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(hyperboli) singular vetors, respetively. The matrix V is also alled the hyper-exhange matrix, and its olumns are alled the hyperboli singular vetors. Also, ifG is has full olumn rank, then V �JV = J , in whih ase we say that V is J -unitaryor hypernormal with respet to J [10℄.Clearly, for J = I the HSVD is equal to the lassial singular value deompositionsine V is unitary. There are several similarities between the HSVD and the lassialSVD. First, the HSVD an be written in eonomial form depending upon dimen-sion. Seond, the HSVD is losely related to two eigenvalue problems: the Hermitianeigenvalue problem GJG� = U�U�; � = �J��; (1)and the J -Hermitian or hyperboli eigenvalue problem for the pair (G�G; J) [12℄,V �G�GV = ���; V �JV = �J: (2)Notie that for general G, � is not always diagonal. The neessary and suÆientondition for a diagonal � aording to [20, Remark 5℄ isrankGJG� = rankG;that is, the matrix GJG� is required to be be non-singular. A similar assumption isused in [18℄ and is used here, as well. Also, the hyperboli eigenvalue problem (2)an be viewed as the eigenvalue problem for the non-Hermitian matrix (see [19, 18℄)Ĥ = JG�G:In [10℄ the HSVD was proposed as a more suitable way for numerial solution ofthe downdating problem: the Hermitian eigenvalue problem for the matrixAA� �BB�; A 2 Cm�k; B 2 Cm�l;an be solved as the hyperboli singular value problem for the pair (G; J), whereG = h A B i ; J = " Ik �Il # :The HSVD is also part of the highly aurate algorithm for symmetri eigenvalueproblem [11℄. In this algorithm the given matrix H is �rst fatorized as H = GJGT ,whih is followed by the omputation of the HSVD of the pair (G; J). Similar appli-ation of the HSVD is found in the eigenvalue deomposition algorithm for de�nitematrix pairs [17℄.In this paper we derive the bounds for hyperboli singular values �i = �ii andfor the left and right singular vetors. For hyperboli singular values we presentrelative perturbation bounds of Weyl and Wielandt-Ho�man type, and for singularvetors we give bounds in terms of sin� theorems for the subspaes spanned byolumns of U and V , respetively. The ases when G has full olumn and full row2



rank are treated separately. Clearly, a square, non-singular G is inluded in bothases. In the full olumn rank ase we onsider the right saling G = BD, thusassuming the perturbation of the form G + ÆG = (B + ÆB)D, and in the full rowrank ase we onsider the left saling G = �D �B, thus assuming the perturbation ofthe form G + ÆG = �D( �B + Æ �B). In both ases our bounds an be applied to theimportant ase of relative element-wise perturbations of the form jÆGijj � "jGijj,whih typially ours in numerial omputations. Sine the HSVD is losely relatedto the eigenvalue problems (1) and (2), some of our bounds follow from the existingresults from [12, 16, 18, 19℄.Throughout the paper all the perturbed quantities will be denoted by tilde. Forexample, the hyperboli singular values of the pair (G; J) will be denoted by �i, andthe hyperboli singular values of the perturbed pair ( eG; J) will be denoted by e�i. InSetions 2.1 and 2.2, whih deal with the perturbation bounds for hyperboli singularvalues, we assume that �i and e�i are in the inreasing order. In Setions 2.2 and 3.2,whih deal with the perturbation bounds for hyperboli singular vetors, �i and e�ian be in any order, but the ordering must be the same. Ay denotes the pseudoinverseof A, k � k denotes the spetral matrix norm, k � kF denotes the Frobenius norm, and�(A) = kAk kAyk denotes the spetral ondition number. Similarly to the Matlabnotation, A:;k denotes the k-th olumn of A, Ak;: denotes the k-th row of A, and A:;l:kdenotes the olumns l to k of A.The rest of the paper is organized as follows. In Setion 2 we onsider G with fullolumn rank. We �rst give relative perturbation bounds for hyperboli singular values.We then give perturbation bounds for the left and right singular vetors. In Setion 3we onsider G with full row rank. We give relative perturbation bounds for hyperbolisingular values and perturbation bounds for the left and right singular vetors. Inboth setions we ompare our bounds with the existing relative perturbation resultsfor the lassial SVD. Finally, in Setion 4 we disuss some issues whih involve theappliation of the bounds and give three numerial examples.2 Full olumn rank aseLet G 2 Cm�n have full olumn rank, that is, rank(G) = n � m, and let Jii 2 f�1; 1g,i = 1; : : : ; n. Then the HSDV of the pair (G; J) an be written asG = U " �0 # V �1; (3)where U 2 Cm�m is unitary, V 2 Cn�n is J -unitary, � = diag(�1; : : : ; �n) and �i > 0for i = 1; : : : ; n. The orresponding eigenvalue problem (1) an be written asGJG� = U " � 0 #U�; � = �2J; (4)3



and the orresponding hyperboli eigenvalue problem (2) an be written asV �G�GV = j�j; V �JV = J: (5)Notie that inversion of equation V �JV = J together with J�1 = J implies thatV �1JV �� = J , so V �� is J -unitary, too. Further, we easily see that the matrix Vgiven by (5), or even more generally, by (2), satis�es�(V ) = kV k kV �1k = kV k2: (6)Moreover, all V whih perform the diagonalization (5) have the same ondition num-ber [17℄.Notie that U , � and V are related as follows. Let us partition U asU = h U� U0 i ;where the olumns of U� = U:;1:n and U0 = U:;n+1:m span the non-zero and zerosubspaes of the matrix GJG�, respetively. ThenU� = GV ��1:As already mentioned, here we will onsider G saled from the right-hand side.Let G = BD, where D is n�n non-singular matrix. For the strutured perturbationÆG = ÆBD (7)we have eG = G + ÆG = (B + ÆB)D = (I + ÆGGy)G = (I + ÆBBy)G: (8)For the ease of the presentation, de�neE = ÆBBy; � = kEk = kÆBByk; �F = kEkF = kÆBBykF : (9)Obviously, if kÆBk or kÆBkF are known, then� � kÆBk�min(B); �F � kÆBkF�min(B) :In partiular, for the element-wise perturbation of G of the formjÆGj � "jGj; (10)we an hoose D to be a diagonal matrix, in whih ase (10) is equivalent tojÆBj � "jBj:4



Additionally, if this diagonal D is suh that kB:;ik = 1, i = 1; : : : ; n, we have� � k ÆB k�min(B) � k ÆB kF�min(B) = k jÆBj kF�min(B) � "k jBj kF�min(B) = " pn�min(B) :Notie that both types of strutured perturbations, (10) and (7) with D as above,appear in numerial omputations. The �rst type appears when the matrix is beingstored in omputer memory, and the seond type appears in some algorithms duringoating-point omputations [1, 3, 11℄. In partiular, one part of the algorithm forhighly aurate symmetri eigenredution from [11℄ is a one-sided Jaobi-type algo-rithm for omputing the HSVD of the pair (G; J), and the perturbation bounds ofthis setion an be used to analyze that algorithm.2.1 Singular value boundsIn this setion we assume that the unperturbed and the perturbed hyperboli singularvalues, �i and e�i, respetively, are arranged in the inreasing order. The relativeWeyl-type perturbation bound for hyperboli singular values follows diretly from[19, Theorem 3.3℄.Theorem 1 Let G, eG, ÆG and � be as in (3), (8) and (9), respetively. If � < 1, thenthe unperturbed and the perturbed hyperboli singular values �i and e�i, respetively,satisfy the inequalities 1� � � e�i�i � 1 + �:Proof. Let H = GJG� be as in (4) and let fH = eGJ eG� be orresponding perturbedmatrix. SinekÆGxk = kÆBDxk = kÆBByBDxk � kÆBByk kBDxk = � kGxk;H and fH ful�ll the assumptions of [19, Theorem 3.3℄, and the theorem follows bytaking the square root of the bound of [19, Theorem 3.3℄.The following theorem gives a relativeWielandt{Ho�man-type perturbation boundfor hyperboli singular values.Theorem 2 Let G, eG, ÆG, E, � and �F be as in (3), (8) and (9), respetively. If2�F +�2F < 2=3, then the unperturbed and the perturbed hyperboli singular values �iand e�i, respetively, satisfy the inequalityvuut nXi=1  �2i � e�2i�ie�i !2 �  0�12 +s1 + 14 21A ;where  = 2�F + �2Fp1 � 2� � �2 : (11)5



Proof. Let H 0 = G�G be as in (5), and let fH 0 � H 0 + ÆH 0 = eG� eG. Aording to (8)fH 0 = G�(I + E)�(I + E)G = G�(I + E� + E + E�E)G:We an now apply [12, Theorem 3℄ with D = G, A = I, andÆA = E� + E + E�E;and the theorem follows.Sine j�2i � e�2i j�ie�i � j�i � e�ij j�i + e�ij(maxf�i; e�ig)2 � j�i � e�ijmaxf�i; e�ig ;the bound of Theorem 2 further impliesvuut nXi=1  �i � e�imaxf�i; e�ig!2 �  0�12 +s1 + 14 21A :Notie that the hyperboli singular values behave as well as the singular values.Namely, the relative perturbations in Theorems 1 and 2 depend on norms of ÆBand By as do the bounds from [3, Theorem 2.14℄ and [8, Theorem 4.4, Remark 4.2℄,respetively.2.2 Singular vetor boundsIn this setion we present relative variants of the well-known sin� theorems [2℄ forleft and right singular subspaes of the pair (G; J). Let U and eU be two subspaesof the same dimension. The sin� theorems give the bound for k sin �(U ; eU)k, wheresin�(U ; eU) is diagonal matrix whose diagonal elements are the sines of anonialangles between the subspaes U and eU . The matrix sin�(U ; eU) is de�ned as follows[14, Corollary I.5.4℄: let U? and eU form orthonormal basis for U? and eU , respetively,where U? is the orthogonal omplement of U , and let QSW � be a singular valuedeomposition of U�? eU . Then sin�(U ; eU) = S.Throughout this setion we assume that the unperturbed and the perturbed hy-perboli singular values are in the same order. More preisely, �i denotes the k-thlargest hyperboli singular value of the pair (G; J), and e�i denotes the k-th largesthyperboli singular value of the perturbed pair ( eG; J).Let the HSVD from (3) be written asG = h U1 U2 U0 i 264�1 �20 0 375 h V1 V2 i�1 ; (12)where U1 = U:;1:k and the rest of the matries have the orresponding dimensions.Similarly, let eG = h eU1 eU2 eU0 i 264 e�1 e�20 0 375 h eV1 eV2 i�1 : (13)6



Also, let J = J1 � J2; � = �1 � �2; e� = e�1 � e�2;be partitioned aordingly. Thus,�1 = �21J1; �2 = �22J2; e�1 = e�21J1; e�2 = e�22J2: (14)In order to state and prove our theorems we need to de�ne a relative gap betweenthe singular values from e�1 and those from �2. We shall use two kinds of relativegap, rg1(e�1;�2) = min1�p�kk+1�q�n je�2pJpp � �2qJqqje�2p + �2q ; (15)and rg2(e�1;�2) = min1�p�kk+1�q�n je�2pJpp � �2qJqqje�p�q : (16)The relative gap rg1 is based on the relative distane �1(�; e�) de�ned by [9, (2.2)℄between the unperturbed and perturbed eigenvalues of the orresponding Hermitianeigenvalue problem (4). Notie that �1 is a metri on R [9, Appendix B℄. The relativegap rg2 is based on the relative distane �(�; e�) de�ned by [9, (2.3)℄ between theunperturbed and perturbed eigenvalues of the problem (4).The �rst theorem ontains the perturbation bound for the left (unitary) singularsubspae spanned by the �rst k olumns of U . Notie that, sine we do not assumeany partiular order for hyperboli singular values, the �rst k olumns an orrespondto any subset of k singular values. The same remark applies to all subsequent singularvetor theorems.Theorem 3 Let G and eG be as in (12) and (13), respetively, and let ÆG, � and�F be de�ned by (8) and (9), respetively. Further, let U1 and eU1 be the subspaesspanned by the olumns of U1 and eU1, respetively, and let rg1(e�1;�2) be de�ned by(15). If � < 1 and rg1(e�1;�2) > 0, thenk sin �(U1; eU1)kF �  �F1� � + �F! 1rg1(e�1;�2) :Proof. Let H = GJG� be as in (1). By using (8) we an writefH = eGJ eG� = (I + E)GJG�(I + E)�; E = ÆBBy:Sine eU� �fH �H�U = � e� 0 � eU�U � eU�U �� 0 � ;and also eU� �fH �H�U = eU� �fH(I + E)��E + EH�U;7



by using (4) we have� e� 0 � eU�U � eU�U �� 0 � = � e� 0 � eU�(I + E)��EU + eU�EU �� 0 � : (17)Writing this equality blok-wise in the partition from (12), (13) and (14), for the(1; 2)-blok we obtaine�1 eU�1U2 � eU�1U2�2 = e�1 eU�1 (I + E)��EU2 + eU�1EU2�2:Now, using this omponent-wise for all pairs of indies (p; q), we havej( eU�1U2)pqj j(e�1)pp � (�1)qqj � j(e�1)ppj j( eU�1 )p;:(I + E)��E(U2):;qj+ j( eU�1 )p;:E(U2):;qj j(�2)qqj: (18)Similarly, writing (17) blok-wise for the (1; 3)-blok we obtaine�1 eU�1U0 = e�1 eU�1 (I + E)��EU0:Using this omponent-wise for all pairs of indies (p; q), we havej( eU�1U0)pqj = j( eU�1 )p;:(I + E)��E(U0):;qj: (19)Sine eU1, U2 and U0 are matries with orthonormal olumns, ombining (18) and(19), taking norms, and using the de�nition (15), gives the upper boundk eU�1 [U2 U0 ℄ kF � 1rg1(e�1;�2) (k(I + E)�1EkF + kEkF ):Using this, k sin�(U1; eU1)kF = k eU�1 [U2 U0 ℄ kF ;and k(I + E)�1EkF + kEkF � �F1� � + �F ;ompletes the proof.The seond theorem gives the perturbation bound for the right (hyperboli) sin-gular subspae spanned by the �rst k olumns of V .Theorem 4 Let G and eG be as in (12) and (13), respetively, and let ÆG, � and �Fbe de�ned by (8) and (9), respetively. Further, let V1 and eV1 be the subspaes spannedby the olumns of V1 and eV1, respetively. Also, let  and rg2(e�1;�2) be de�ned by(11) and (15), respetively. If 2� + �2 < 1 and rg2(e�1;�2) > 0, thenk sin �(V1; eV1)kF � kV k2 0�12 +s1 + 14 21A  rg2(e�1;�2) :8



Proof. Sine the matrix V = h V1 V2 i simultaneously diagonalizes the pair (G�G; J),the theorem follows diretly from [12, Theorem 4℄.Notie that the left (unitary) singular vetors in the HSVD behave as well as theleft singular vetors in the lassial SVD. Namely, the bound of Theorem 3 essentiallydepends on norms of ÆB and By and the relative gap, as do the bounds from [3,Theorem 2.16, Corollary 2.17℄ and [9, Theorem 4.3℄.On the other side, the bound of Theorem 4 for the right (hyperboli) singularvetors has an additional fator kV k2 over the orresponding bounds from [3, The-orem 2.16, Corollary 2.17℄ and [9, Theorem 4.3℄. When applying Theorem 4 to thelassial SVD with J = I this term vanishes sine V is unitary. Aording to (6),kV k2 = �(V ). However, the spetral ondition number of the non-unitary eigenve-tors appears naturally in various other absolute and relative perturbation results like[19, Theorem 3.17℄, [4, 5, 7, 12, 18℄.In order to simplify the omputation of the bound of Theorem 4, we an furtherbound kV k as follows: aording to [13, Theorem 3℄, V whih diagonalizes the pair(G�G; J) satis�es kV k2 � min� q�(��G�G�);where the minimum is over all matries whih ommute with J . By taking � = D�1,where G = BD, we havekV k2 � q�(D�1G�GD�1) = q�(B�B) = �(B): (20)3 Full row rank aseThis ase is more ompliated then the full olumn ase. As we have mentioned in theintrodution, the HSVD exists only if GJG� is non-singular. Also, all bounds havethe fator kV k, and unlike the full olumn rank ase, this fator an be estimatedonly in some speial ases.Let G 2 Cm�n have full row rank, rank(G) = m � n, and let Jii 2 f�1; 1g,i = 1; : : : ; n. The HSVD for the pair (G; J) an be written asG = U h � 0 iV �1: (21)Here U 2 Cm�m is unitary, V �JV = �J � �J� � �J0; (22)where �J is some permutation of J , and � = diag(�1; : : : ; �m), where �i > 0.The orresponding non-singular eigenvalue problem (1) an be written asGJG� = U�U�; (23)9



where � = �2 �J�. The orresponding hyperboli eigenvalue problem (2) an be writtenas V �G�GV = " j�j 0 # ; V �JV = �J: (24)Let us partition V as V = [V� V0 ℄ ; (25)where V� = V:;1:m. Then, for all V whih perform the diagonalization (24), the partsV� have the same spetral norm (see [18, Proof of Theorem 1℄). Clearly, if V performsthe diagonalization (24), then any V̂ of the formV̂ = V � I V̂0 � = [V� V0V̂0 ℄ ;where V̂ �0 �J0V̂0 = �J0, does the same.As already mentioned in the introdution, here we will onsider G saled fromthe left-hand side. Let G = �D �B, where �D is m � m non-singular matrix. For thestrutured perturbation ÆG = �DÆ �Bwe have eG = G + ÆG = G(I +GyÆG) = G(I + �ByÆ �B): (26)For the ease of presentation, de�ne�E = �ByÆ �B; �� = k �Ek = k �ByÆ �Bk; ��F = k �EkF = k �ByÆ �BkF : (27)Obviously, if kÆBk or kÆBkF are known, then�� � kÆ �Bk�min( �B) ; ��F � kÆ �BkF�min( �B) :In partiular, for the element-wise perturbation of G of the formjÆGj � "jGj;we an hoose D to be a diagonal matrix, in whih ase the above inequality isequivalent to jÆBj � "jBj:Additionally, if this diagonal D is suh that kBi;:k = 1, i = 1; : : : ;m, we have�� � k jÆ �Bj k�min( �B) � "pm�min( �B) :10



3.1 Singular value boundsIn this setion we assume that the unperturbed and the perturbed hyperboli singularvalues, �i and e�i, respetively, are arranged in the inreasing order. The relativeWeyl-type perturbation bound for hyperboli singular values follows diretly from[18, Theorem 1℄.Theorem 5 Let G, eG, ÆG and �� be as in (21), (26) and (27), respetively. If2 ��+ ��2 < 1, then the unperturbed and the perturbed hyperboli singular values �i ande�i, respetively, satisfy the inequalitiesq1 � (2 �� + ��2)kV�k2 � e�i�i � q1 + (2 �� + ��2)kV�k2:Proof. Let H = GJG� be non-singular as in (23). Sine,kÆG�xk = kÆ �B� �Dxk = kÆ �B�( �B�)y �B� �Dxk � kÆ �B�( �B�)yk kG�xk = �� kG�xk;the bound follows by taking the square root of the bound of [18, Theorem 1℄.The following theorem gives a relativeWielandt{Ho�man-type perturbation boundfor hyperboli singular values.Theorem 6 Let G, eG, ÆG, �E, �� and ��F be as in (21), (26) and (27), respetively.Let the HSVD of eG be given by eG = eU h e� 0 i eV �1;and let eV be partitioned aording to (25). If �� < 1, then the unperturbed and theperturbed hyperboli singular values �i and e�i, respetively, satisfy the inequalityvuut mXi=1  �2i � e�2i�ie�i !2 � kV�k k eV�k 2 ��F + ��2F1� �� ;provided that the right-hand side is less than 2.Proof. Let H = GJG� and fH = eGJ eG� be the orresponding unperturbed and theperturbed eigenvalue problems (23). ThenfH = G(I + �E)J(I + �E)�G�:Write ÆH = fH �H asfH �H = eG(J(I + �E)� � (I + �E)�1J)G� = eG�G�;where � = J(I + �E)� � (I + �E)�1J:11



By pre- and post-multiplying this equality by eU� and U , respetively, and using (23),we obtaineU� eG�G�U = eU�(fH �H)U = eU�( eU e� eU� � U�U�)U = e� eU�U � eU�U�: (28)From (21), (22) and (25), we haveU�G = [� 0 ℄V �1 = � �J�V ��J:Analogous equalities hold for the perturbed problem, as well. Inserting the aboveequality into (28) givese� eU�U � eU�U� = je�j1=2 �J� eV ��J �JV� �J�j�j1=2: (29)Set S = eU�U . By interpreting the above equality omponent-wise and taking theFrobenius norm we obtainmXi;j=10� jf�i � �jjqjf�ij j�j j1A2 jSijj2 = k �J� eV ��J �JV� �J�k2F :De�ne the matrix Y by Yij = jSijj2. Sine Y is a doubly stohasti matrix (see [6, 8℄),by applying [8, Lemma 5.1℄ we havemXi=10� jf�i � ��(i)jqjf�ijj��(i)j1A2 � k �J� eV ��J �JV� �J�k2F ; (30)for some permutation � of f1; 2; : : : ;mg. Sine� = (I + �E)�1((I + �E)J(I + �E)� � J)= (I + �E)�1( �EJ + J �E� + �EJ �E�);(27) implies k�kF � 2 ��F + ��2F1 � �� : (31)Inserting into (30) givesvuuut mXi=10� jf�i � ��(i)jqjf�ijj��(i)j1A2 � kV�k k eV�k 2 ��F + ��2F1 � �� : (32)By assumption, the right-hand side of (32) is less then 2. Thus,jf�i � ��(i)jqjf�ijj��(i)j � 2;12



whih implies that the permutation � does not mix eigenvalues of di�erent signs.Applying [8, Proposition 2.4, (2.12)℄ separately to the parts of the left hand-side of(32) whih ontain only positive and only negative eigenvalues, respetively, givesvuuut mXi=10� jf�i � �ijqjf�ijj�ij1A2 � vuuut mXi=10� jf�i � ��(i)jqjf�ijj��(i)j1A2;whih ompletes the proof.Notie that the bound of Theorem 6 has a fator kV�k k eV�k whih is essentiallythe ondition number of a diagonalizing non-unitary matrix. Similar fators arealso present in other relative perturbation bounds for problems with non-unitarydiagonalizing matries as in [18℄, [12, Theorem 5℄, [19, Theorem 3.17℄ and [4℄.Remark 1 The fat that the additional fator kV�k k eV�k involves the perturbed andthe unperturbed quantity is rather inonvenient in applying the bound of Theorem6. Also, ontrary to the full olumn rank ase of Setion 2 where we have an upperbound (20), the norm kV�k whih appears in Theorems 5 and 6 an be estimated onlyin some speial ases. In Setion 4 we desribe how the norm k eV k an be boundedby kV k.3.2 Singular vetor boundsNow we present the relative sin� theorems for left and right singular subspaes ofthe pair (G; J). Let the HSVD from (21) be written asG = h U1 U2 i ��1 0 00 �2 0 � h V1 V2 V0 i�1 : (33)where U1 = U:;1:k and the rest of the matries have the orresponding dimensions.Similarly, let eG = h eU1 eU2 i � e�1 0 00 e�2 0 � h eV1 eV2 eV0 i�1 : (34)Also, let �J be partitioned aordingly,�J = �J1 � �J2 � �J0:Similarly as in Setion 2.2, we assume that the unperturbed and the perturbedhyperboli singular values are in the same order. That is, �i and e�i denote the k-thlargest hyperboli singular values of the pairs (G; J) and ( eG; J), respetively.The �rst theorem ontains the perturbation bound for left (unitary) singular sub-spae spanned by the �rst k olumns of U .13



Theorem 7 Let G and eG be as in (33) and (34), respetively, and let ÆG, �� and ��Fbe de�ned by (26) and (27), respetively. Let U1 and eU1 be the subspaes spanned bythe olumns of U1 and eU1, respetively. Let rg2(e�1;�2) be de�ned as in (16), but withk + 1 � q � m. If �� < p2 � 1 and rg2(e�1;�2) > 0, thenk sin�(U1; eU1)kF � k eV1k kV2k 2 ��F + ��2F1� �� � 1rg2(e�1;�2) :Proof. The proof is similar to the proof of [16, Theorem 3℄. As in the proof ofTheorem 6, (29) holds, where � is bounded by (31). For the (1; 2) blok of (29) wehave e�1 eU�1U2 � eU�1U2�2 = je�1j1=2 �J1 eV �1 J �JV2 �J2j�2j1=2:By interpreting this equality omponent-wise and taking the Frobenius norm, we havek eU�1U2kF � k eV1k kV2k k�kF 1rg2(e�1;�2) ;as desired.Notie that the eigenvetor bound of Theorem 7 omplements the eigenvaluebounds given in [18℄. Also, as already mentioned in Remark 1, in Setion 4 wedesribe how to bound the perturbed quantity k eV1k by the unperturbed one, kV k,and give bounds for kV k in some speial ases.Finally, we present the bound for the right (hyperboli) singular subspae spannedby the �rst k olumns of the matrix V .Theorem 8 Let G and eG be as in (33) and (34), respetively, and let ÆG, �� and ��Fbe de�ned by (26) and (27), respetively. Let V1 and eV1 be the subspaes spanned bythe olumns of V1 and eV1, respetively. Let rg1(e�1;�2) be de�ned as in (15), but withk + 1 � q � m. If �� < 1 and rg1(e�1;�2) > 0, thenk sin�(V1; eV1)kF � kV k2 k eV k2  ��F1 � �� + ��F! � 1rg1(e�1;�2) :Proof. Sine the olumns of V1 and eV1 are not orthonormal, in order to apply thede�nition of anonial angles from Setion 2.2, we �rst have to �nd the orthogonalbasis for the subspaes eV1 and (V1)?. We do this by using QR fatorization. LeteV1 = eQ eR;be the eonomial QR fatorization of eV1. Then, the olumns of eQ form the orthogonalbasis for the subspae eV1. Further, letJ [V2 V0 ℄ � �J2 �J0 � = QR;14



be the respetive eonomial QR fatorization. Then, the olumns of Q form theorthogonal basis for the subspae (V1)?. Indeed,Q�V1 = R�� � �J2 �J0 � �V �2V �0 �JV1 = 0:The de�nition of anonial angles from Setion 2.2 now impliesk sin �(V1; eV1)kF = kQ� eQkF = kR��( �J2 � �J0) [ V2 V0 ℄� J eV1 eR�1kF� kR�1k k eR�1k k [ V2 V0 ℄� J eV1kF : (35)Sine kR�1k = 1�min([V2 V0 ℄) � 1�min(V ) = kV �1k = kV k;k eR�1k = 1�min( eV1) � 1�min( eV ) = k eV �1k = k eV k; (36)it remains to bound k [V2 V0 ℄� J eV1kF .By using (26), we haveeG� eG = (I + �E)�G�G(I + �E); �E = �ByÆ �B:Further, eG� eG�G�G = eG� eG(I + �E)�1 �E + �E�G�G: (37)From (24) we have G�GV = V �� � j�j 0 � = JV �� 0 � ;eV � eG� eG = � je�j 0 � eV �1 = � e� 0 � eV �J:Pre- and post-multiplying (37) by eV � and V , respetively, and using the above equal-ities, gives� e� 0 � eV �JV � eV �JV �� 0 � = � e� 0 � eV �J(I + �E)�1 �EV+ eV � �E�JV �� 0 � : (38)For the (1; 2)-blok in the partition from (33) and (34), we havee�1 eV �1 JV2 � eV �1 JV2�2 = e�1 eV �1 J(I + �E)�1 �EV2 + eV �1 �E�JV2�2: (39)Similarly, for the (1; 3)-blok of (38) we havee�1 eV �1 JV0 = e�1 eV �1 J(I + �E)�1 �EV0; (40)15



Using (39) and (40) omponent-wise (similarly as in (18) and (19)), taking norms,and using the de�nition of the relative gap, gives the upper boundk eV �1 J [V2 V0 ℄kF � 1rg1(e�1;�2) kV k k eV k  ��F1� �� + ��F! :The theorem now follows by inserting this and (36) into (35).4 Applying the boundsAs we already explained in Remark 1, the bounds of Theorems 6, 7 and 8, ontainnorms of (parts of) hyperboli singular vetor matries V and eV . These terms areinonvenient sine having both perturbed and unperturbed quantities makes it im-possible to ompute the bound in the ase when only norm of perturbation �ÆB andnot the perturbation itself is known.To solve this problem, we have to bound k eV k in terms of kV k. First notie thatif m < n � 1, then the matries V and eV from (33) and (34), respetively, are notunique. More preisely, any matrix of the formV 0 = h V1 V2 V0V 00 i ;where V 00 is a (n�m)� (n�m) �J0-unitary matrix, is also a hyperboli singular vetormatrix of the pair (G; J). Similarly, any matrix of the formeV 0 = h eV1 eV2 eV0 eV 00 i ; (41)where eV 00 is a (n � m) � (n � m) �J0-unitary matrix, is also a hyperboli singularvetor matrix of the pair ( eG; J). The proof of the following theorem, whih is longand tehnial, is similar to the one in [16, Setion 3℄, and is therefore omitted.Theorem 9 Let G, eG, V and eV be as in (33) and (34), respetively. Let ÆG, ��and ��F be de�ned by (26) and (27), respetively, and set  = ��F=(1 � ��). If 0 <4kV k2 < 1, then we an hoose a �J0-unitary matrix eV 00 suh that the matrix eV 0 from(41) satis�es k eV 0k � kV kq1 � 4kV k2 :Therefore, by using the above inequality we an bound the terms k eV�k, k eV1k andk eV k from Theorems 6, 7 and 8, in terms of kV k.As we have already mentioned, the bounds for the HSVD di�er from the bounds forthe lassial SVD mainly in having an additional fator whih depends on J -unitarymatrix V . Naturally, we would like to know when an we expet this additionalfator to be small. Unfortunately, when G has full row rank, we an not, in general,16



eÆiently bound �(V ) � kV k kV �1k = kV k2, as we have done in (20). However,we an bound V in a satisfatory manner when the assoiated Hermitian matrixH = GJG� has some speial struture: the bound for the ase when H is a saleddiagonal dominant matrix is given in [18, (30)℄; the bound for the ase when H ispositive de�nite is given in [18, Theorem 5℄; the bound for the ase when H is quaside�nite matrix is given in [16, Setion 3.1℄; and the bound for the ase when H isblok-saled diagonally dominant matrix is given in [15℄.Let us mention that when both matriesG and GJG� are square and non-singular,we an apply bounds from Setions 2 and 3. The question whih bounds are thensharper, has no general answer. We an say that the answer depends on whether Gis well saled from the left or from the right. For example, if we an write G = BDwith B well-onditioned, than the bounds of Setion 2 might be sharper. Vie versa,if �B from G = �D �B is well-onditioned, then the bounds of Setion 3 are likely to bebetter.We illustrate our results by three omputed examples. Our �rst example illustratesbounds of Setion 2.Example 1 Let G = B̂D̂ withB̂ = 2666664 0:24 �0:62 �0:86 �0:51 0:880:90 �0:02 �0:37 0:17 �0:320:28 �0:18 0:22 0:01 �0:20�0:51 �0:07 �0:65 �0:07 �0:38�0:29 0:22 0:24 0:08 �0:18 3777775 ; (42)D̂ = diag(1010; 100; 1; 1; 105);and let J = diag(1; 1; 1;�1;�1). The hyperboli singular values of the pair (G; J)are (properly rounded)�+1 = 1:14 � 1010; ��2 = 1:04 � 105; �+3 = 44:5; �+4 = 0:747; ��5 = 0:0354:Here and in the subsequent examples the supersript \+" (\�") denotes that �iorresponds to positive (negative) diagonal entry of J . Notie that �(G) = 3:2 � 1011,while hoosing a diagonal matrix D suh that kB:;ik = 1, i = 1; : : : ; n, gives G = BDwith �(B) = 35:4. Therefore, the matrix G is well-saled from the right, thus thebounds of Setion 2 are appropriate.Let the perturbed matrix be given by eG = (B̂ + ÆB̂)D̂ withÆB̂ = 10�6 � 2666664 0:46 �0:26 �0:02 0:36 0:42�0:26 �0:96 �0:66 0:21 0:69�0:02 �0:66 �0:91 �0:15 0:140:36 0:21 �0:15 0:27 �0:330:42 0:69 0:14 �0:33 �0:35 3777775 : (43)This is a relative omponent-wise perturbation satisfying jÆGj � 4:8 � 10�5jGj.17



When applying Theorem 2, the exat perturbation of the hyperboli singularvalues is equal to 2:44 � 10�5 and the bound of the theorem is 7:53 � 10�5. Therelative gaps for individual singular values, the true perturbations of the singularvetors orresponding to individual singular values, and the bounds obtained by usingTheorems 3 and 4 are displayed in Table 1. Notie that the hyperboli singular vetormatrix V whih appears in the bound of Theorem 4 is well onditioned, �(V ) =kV k2 = 1:14.i 1 2 3 4 5rg1(e�i;�2) 1 1 0:99 0:99 1k sin�(Ui; eUi)kF 6 � 10�7 3 � 10�7 10�6 10�6 2 � 10�6Theorem 3 8 � 10�5 8 � 10�5 8 � 10�5 8 � 10�5 8 � 10�5rg2(e�i;�2) 105 2339 60 21 21k sin�(Vi; eVi)kF 10�11 2 � 10�10 2 � 10�8 3 � 10�7 3 � 10�7Theorem 4 8 � 10�10 4 � 10�8 2 � 10�6 4 � 10�6 4 � 10�6Table 1: Singular vetor perturbations for G = B̂D̂Our seond example illustrates bounds of Setion 3.Example 2 LetG = D̂B̂, where B̂ and D̂ are as in (42). Let J = diag(1; 1; 1;�1;�1).The hyperboli singular values of the pair (G; J) are (properly rounded)�+1 = 3:8 � 109; ��2 = 3:97 � 104; �+3 = 51:9; �+4 = 1:02; ��5 = 0:173:Notie that �(G) = 9:3�1010, while hoosing a diagonal matrix �D suh that k �Bi;:k = 1,i = 1; : : : ; n, gives G = �D �B with �( �B) = 29:4. Therefore, the matrix G is well-saledfrom the left, thus the bounds of Setion 3 are appropriate.Let the perturbed matrix be given by eG = D̂(B̂ + ÆB̂), where ÆB̂ is de�ned by(43). When applying Theorem 6, the exat perturbation of the hyperboli singularvalues is equal to 2:22 � 10�5 and the bound of the theorem is 1:56 � 10�3. Therelative gaps for individual singular values, the true perturbations of the singularvetors orresponding to individual singular values, and the bounds obtained by usingTheorems 7 and 8 are displayed in Table 2. For the hyperboli singular vetor matrieswe have kV k � k eV k � 6:28.The two previous examples illustrate the relative perturbation bounds for theHSVD of the pair (G; J) when the matrix G is saled from the right or from the left,respetively. In our third example we onsider the HSVD of the pair (G; J) when thematrix G is saled from both sides. 18



i 1 2 3 4 5rg2(e�i;�2) 9:7 � 104 765 50:9 6:05 6:05k sin �(Ui; eUi)kF 10�11 10�8 10�7 3 � 10�6 3 � 10�6Theorem 7 8 � 10�9 10�6 9 � 10�6 7 � 10�5 4 � 10�5rg1(e�i;�2) 1 1 0:99 0:99 1k sin �(Vi; eVi)kF 5 � 10�7 8 � 10�7 7 � 10�6 5 � 10�6 5 � 10�6Theorem 8 8 � 2�3 2 � 10�3 4 � 2�3 2 � 10�3 2 � 10�3Table 2: Singular vetor perturbations for G = D̂B̂Example 3 Let G = D̂1B̂D̂, where B̂ and D̂ are as in (42) andD̂1 = diag(104; 10�2; 103; 1; 100):Let J = diag(1; 1; 1;�1;�1) The hyperboli singular values of the pair (G; J) are(properly rounded)�+1 = 3:7 � 1011; ��2 = 7:98 � 106; �+3 = 1:56 � 102; �+4 = 1:26; ��5 = 0:0241:Notie that �(G) = 1:5 � 1013, while hoosing a diagonal matrix D suh thatk �B:;ik = 1, i = 1; : : : ; n, gives G = BD with �(B) = 6:2 � 103. Therefore, we an usethe bounds of Setion 2.Let the perturbed matrix be given by eG = D̂1(B̂+ ÆB̂)D̂, where ÆB̂ is de�ned by(43). When applying Theorem 2, the exat perturbation of the hyperboli singularvalues is equal to 3:56 � 10�5 and the bound of the theorem is 4:78 � 10�3. Therelative gaps for individual singular values, the true perturbations of the singularvetors orresponding to individual singular values, and the bounds obtained by usingTheorems 3 and 4 are displayed in Table 3.On the other hand, here we an not apply the bounds of Setion 3. Namely, settingG = �D �B and ÆG = �DÆ �B for any non-singular diagonal matrix �D, the quantities ��and ��F from (27) are both approximately equal to 1:3 � 105. This is due to the fatthat, although G is saled from both sides, the saling from the right is dominant.AknowledgementsWe would like to thank the referee for very areful reading of the manusript andvaluable omments.Referenes[1℄ J. Barlow and J. Demmel, Computing aurate eigensystems of saled diagonallydominant matries, SIAM J. Numer. Anal., 27:762{791 (1990).19
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