matriz Vy such that the matriz V' from

(41) satisfies
V]

V1 =MV

_ Therefore, by using the above inequality we can bound the terms ||‘72||7 ||‘71 || and
IIV]| from Theorems 6, 7 and 8, in terms of ||V||.

As we have already mentioned, the bounds for the HSVD differ from the bounds for
the classical SVI) mainly in having an additional factor which depends on J-unitary

VI <

matrix V. Naturally, we would like to know when can we expect this additional
factor to be small. Unfortunately, when (G has full row rank, we can not, in general,
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efficiently bound «(V) = ||V |[V '] = [|V]|?, as we have done in (20). However,
we can bound V in a satisfactory manner when the associated Hermitian matrix
H = (GJG* has some special structure: the bound for the case when H is a scaled
diagonal dominant matriz is given in [18, (30)]; the bound for the case when H is
positive definite is given in [18, Theorem 5]; the bound for the case when H is quasi
definite matriz is given in [16, Section 3.1]; and the bound for the case when H is
block-scaled diagonally dominant matriz is given in [15].

Let us mention that when both matrices G and G.J(G* are square and non-singular,
we can apply bounds from Sections 2 and 3. The question which bounds are then
sharper, has no general answer. We can say that the answer depends on whether ¢
is well scaled from the left or from the right. For example, if we can write G = BD
with B well-conditioned, than the bounds of Section 2 might be sharper. Vice versa,
if B from (¢ = DB is well-conditioned, then the bounds of Section 3 are likely to be
better.

We illustrate our results by three computed examples. Our first example illustrates
bounds of Section 2.

Example 1 let G = BD with

0.24  —-0.62 —-0.86 —0.51 0.88
0.90 —-0.02 —-0.37 017 —0.32
B = 0.28 —0.18  0.22 0.01  —0.20 |, (42)
—0.51 —0.07 —0.65 —0.07 —0.38
—0.29  0.22 0.24 0.08 —0.18

~

D = diag(10'°,100,1,1,10%),

and let .J = diag(1,1,1,—1,—1). The hyperbolic singular values of the pair (G,.J)
are (properly rounded)

ot =1.14-10", 6, = 1.04-10°, o =445, oF = 0.747, o5 = 0.0354.

Here and in the subsequent examples the superscript “47 (“—7) denotes that o;
corresponds to positive (negative) diagonal entry of .J. Notice that () =3.2-10'",
while choosing a diagonal matrix D such that ||B.;||=1,7i=1,....n, gives G = BD
with k(B) = 35.4. Therefore, the matrix G is well-scaled from the right, thus the
bounds of Section 2 are appropriate.

Let the perturbed matrix be given by G = (IA? + 5]:?)]5 with

0.46 —0.26 —0.02 0.36  0.42

—0.26 —0.96 —0.66 021  0.69
§B=10°-1-002 —0.66 —0.91 —0.15 0.14 |. (43)

036  0.21 —0.15 027 —0.33

042  0.69 014 —0.33 —0.35

This is a relative component-wise perturbation satisfying [6G| < 4.8 - 107°|G|.
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When applying Theorem 2, the exact perturbation of the hyperbolic singular
values is equal to 2.44 - 107" and the bound of the theorem is 7.53 - 107°. The
relative gaps for individual singular values, the true perturbations of the singular
vectors corresponding to individual singular values, and the bounds obtained by using
Theorems 3 and 4 are displayed in Table 1. Notice that the hyperbolic singular vector
matrix V' which appears in the bound of Theorem 4 is well conditioned, (V) =

V]2 = 1.14.

i |1 2 3 4 5
rg, (55, o) 1 1 0.99 0.99 1
| sin O, U)||p || 6-10°7 | 3-10°7 [ 1076 106 |2.10°
Theorem 3 8-107° [ 8-107° [ &8-107"|8-107" | 8-1077
v, (i, s 10° 2339 60 21 21
| sin ©(Vi, Vi)l || 107" 2-107"°12.10°% | 3-1077 [ 3-10°7
Theorem 4 8-107"0|4.10% [2-10%|4-10¢|4-10°°

Table 1: Singular vector perturbations for G = BD

Our second example illustrates bounds of Section 3.

Example 2 Let 7 = DB, where B and D are as in (42). Let J = diag(1,1,1,—1,—1).

bR

The hyperbolic singular values of the pair (G, .J) are (properly rounded)
of =3.8-10°, 0, =3.97-10%, of =51.9, 6f =1.02, 6, =0.173.

Notice that () = 9.3-10'°, while choosing a diagonal matrix D such that || B;.]| =1,
i=1,...,n, gives G = DB with x(B) = 29.4. Therefore, the matrix GG is well-scaled
from the left, thus the bounds of Section 3 are appropriate.

Let the perturbed matrix be given by G = ]5(]% + (WA?)7 where §B is defined by
(43). When applying Theorem 6, the exact perturbation of the hyperbolic singular
values is equal to 2.22 - 1077 and the bound of the theorem is 1.56 - 107*. The
relative gaps for individual singular values, the true perturbations of the singular
vectors corresponding to individual singular values, and the bounds obtained by using
Theorems 7 and 8 are displayed in Table 2. For the hyperbolic singular vector matrices

we have ||V &~ ||‘7|| ~ 6.28.

The two previous examples illustrate the relative perturbation bounds for the
HSVD of the pair (G, J) when the matrix (G is scaled from the right or from the left,
respectively. In our third example we consider the HSVD of the pair (G, .J) when the
matrix (7 is scaled from both sides.
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i |1 2 3 4 5

re, (77, 53 9.7-10" [ 765 50.9 6.05 6.05

| sin © (U, U)||F || 107 1078 1077 |3-10%[3-10°°
Theorem 7 8-1072 | 10°° 9-10°6|7-10°]4-10°°
rg, (77, 52 1 1 0.99 0.99 1

|sin OV, V)|lr || 5-1077 [8-107|7-10°|5-10°|5-10°°
Theorem 8 8-27% [2-107[4.273 [2.10%[2.1073

Table 2: Singular vector perturbations for G = DR

Example 3 Let (¢ = D, BD, where B and D are as in (42) and
Dy = diag(10*,1072,10,1,100).

Let J = diag(1,1,1,—1,—1) The hyperbolic singular values of the pair (G,.J) are
(properly rounded)

of =3.7-10", 0, =7.98-10°% of =1.56-10%, 6 =1.26, 0. = 0.0241.

Notice that #(G) = 1.5- 10", while choosing a diagonal matrix D such that
|Bsll=1,7i=1,....n, gives G = BD with x(B) = 6.2-10°>. Therefore, we can use
the bounds of Section 2.

Let the perturbed matrix be given by G =D, (IA? + 5]:?)157 where § B is defined by
(43). When applying Theorem 2, the exact perturbation of the hyperbolic singular
values is equal to 3.56 - 107" and the bound of the theorem is 4.78 - 107*. The
relative gaps for individual singular values, the true perturbations of the singular
vectors corresponding to individual singular values, and the bounds obtained by using
Theorems 3 and 4 are displayed in Table 3.

On the other hand, here we can not apply the bounds of Section 3. Namely, setting
G = DB and §G = DJB for any non-singular diagonal matrix ), the quantities 3
and Bg from (27) are both approximately equal to 1.3 - 10°. This is due to the fact
that, although (' is scaled from both sides, the scaling from the right is dominant.
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