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(hyperboli
) singular ve
tors, respe
tively. The matrix V is also 
alled the hyper-ex
hange matrix, and its 
olumns are 
alled the hyperboli
 singular ve
tors. Also, ifG is has full 
olumn rank, then V �JV = J , in whi
h 
ase we say that V is J -unitaryor hypernormal with respe
t to J [10℄.Clearly, for J = I the HSVD is equal to the 
lassi
al singular value de
ompositionsin
e V is unitary. There are several similarities between the HSVD and the 
lassi
alSVD. First, the HSVD 
an be written in e
onomi
al form depending upon dimen-sion. Se
ond, the HSVD is 
losely related to two eigenvalue problems: the Hermitianeigenvalue problem GJG� = U�U�; � = �J��; (1)and the J -Hermitian or hyperboli
 eigenvalue problem for the pair (G�G; J) [12℄,V �G�GV = ���; V �JV = �J: (2)Noti
e that for general G, � is not always diagonal. The ne
essary and suÆ
ient
ondition for a diagonal � a

ording to [20, Remark 5℄ isrankGJG� = rankG;that is, the matrix GJG� is required to be be non-singular. A similar assumption isused in [18℄ and is used here, as well. Also, the hyperboli
 eigenvalue problem (2)
an be viewed as the eigenvalue problem for the non-Hermitian matrix (see [19, 18℄)Ĥ = JG�G:In [10℄ the HSVD was proposed as a more suitable way for numeri
al solution ofthe downdating problem: the Hermitian eigenvalue problem for the matrixAA� �BB�; A 2 Cm�k; B 2 Cm�l;
an be solved as the hyperboli
 singular value problem for the pair (G; J), whereG = h A B i ; J = " Ik �Il # :The HSVD is also part of the highly a

urate algorithm for symmetri
 eigenvalueproblem [11℄. In this algorithm the given matrix H is �rst fa
torized as H = GJGT ,whi
h is followed by the 
omputation of the HSVD of the pair (G; J). Similar appli-
ation of the HSVD is found in the eigenvalue de
omposition algorithm for de�nitematrix pairs [17℄.In this paper we derive the bounds for hyperboli
 singular values �i = �ii andfor the left and right singular ve
tors. For hyperboli
 singular values we presentrelative perturbation bounds of Weyl and Wielandt-Ho�man type, and for singularve
tors we give bounds in terms of sin� theorems for the subspa
es spanned by
olumns of U and V , respe
tively. The 
ases when G has full 
olumn and full row2



rank are treated separately. Clearly, a square, non-singular G is in
luded in both
ases. In the full 
olumn rank 
ase we 
onsider the right s
aling G = BD, thusassuming the perturbation of the form G + ÆG = (B + ÆB)D, and in the full rowrank 
ase we 
onsider the left s
aling G = �D �B, thus assuming the perturbation ofthe form G + ÆG = �D( �B + Æ �B). In both 
ases our bounds 
an be applied to theimportant 
ase of relative element-wise perturbations of the form jÆGijj � "jGijj,whi
h typi
ally o

urs in numeri
al 
omputations. Sin
e the HSVD is 
losely relatedto the eigenvalue problems (1) and (2), some of our bounds follow from the existingresults from [12, 16, 18, 19℄.Throughout the paper all the perturbed quantities will be denoted by tilde. Forexample, the hyperboli
 singular values of the pair (G; J) will be denoted by �i, andthe hyperboli
 singular values of the perturbed pair ( eG; J) will be denoted by e�i. InSe
tions 2.1 and 2.2, whi
h deal with the perturbation bounds for hyperboli
 singularvalues, we assume that �i and e�i are in the in
reasing order. In Se
tions 2.2 and 3.2,whi
h deal with the perturbation bounds for hyperboli
 singular ve
tors, �i and e�i
an be in any order, but the ordering must be the same. Ay denotes the pseudoinverseof A, k � k denotes the spe
tral matrix norm, k � kF denotes the Frobenius norm, and�(A) = kAk kAyk denotes the spe
tral 
ondition number. Similarly to the Matlabnotation, A:;k denotes the k-th 
olumn of A, Ak;: denotes the k-th row of A, and A:;l:kdenotes the 
olumns l to k of A.The rest of the paper is organized as follows. In Se
tion 2 we 
onsider G with full
olumn rank. We �rst give relative perturbation bounds for hyperboli
 singular values.We then give perturbation bounds for the left and right singular ve
tors. In Se
tion 3we 
onsider G with full row rank. We give relative perturbation bounds for hyperboli
singular values and perturbation bounds for the left and right singular ve
tors. Inboth se
tions we 
ompare our bounds with the existing relative perturbation resultsfor the 
lassi
al SVD. Finally, in Se
tion 4 we dis
uss some issues whi
h involve theappli
ation of the bounds and give three numeri
al examples.2 Full 
olumn rank 
aseLet G 2 Cm�n have full 
olumn rank, that is, rank(G) = n � m, and let Jii 2 f�1; 1g,i = 1; : : : ; n. Then the HSDV of the pair (G; J) 
an be written asG = U " �0 # V �1; (3)where U 2 Cm�m is unitary, V 2 Cn�n is J -unitary, � = diag(�1; : : : ; �n) and �i > 0for i = 1; : : : ; n. The 
orresponding eigenvalue problem (1) 
an be written asGJG� = U " � 0 #U�; � = �2J; (4)3



and the 
orresponding hyperboli
 eigenvalue problem (2) 
an be written asV �G�GV = j�j; V �JV = J: (5)Noti
e that inversion of equation V �JV = J together with J�1 = J implies thatV �1JV �� = J , so V �� is J -unitary, too. Further, we easily see that the matrix Vgiven by (5), or even more generally, by (2), satis�es�(V ) = kV k kV �1k = kV k2: (6)Moreover, all V whi
h perform the diagonalization (5) have the same 
ondition num-ber [17℄.Noti
e that U , � and V are related as follows. Let us partition U asU = h U� U0 i ;where the 
olumns of U� = U:;1:n and U0 = U:;n+1:m span the non-zero and zerosubspa
es of the matrix GJG�, respe
tively. ThenU� = GV ��1:As already mentioned, here we will 
onsider G s
aled from the right-hand side.Let G = BD, where D is n�n non-singular matrix. For the stru
tured perturbationÆG = ÆBD (7)we have eG = G + ÆG = (B + ÆB)D = (I + ÆGGy)G = (I + ÆBBy)G: (8)For the ease of the presentation, de�neE = ÆBBy; � = kEk = kÆBByk; �F = kEkF = kÆBBykF : (9)Obviously, if kÆBk or kÆBkF are known, then� � kÆBk�min(B); �F � kÆBkF�min(B) :In parti
ular, for the element-wise perturbation of G of the formjÆGj � "jGj; (10)we 
an 
hoose D to be a diagonal matrix, in whi
h 
ase (10) is equivalent tojÆBj � "jBj:4



Additionally, if this diagonal D is su
h that kB:;ik = 1, i = 1; : : : ; n, we have� � k ÆB k�min(B) � k ÆB kF�min(B) = k jÆBj kF�min(B) � "k jBj kF�min(B) = " pn�min(B) :Noti
e that both types of stru
tured perturbations, (10) and (7) with D as above,appear in numeri
al 
omputations. The �rst type appears when the matrix is beingstored in 
omputer memory, and the se
ond type appears in some algorithms during
oating-point 
omputations [1, 3, 11℄. In parti
ular, one part of the algorithm forhighly a

urate symmetri
 eigenredu
tion from [11℄ is a one-sided Ja
obi-type algo-rithm for 
omputing the HSVD of the pair (G; J), and the perturbation bounds ofthis se
tion 
an be used to analyze that algorithm.2.1 Singular value boundsIn this se
tion we assume that the unperturbed and the perturbed hyperboli
 singularvalues, �i and e�i, respe
tively, are arranged in the in
reasing order. The relativeWeyl-type perturbation bound for hyperboli
 singular values follows dire
tly from[19, Theorem 3.3℄.Theorem 1 Let G, eG, ÆG and � be as in (3), (8) and (9), respe
tively. If � < 1, thenthe unperturbed and the perturbed hyperboli
 singular values �i and e�i, respe
tively,satisfy the inequalities 1� � � e�i�i � 1 + �:Proof. Let H = GJG� be as in (4) and let fH = eGJ eG� be 
orresponding perturbedmatrix. Sin
ekÆGxk = kÆBDxk = kÆBByBDxk � kÆBByk kBDxk = � kGxk;H and fH ful�ll the assumptions of [19, Theorem 3.3℄, and the theorem follows bytaking the square root of the bound of [19, Theorem 3.3℄.The following theorem gives a relativeWielandt{Ho�man-type perturbation boundfor hyperboli
 singular values.Theorem 2 Let G, eG, ÆG, E, � and �F be as in (3), (8) and (9), respe
tively. If2�F +�2F < 2=3, then the unperturbed and the perturbed hyperboli
 singular values �iand e�i, respe
tively, satisfy the inequalityvuut nXi=1  �2i � e�2i�ie�i !2 �  0�12 +s1 + 14 21A ;where  = 2�F + �2Fp1 � 2� � �2 : (11)5



Proof. Let H 0 = G�G be as in (5), and let fH 0 � H 0 + ÆH 0 = eG� eG. A

ording to (8)fH 0 = G�(I + E)�(I + E)G = G�(I + E� + E + E�E)G:We 
an now apply [12, Theorem 3℄ with D = G, A = I, andÆA = E� + E + E�E;and the theorem follows.Sin
e j�2i � e�2i j�ie�i � j�i � e�ij j�i + e�ij(maxf�i; e�ig)2 � j�i � e�ijmaxf�i; e�ig ;the bound of Theorem 2 further impliesvuut nXi=1  �i � e�imaxf�i; e�ig!2 �  0�12 +s1 + 14 21A :Noti
e that the hyperboli
 singular values behave as well as the singular values.Namely, the relative perturbations in Theorems 1 and 2 depend on norms of ÆBand By as do the bounds from [3, Theorem 2.14℄ and [8, Theorem 4.4, Remark 4.2℄,respe
tively.2.2 Singular ve
tor boundsIn this se
tion we present relative variants of the well-known sin� theorems [2℄ forleft and right singular subspa
es of the pair (G; J). Let U and eU be two subspa
esof the same dimension. The sin� theorems give the bound for k sin �(U ; eU)k, wheresin�(U ; eU) is diagonal matrix whose diagonal elements are the sines of 
anoni
alangles between the subspa
es U and eU . The matrix sin�(U ; eU) is de�ned as follows[14, Corollary I.5.4℄: let U? and eU form orthonormal basis for U? and eU , respe
tively,where U? is the orthogonal 
omplement of U , and let QSW � be a singular valuede
omposition of U�? eU . Then sin�(U ; eU) = S.Throughout this se
tion we assume that the unperturbed and the perturbed hy-perboli
 singular values are in the same order. More pre
isely, �i denotes the k-thlargest hyperboli
 singular value of the pair (G; J), and e�i denotes the k-th largesthyperboli
 singular value of the perturbed pair ( eG; J).Let the HSVD from (3) be written asG = h U1 U2 U0 i 264�1 �20 0 375 h V1 V2 i�1 ; (12)where U1 = U:;1:k and the rest of the matri
es have the 
orresponding dimensions.Similarly, let eG = h eU1 eU2 eU0 i 264 e�1 e�20 0 375 h eV1 eV2 i�1 : (13)6



Also, let J = J1 � J2; � = �1 � �2; e� = e�1 � e�2;be partitioned a

ordingly. Thus,�1 = �21J1; �2 = �22J2; e�1 = e�21J1; e�2 = e�22J2: (14)In order to state and prove our theorems we need to de�ne a relative gap betweenthe singular values from e�1 and those from �2. We shall use two kinds of relativegap, rg1(e�1;�2) = min1�p�kk+1�q�n je�2pJpp � �2qJqqje�2p + �2q ; (15)and rg2(e�1;�2) = min1�p�kk+1�q�n je�2pJpp � �2qJqqje�p�q : (16)The relative gap rg1 is based on the relative distan
e �1(�; e�) de�ned by [9, (2.2)℄between the unperturbed and perturbed eigenvalues of the 
orresponding Hermitianeigenvalue problem (4). Noti
e that �1 is a metri
 on R [9, Appendix B℄. The relativegap rg2 is based on the relative distan
e �(�; e�) de�ned by [9, (2.3)℄ between theunperturbed and perturbed eigenvalues of the problem (4).The �rst theorem 
ontains the perturbation bound for the left (unitary) singularsubspa
e spanned by the �rst k 
olumns of U . Noti
e that, sin
e we do not assumeany parti
ular order for hyperboli
 singular values, the �rst k 
olumns 
an 
orrespondto any subset of k singular values. The same remark applies to all subsequent singularve
tor theorems.Theorem 3 Let G and eG be as in (12) and (13), respe
tively, and let ÆG, � and�F be de�ned by (8) and (9), respe
tively. Further, let U1 and eU1 be the subspa
esspanned by the 
olumns of U1 and eU1, respe
tively, and let rg1(e�1;�2) be de�ned by(15). If � < 1 and rg1(e�1;�2) > 0, thenk sin �(U1; eU1)kF �  �F1� � + �F! 1rg1(e�1;�2) :Proof. Let H = GJG� be as in (1). By using (8) we 
an writefH = eGJ eG� = (I + E)GJG�(I + E)�; E = ÆBBy:Sin
e eU� �fH �H�U = � e� 0 � eU�U � eU�U �� 0 � ;and also eU� �fH �H�U = eU� �fH(I + E)��E + EH�U;7



by using (4) we have� e� 0 � eU�U � eU�U �� 0 � = � e� 0 � eU�(I + E)��EU + eU�EU �� 0 � : (17)Writing this equality blo
k-wise in the partition from (12), (13) and (14), for the(1; 2)-blo
k we obtaine�1 eU�1U2 � eU�1U2�2 = e�1 eU�1 (I + E)��EU2 + eU�1EU2�2:Now, using this 
omponent-wise for all pairs of indi
es (p; q), we havej( eU�1U2)pqj j(e�1)pp � (�1)qqj � j(e�1)ppj j( eU�1 )p;:(I + E)��E(U2):;qj+ j( eU�1 )p;:E(U2):;qj j(�2)qqj: (18)Similarly, writing (17) blo
k-wise for the (1; 3)-blo
k we obtaine�1 eU�1U0 = e�1 eU�1 (I + E)��EU0:Using this 
omponent-wise for all pairs of indi
es (p; q), we havej( eU�1U0)pqj = j( eU�1 )p;:(I + E)��E(U0):;qj: (19)Sin
e eU1, U2 and U0 are matri
es with orthonormal 
olumns, 
ombining (18) and(19), taking norms, and using the de�nition (15), gives the upper boundk eU�1 [U2 U0 ℄ kF � 1rg1(e�1;�2) (k(I + E)�1EkF + kEkF ):Using this, k sin�(U1; eU1)kF = k eU�1 [U2 U0 ℄ kF ;and k(I + E)�1EkF + kEkF � �F1� � + �F ;
ompletes the proof.The se
ond theorem gives the perturbation bound for the right (hyperboli
) sin-gular subspa
e spanned by the �rst k 
olumns of V .Theorem 4 Let G and eG be as in (12) and (13), respe
tively, and let ÆG, � and �Fbe de�ned by (8) and (9), respe
tively. Further, let V1 and eV1 be the subspa
es spannedby the 
olumns of V1 and eV1, respe
tively. Also, let  and rg2(e�1;�2) be de�ned by(11) and (15), respe
tively. If 2� + �2 < 1 and rg2(e�1;�2) > 0, thenk sin �(V1; eV1)kF � kV k2 0�12 +s1 + 14 21A  rg2(e�1;�2) :8



Proof. Sin
e the matrix V = h V1 V2 i simultaneously diagonalizes the pair (G�G; J),the theorem follows dire
tly from [12, Theorem 4℄.Noti
e that the left (unitary) singular ve
tors in the HSVD behave as well as theleft singular ve
tors in the 
lassi
al SVD. Namely, the bound of Theorem 3 essentiallydepends on norms of ÆB and By and the relative gap, as do the bounds from [3,Theorem 2.16, Corollary 2.17℄ and [9, Theorem 4.3℄.On the other side, the bound of Theorem 4 for the right (hyperboli
) singularve
tors has an additional fa
tor kV k2 over the 
orresponding bounds from [3, The-orem 2.16, Corollary 2.17℄ and [9, Theorem 4.3℄. When applying Theorem 4 to the
lassi
al SVD with J = I this term vanishes sin
e V is unitary. A

ording to (6),kV k2 = �(V ). However, the spe
tral 
ondition number of the non-unitary eigenve
-tors appears naturally in various other absolute and relative perturbation results like[19, Theorem 3.17℄, [4, 5, 7, 12, 18℄.In order to simplify the 
omputation of the bound of Theorem 4, we 
an furtherbound kV k as follows: a

ording to [13, Theorem 3℄, V whi
h diagonalizes the pair(G�G; J) satis�es kV k2 � min� q�(��G�G�);where the minimum is over all matri
es whi
h 
ommute with J . By taking � = D�1,where G = BD, we havekV k2 � q�(D�1G�GD�1) = q�(B�B) = �(B): (20)3 Full row rank 
aseThis 
ase is more 
ompli
ated then the full 
olumn 
ase. As we have mentioned in theintrodu
tion, the HSVD exists only if GJG� is non-singular. Also, all bounds havethe fa
tor kV k, and unlike the full 
olumn rank 
ase, this fa
tor 
an be estimatedonly in some spe
ial 
ases.Let G 2 Cm�n have full row rank, rank(G) = m � n, and let Jii 2 f�1; 1g,i = 1; : : : ; n. The HSVD for the pair (G; J) 
an be written asG = U h � 0 iV �1: (21)Here U 2 Cm�m is unitary, V �JV = �J � �J� � �J0; (22)where �J is some permutation of J , and � = diag(�1; : : : ; �m), where �i > 0.The 
orresponding non-singular eigenvalue problem (1) 
an be written asGJG� = U�U�; (23)9



where � = �2 �J�. The 
orresponding hyperboli
 eigenvalue problem (2) 
an be writtenas V �G�GV = " j�j 0 # ; V �JV = �J: (24)Let us partition V as V = [V� V0 ℄ ; (25)where V� = V:;1:m. Then, for all V whi
h perform the diagonalization (24), the partsV� have the same spe
tral norm (see [18, Proof of Theorem 1℄). Clearly, if V performsthe diagonalization (24), then any V̂ of the formV̂ = V � I V̂0 � = [V� V0V̂0 ℄ ;where V̂ �0 �J0V̂0 = �J0, does the same.As already mentioned in the introdu
tion, here we will 
onsider G s
aled fromthe left-hand side. Let G = �D �B, where �D is m � m non-singular matrix. For thestru
tured perturbation ÆG = �DÆ �Bwe have eG = G + ÆG = G(I +GyÆG) = G(I + �ByÆ �B): (26)For the ease of presentation, de�ne�E = �ByÆ �B; �� = k �Ek = k �ByÆ �Bk; ��F = k �EkF = k �ByÆ �BkF : (27)Obviously, if kÆBk or kÆBkF are known, then�� � kÆ �Bk�min( �B) ; ��F � kÆ �BkF�min( �B) :In parti
ular, for the element-wise perturbation of G of the formjÆGj � "jGj;we 
an 
hoose D to be a diagonal matrix, in whi
h 
ase the above inequality isequivalent to jÆBj � "jBj:Additionally, if this diagonal D is su
h that kBi;:k = 1, i = 1; : : : ;m, we have�� � k jÆ �Bj k�min( �B) � "pm�min( �B) :10



3.1 Singular value boundsIn this se
tion we assume that the unperturbed and the perturbed hyperboli
 singularvalues, �i and e�i, respe
tively, are arranged in the in
reasing order. The relativeWeyl-type perturbation bound for hyperboli
 singular values follows dire
tly from[18, Theorem 1℄.Theorem 5 Let G, eG, ÆG and �� be as in (21), (26) and (27), respe
tively. If2 ��+ ��2 < 1, then the unperturbed and the perturbed hyperboli
 singular values �i ande�i, respe
tively, satisfy the inequalitiesq1 � (2 �� + ��2)kV�k2 � e�i�i � q1 + (2 �� + ��2)kV�k2:Proof. Let H = GJG� be non-singular as in (23). Sin
e,kÆG�xk = kÆ �B� �Dxk = kÆ �B�( �B�)y �B� �Dxk � kÆ �B�( �B�)yk kG�xk = �� kG�xk;the bound follows by taking the square root of the bound of [18, Theorem 1℄.The following theorem gives a relativeWielandt{Ho�man-type perturbation boundfor hyperboli
 singular values.Theorem 6 Let G, eG, ÆG, �E, �� and ��F be as in (21), (26) and (27), respe
tively.Let the HSVD of eG be given by eG = eU h e� 0 i eV �1;and let eV be partitioned a

ording to (25). If �� < 1, then the unperturbed and theperturbed hyperboli
 singular values �i and e�i, respe
tively, satisfy the inequalityvuut mXi=1  �2i � e�2i�ie�i !2 � kV�k k eV�k 2 ��F + ��2F1� �� ;provided that the right-hand side is less than 2.Proof. Let H = GJG� and fH = eGJ eG� be the 
orresponding unperturbed and theperturbed eigenvalue problems (23). ThenfH = G(I + �E)J(I + �E)�G�:Write ÆH = fH �H asfH �H = eG(J(I + �E)� � (I + �E)�1J)G� = eG�G�;where � = J(I + �E)� � (I + �E)�1J:11



By pre- and post-multiplying this equality by eU� and U , respe
tively, and using (23),we obtaineU� eG�G�U = eU�(fH �H)U = eU�( eU e� eU� � U�U�)U = e� eU�U � eU�U�: (28)From (21), (22) and (25), we haveU�G = [� 0 ℄V �1 = � �J�V ��J:Analogous equalities hold for the perturbed problem, as well. Inserting the aboveequality into (28) givese� eU�U � eU�U� = je�j1=2 �J� eV ��J �JV� �J�j�j1=2: (29)Set S = eU�U . By interpreting the above equality 
omponent-wise and taking theFrobenius norm we obtainmXi;j=10� jf�i � �jjqjf�ij j�j j1A2 jSijj2 = k �J� eV ��J �JV� �J�k2F :De�ne the matrix Y by Yij = jSijj2. Sin
e Y is a doubly sto
hasti
 matrix (see [6, 8℄),by applying [8, Lemma 5.1℄ we havemXi=10� jf�i � ��(i)jqjf�ijj��(i)j1A2 � k �J� eV ��J �JV� �J�k2F ; (30)for some permutation � of f1; 2; : : : ;mg. Sin
e� = (I + �E)�1((I + �E)J(I + �E)� � J)= (I + �E)�1( �EJ + J �E� + �EJ �E�);(27) implies k�kF � 2 ��F + ��2F1 � �� : (31)Inserting into (30) givesvuuut mXi=10� jf�i � ��(i)jqjf�ijj��(i)j1A2 � kV�k k eV�k 2 ��F + ��2F1 � �� : (32)By assumption, the right-hand side of (32) is less then 2. Thus,jf�i � ��(i)jqjf�ijj��(i)j � 2;12



whi
h implies that the permutation � does not mix eigenvalues of di�erent signs.Applying [8, Proposition 2.4, (2.12)℄ separately to the parts of the left hand-side of(32) whi
h 
ontain only positive and only negative eigenvalues, respe
tively, givesvuuut mXi=10� jf�i � �ijqjf�ijj�ij1A2 � vuuut mXi=10� jf�i � ��(i)jqjf�ijj��(i)j1A2;whi
h 
ompletes the proof.Noti
e that the bound of Theorem 6 has a fa
tor kV�k k eV�k whi
h is essentiallythe 
ondition number of a diagonalizing non-unitary matrix. Similar fa
tors arealso present in other relative perturbation bounds for problems with non-unitarydiagonalizing matri
es as in [18℄, [12, Theorem 5℄, [19, Theorem 3.17℄ and [4℄.Remark 1 The fa
t that the additional fa
tor kV�k k eV�k involves the perturbed andthe unperturbed quantity is rather in
onvenient in applying the bound of Theorem6. Also, 
ontrary to the full 
olumn rank 
ase of Se
tion 2 where we have an upperbound (20), the norm kV�k whi
h appears in Theorems 5 and 6 
an be estimated onlyin some spe
ial 
ases. In Se
tion 4 we des
ribe how the norm k eV k 
an be boundedby kV k.3.2 Singular ve
tor boundsNow we present the relative sin� theorems for left and right singular subspa
es ofthe pair (G; J). Let the HSVD from (21) be written asG = h U1 U2 i ��1 0 00 �2 0 � h V1 V2 V0 i�1 : (33)where U1 = U:;1:k and the rest of the matri
es have the 
orresponding dimensions.Similarly, let eG = h eU1 eU2 i � e�1 0 00 e�2 0 � h eV1 eV2 eV0 i�1 : (34)Also, let �J be partitioned a

ordingly,�J = �J1 � �J2 � �J0:Similarly as in Se
tion 2.2, we assume that the unperturbed and the perturbedhyperboli
 singular values are in the same order. That is, �i and e�i denote the k-thlargest hyperboli
 singular values of the pairs (G; J) and ( eG; J), respe
tively.The �rst theorem 
ontains the perturbation bound for left (unitary) singular sub-spa
e spanned by the �rst k 
olumns of U .13



Theorem 7 Let G and eG be as in (33) and (34), respe
tively, and let ÆG, �� and ��Fbe de�ned by (26) and (27), respe
tively. Let U1 and eU1 be the subspa
es spanned bythe 
olumns of U1 and eU1, respe
tively. Let rg2(e�1;�2) be de�ned as in (16), but withk + 1 � q � m. If �� < p2 � 1 and rg2(e�1;�2) > 0, thenk sin�(U1; eU1)kF � k eV1k kV2k 2 ��F + ��2F1� �� � 1rg2(e�1;�2) :Proof. The proof is similar to the proof of [16, Theorem 3℄. As in the proof ofTheorem 6, (29) holds, where � is bounded by (31). For the (1; 2) blo
k of (29) wehave e�1 eU�1U2 � eU�1U2�2 = je�1j1=2 �J1 eV �1 J �JV2 �J2j�2j1=2:By interpreting this equality 
omponent-wise and taking the Frobenius norm, we havek eU�1U2kF � k eV1k kV2k k�kF 1rg2(e�1;�2) ;as desired.Noti
e that the eigenve
tor bound of Theorem 7 
omplements the eigenvaluebounds given in [18℄. Also, as already mentioned in Remark 1, in Se
tion 4 wedes
ribe how to bound the perturbed quantity k eV1k by the unperturbed one, kV k,and give bounds for kV k in some spe
ial 
ases.Finally, we present the bound for the right (hyperboli
) singular subspa
e spannedby the �rst k 
olumns of the matrix V .Theorem 8 Let G and eG be as in (33) and (34), respe
tively, and let ÆG, �� and ��Fbe de�ned by (26) and (27), respe
tively. Let V1 and eV1 be the subspa
es spanned bythe 
olumns of V1 and eV1, respe
tively. Let rg1(e�1;�2) be de�ned as in (15), but withk + 1 � q � m. If �� < 1 and rg1(e�1;�2) > 0, thenk sin�(V1; eV1)kF � kV k2 k eV k2  ��F1 � �� + ��F! � 1rg1(e�1;�2) :Proof. Sin
e the 
olumns of V1 and eV1 are not orthonormal, in order to apply thede�nition of 
anoni
al angles from Se
tion 2.2, we �rst have to �nd the orthogonalbasis for the subspa
es eV1 and (V1)?. We do this by using QR fa
torization. LeteV1 = eQ eR;be the e
onomi
al QR fa
torization of eV1. Then, the 
olumns of eQ form the orthogonalbasis for the subspa
e eV1. Further, letJ [V2 V0 ℄ � �J2 �J0 � = QR;14



be the respe
tive e
onomi
al QR fa
torization. Then, the 
olumns of Q form theorthogonal basis for the subspa
e (V1)?. Indeed,Q�V1 = R�� � �J2 �J0 � �V �2V �0 �JV1 = 0:The de�nition of 
anoni
al angles from Se
tion 2.2 now impliesk sin �(V1; eV1)kF = kQ� eQkF = kR��( �J2 � �J0) [ V2 V0 ℄� J eV1 eR�1kF� kR�1k k eR�1k k [ V2 V0 ℄� J eV1kF : (35)Sin
e kR�1k = 1�min([V2 V0 ℄) � 1�min(V ) = kV �1k = kV k;k eR�1k = 1�min( eV1) � 1�min( eV ) = k eV �1k = k eV k; (36)it remains to bound k [V2 V0 ℄� J eV1kF .By using (26), we haveeG� eG = (I + �E)�G�G(I + �E); �E = �ByÆ �B:Further, eG� eG�G�G = eG� eG(I + �E)�1 �E + �E�G�G: (37)From (24) we have G�GV = V �� � j�j 0 � = JV �� 0 � ;eV � eG� eG = � je�j 0 � eV �1 = � e� 0 � eV �J:Pre- and post-multiplying (37) by eV � and V , respe
tively, and using the above equal-ities, gives� e� 0 � eV �JV � eV �JV �� 0 � = � e� 0 � eV �J(I + �E)�1 �EV+ eV � �E�JV �� 0 � : (38)For the (1; 2)-blo
k in the partition from (33) and (34), we havee�1 eV �1 JV2 � eV �1 JV2�2 = e�1 eV �1 J(I + �E)�1 �EV2 + eV �1 �E�JV2�2: (39)Similarly, for the (1; 3)-blo
k of (38) we havee�1 eV �1 JV0 = e�1 eV �1 J(I + �E)�1 �EV0; (40)15



Using (39) and (40) 
omponent-wise (similarly as in (18) and (19)), taking norms,and using the de�nition of the relative gap, gives the upper boundk eV �1 J [V2 V0 ℄kF � 1rg1(e�1;�2) kV k k eV k  ��F1� �� + ��F! :The theorem now follows by inserting this and (36) into (35).4 Applying the boundsAs we already explained in Remark 1, the bounds of Theorems 6, 7 and 8, 
ontainnorms of (parts of) hyperboli
 singular ve
tor matri
es V and eV . These terms arein
onvenient sin
e having both perturbed and unperturbed quantities makes it im-possible to 
ompute the bound in the 
ase when only norm of perturbation �ÆB andnot the perturbation itself is known.To solve this problem, we have to bound k eV k in terms of kV k. First noti
e thatif m < n � 1, then the matri
es V and eV from (33) and (34), respe
tively, are notunique. More pre
isely, any matrix of the formV 0 = h V1 V2 V0V 00 i ;where V 00 is a (n�m)� (n�m) �J0-unitary matrix, is also a hyperboli
 singular ve
tormatrix of the pair (G; J). Similarly, any matrix of the formeV 0 = h eV1 eV2 eV0 eV 00 i ; (41)where eV 00 is a (n � m) � (n � m) �J0-unitary matrix, is also a hyperboli
 singularve
tor matrix of the pair ( eG; J). The proof of the following theorem, whi
h is longand te
hni
al, is similar to the one in [16, Se
tion 3℄, and is therefore omitted.Theorem 9 Let G, eG, V and eV be as in (33) and (34), respe
tively. Let ÆG, ��and ��F be de�ned by (26) and (27), respe
tively, and set 
 = ��F=(1 � ��). If 0 <4
kV k2 < 1, then we 
an 
hoose a �J0-unitary matrix eV 00 su
h that the matrix eV 0 from(41) satis�es k eV 0k � kV kq1 � 4
kV k2 :Therefore, by using the above inequality we 
an bound the terms k eV�k, k eV1k andk eV k from Theorems 6, 7 and 8, in terms of kV k.As we have already mentioned, the bounds for the HSVD di�er from the bounds forthe 
lassi
al SVD mainly in having an additional fa
tor whi
h depends on J -unitarymatrix V . Naturally, we would like to know when 
an we expe
t this additionalfa
tor to be small. Unfortunately, when G has full row rank, we 
an not, in general,16



eÆ
iently bound �(V ) � kV k kV �1k = kV k2, as we have done in (20). However,we 
an bound V in a satisfa
tory manner when the asso
iated Hermitian matrixH = GJG� has some spe
ial stru
ture: the bound for the 
ase when H is a s
aleddiagonal dominant matrix is given in [18, (30)℄; the bound for the 
ase when H ispositive de�nite is given in [18, Theorem 5℄; the bound for the 
ase when H is quaside�nite matrix is given in [16, Se
tion 3.1℄; and the bound for the 
ase when H isblo
k-s
aled diagonally dominant matrix is given in [15℄.Let us mention that when both matri
esG and GJG� are square and non-singular,we 
an apply bounds from Se
tions 2 and 3. The question whi
h bounds are thensharper, has no general answer. We 
an say that the answer depends on whether Gis well s
aled from the left or from the right. For example, if we 
an write G = BDwith B well-
onditioned, than the bounds of Se
tion 2 might be sharper. Vi
e versa,if �B from G = �D �B is well-
onditioned, then the bounds of Se
tion 3 are likely to bebetter.We illustrate our results by three 
omputed examples. Our �rst example illustratesbounds of Se
tion 2.Example 1 Let G = B̂D̂ withB̂ = 2666664 0:24 �0:62 �0:86 �0:51 0:880:90 �0:02 �0:37 0:17 �0:320:28 �0:18 0:22 0:01 �0:20�0:51 �0:07 �0:65 �0:07 �0:38�0:29 0:22 0:24 0:08 �0:18 3777775 ; (42)D̂ = diag(1010; 100; 1; 1; 105);and let J = diag(1; 1; 1;�1;�1). The hyperboli
 singular values of the pair (G; J)are (properly rounded)�+1 = 1:14 � 1010; ��2 = 1:04 � 105; �+3 = 44:5; �+4 = 0:747; ��5 = 0:0354:Here and in the subsequent examples the supers
ript \+" (\�") denotes that �i
orresponds to positive (negative) diagonal entry of J . Noti
e that �(G) = 3:2 � 1011,while 
hoosing a diagonal matrix D su
h that kB:;ik = 1, i = 1; : : : ; n, gives G = BDwith �(B) = 35:4. Therefore, the matrix G is well-s
aled from the right, thus thebounds of Se
tion 2 are appropriate.Let the perturbed matrix be given by eG = (B̂ + ÆB̂)D̂ withÆB̂ = 10�6 � 2666664 0:46 �0:26 �0:02 0:36 0:42�0:26 �0:96 �0:66 0:21 0:69�0:02 �0:66 �0:91 �0:15 0:140:36 0:21 �0:15 0:27 �0:330:42 0:69 0:14 �0:33 �0:35 3777775 : (43)This is a relative 
omponent-wise perturbation satisfying jÆGj � 4:8 � 10�5jGj.17



When applying Theorem 2, the exa
t perturbation of the hyperboli
 singularvalues is equal to 2:44 � 10�5 and the bound of the theorem is 7:53 � 10�5. Therelative gaps for individual singular values, the true perturbations of the singularve
tors 
orresponding to individual singular values, and the bounds obtained by usingTheorems 3 and 4 are displayed in Table 1. Noti
e that the hyperboli
 singular ve
tormatrix V whi
h appears in the bound of Theorem 4 is well 
onditioned, �(V ) =kV k2 = 1:14.i 1 2 3 4 5rg1(e�i;�2) 1 1 0:99 0:99 1k sin�(Ui; eUi)kF 6 � 10�7 3 � 10�7 10�6 10�6 2 � 10�6Theorem 3 8 � 10�5 8 � 10�5 8 � 10�5 8 � 10�5 8 � 10�5rg2(e�i;�2) 105 2339 60 21 21k sin�(Vi; eVi)kF 10�11 2 � 10�10 2 � 10�8 3 � 10�7 3 � 10�7Theorem 4 8 � 10�10 4 � 10�8 2 � 10�6 4 � 10�6 4 � 10�6Table 1: Singular ve
tor perturbations for G = B̂D̂Our se
ond example illustrates bounds of Se
tion 3.Example 2 LetG = D̂B̂, where B̂ and D̂ are as in (42). Let J = diag(1; 1; 1;�1;�1).The hyperboli
 singular values of the pair (G; J) are (properly rounded)�+1 = 3:8 � 109; ��2 = 3:97 � 104; �+3 = 51:9; �+4 = 1:02; ��5 = 0:173:Noti
e that �(G) = 9:3�1010, while 
hoosing a diagonal matrix �D su
h that k �Bi;:k = 1,i = 1; : : : ; n, gives G = �D �B with �( �B) = 29:4. Therefore, the matrix G is well-s
aledfrom the left, thus the bounds of Se
tion 3 are appropriate.Let the perturbed matrix be given by eG = D̂(B̂ + ÆB̂), where ÆB̂ is de�ned by(43). When applying Theorem 6, the exa
t perturbation of the hyperboli
 singularvalues is equal to 2:22 � 10�5 and the bound of the theorem is 1:56 � 10�3. Therelative gaps for individual singular values, the true perturbations of the singularve
tors 
orresponding to individual singular values, and the bounds obtained by usingTheorems 7 and 8 are displayed in Table 2. For the hyperboli
 singular ve
tor matri
eswe have kV k � k eV k � 6:28.The two previous examples illustrate the relative perturbation bounds for theHSVD of the pair (G; J) when the matrix G is s
aled from the right or from the left,respe
tively. In our third example we 
onsider the HSVD of the pair (G; J) when thematrix G is s
aled from both sides. 18



i 1 2 3 4 5rg2(e�i;�2) 9:7 � 104 765 50:9 6:05 6:05k sin �(Ui; eUi)kF 10�11 10�8 10�7 3 � 10�6 3 � 10�6Theorem 7 8 � 10�9 10�6 9 � 10�6 7 � 10�5 4 � 10�5rg1(e�i;�2) 1 1 0:99 0:99 1k sin �(Vi; eVi)kF 5 � 10�7 8 � 10�7 7 � 10�6 5 � 10�6 5 � 10�6Theorem 8 8 � 2�3 2 � 10�3 4 � 2�3 2 � 10�3 2 � 10�3Table 2: Singular ve
tor perturbations for G = D̂B̂Example 3 Let G = D̂1B̂D̂, where B̂ and D̂ are as in (42) andD̂1 = diag(104; 10�2; 103; 1; 100):Let J = diag(1; 1; 1;�1;�1) The hyperboli
 singular values of the pair (G; J) are(properly rounded)�+1 = 3:7 � 1011; ��2 = 7:98 � 106; �+3 = 1:56 � 102; �+4 = 1:26; ��5 = 0:0241:Noti
e that �(G) = 1:5 � 1013, while 
hoosing a diagonal matrix D su
h thatk �B:;ik = 1, i = 1; : : : ; n, gives G = BD with �(B) = 6:2 � 103. Therefore, we 
an usethe bounds of Se
tion 2.Let the perturbed matrix be given by eG = D̂1(B̂+ ÆB̂)D̂, where ÆB̂ is de�ned by(43). When applying Theorem 2, the exa
t perturbation of the hyperboli
 singularvalues is equal to 3:56 � 10�5 and the bound of the theorem is 4:78 � 10�3. Therelative gaps for individual singular values, the true perturbations of the singularve
tors 
orresponding to individual singular values, and the bounds obtained by usingTheorems 3 and 4 are displayed in Table 3.On the other hand, here we 
an not apply the bounds of Se
tion 3. Namely, settingG = �D �B and ÆG = �DÆ �B for any non-singular diagonal matrix �D, the quantities ��and ��F from (27) are both approximately equal to 1:3 � 105. This is due to the fa
tthat, although G is s
aled from both sides, the s
aling from the right is dominant.A
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