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1 IntrodutionThe problem of omputing eigenvalue and singular value deompositions of real matries withhigh relative auray has been onsidered by many authors, for example by Barlow and Demmel[3℄, Demmel and Kahan [8℄, Demmel and Gragg [7℄, Demmel et al. [6℄, Drma� [10, 11℄, Mathias[18℄, Slapni�ar [23℄ and Veseli� [31℄. The term \high relative auray" means that the algorithmis apable of omputing eigenvalues or singular values with higher relative auray than an beobtained by lassial QR algorithm [14, x8.3℄, [20, x8℄ or divide and onquer algorithm [14, x8.5℄,[16℄. More preisely, the latter two algorithms are bakward stable and ompute the eigenvaluesof a real symmetri matrix H with absolute error j�i � �0ij � f(n)"kHk2. Here the originaleigenvalues �i and the omputed eigenvalues �0i are in the same order, f(n) is a moderatelygrowing funtion of the matrix dimension n, " is the mahine preision, and kHk2 is the spetralnorm of the matrix. For the relative error this impliesj�i � �0ijj�ij � f(n)"kHk2j�ij � f(n)"�(H); (1)provided H is non-singular. Here �(H) = kHk2kHyk2 denotes the spetral ondition number,where Hy is the pseudo-inverse of H . Similarly, the QR algorithm [14, x8.6℄ or divide andonquer algorithm [15℄ ompute the singular values of a full olumn rank matrix G with therelative auray j�i � �0ij�i � f1(n)"�(G); (2)where f1(n) is a moderately growing funtion of n.There are many lasses of matries for whih suh auray results are inadequate, in par-tiular for tiny eigenvalues or singular values, like bidiagonal matries [8℄, ayli matries [7℄,saled diagonally dominant matries [3℄ and well-saled positive de�nite matries [9℄ whih ap-ply in �nite elements appliations [21℄. In all ases algorithms were given whih ompute thesolutions with higher auray then given in (1) or (2). The sheme of the analysis is alwaysthe following:relative perturbation theory + relative error analysis = relative error bounds.In [9℄ Demmel and Veseli� proved that the Jaobi method [14, x8.4℄, [20, x9℄ omputes theeigenvalues of the positive de�nite symmetri matrix H with optimal relative auray. Morepreisely: if we write H = DAD where D = diag([Hii℄1=2) and Aii = 1, thenj�i � �0ij�i � f2(n)"�(A); (3)where f2(n) is a moderately growing funtion of n. This bound will hold even if the initialmatrix entries have "-relative unertainties, that is, if one omputes the eigenvalues of thematrix H + ÆH where jÆHijj � "jHij j. Suh unertainties typially our when the matrix isstored in the omputer. Notie that log10 of the left hand side of (3) is the number of theaurate deimal digits. It is important to notie that the matrix A is nearly optimally saledin the sense that (see [30℄) �(A) � n min�=diag�(�A�):This inequality trivially implies that �(A) � n�(H);2



whih, in turn, implies an important fat that the bound (3) an never be muh worse thanthe lassial bound (1). Clearly, if the matrix H is strongly saled in the sense that A is well-onditioned and H is not, then the bound (3) will be muh better than (1). Therefore, in suhases the Jaobi method is the method of hoie if one wants to ompute eigenvalues with smallrelative error. It is important to stress a aveat whih is present in [9℄: the Jaobi methodforms sequene of orthogonally similar matries Hk whih onverges to a diagonal matrix whosediagonal elements are the desired eigenvalues. To this sequene there orresponds the sequeneof saled matries Ak, de�ned byHk = DkAkDk; Dk = diag([Hk℄1=2ii ); (4)suh that [Ak℄ii = 1. The onvergene of the series Hk to a diagonal matrix is equivalent toonvergene of the sequene Ak to the identity matrix. However, for (3) to hold, �(Ak) shouldnot grow muh over �(A) during the algorithm. There is no theoretial proof that this is true,instead a strong numerial evidene was given in [9℄.Demmel and Veseli� also proved that essentially the same auray as in (3) is attained bythe following two step method: in the �rst step H is deomposed by the Cholesky fatorizationas H = LLT ; in the seond step one-sided Jaobi method is applied from the right to L in orderto ompute the singular value deomposition L = U�V T . Then �i = �2ii, and the olumns of Uare the orresponding eigenvetors.For the singular value deomposition, Demmel and Veseli� proved that the one-sided Jaobimethod applied from the right to a m � n full-olumn rank matrix G omputes the singularvalues with the relative auray bounded byj�i � �0ij�i � f3(n)"�(B); (5)where G = BD; D = diag(kG�ik2); (6)that is, the olumns of B have unit norms, and f3(n) is a moderately growing funtion of n.Here B�i denotes the i-th olumn of the matrix B. In analogy to the symmetri positive de�nitease desribed above, the bound (5) will be better than the lassial bound (2) if the matrix Bis strongly saled from the right in the sense that B is well-onditioned and G is not. Thereis also a aveat analogous to the one in the symmetri positive de�nite ase: the one-sidedJaobi method from [9℄ forms a sequene of matries Gk whih onverges to a matrix withorthogonal olumns; the olumn-norms of the �nal matrix being the desired singular values. Tothis sequene there orresponds the sequene of saled matries Bk de�ned by Bk = GkD�1k ,where Dk = diag(k[Gk℄�ik2) suh that k[Bk℄�ik2 = 1. The onvergene of the series Gk to amatrix with orthogonal olumns is equivalent to onvergene of the sequene Bk to a matrixwith orthonormal olumns implying that �(Bk) ! 1 as k inreases. However, for (5) to hold,�(Bk) should not grow muh over �(B) during the algorithm. Again, there is no theoretialproof that this is true, instead a strong numerial evidene was given in [9℄.When onsidering the lassial SVD this aveat an be removed by applying the one-sidedJaobi method from the left, and not from the right (e.g. for square non-singular G, see [10, 12℄for details). Then the error analysis does not depend on growth of �(Bk), sine this quantitydoes not hange when performing rotations from the left. The disadvantage of this approah isthat it is in general slower than when one-sided Jaobi is applied from the right, this is, fromthe side from whih the matrix is well saled. When onsidering the hyperboli SVD, we annotapply this approah, sine in the hyperboli ase the rotations must be performed from the3



right, as we shall see later. The problem of omputing the singular value deomposition withhigh relative auray was further analyzed in [6℄.To summarize, bounds (3) and (5) essentially show that the auray of the omputed valuesis determined by the ondition of the saled matrix, rather than the ondition of the originalmatrix. In partiular, the singular values an be omputed to high relative auray only ifthe right hand side of (5) is less than one, and remains less than one during the algorithm. Inthis paper we prove that the same is the ase for the hyperboli singular value deompositionalgorithm.In this paper we onsider two problems:� the hyperboli singular value deomposition (HSVD) for the pair (G; J), and� the lassial eigenvalue problem for the non-singular inde�nite symmetri matrix H .The reason for onsidering suh two di�erent problems here, is that the HSVD is a part of ourhighly aurate algorithm for the real symmetri eigenvalue problem.The HSVD of the pair (G; J), where G is a m� n full olumn rank matrix and J is a n� ndiagonal matrix of signs, J = diag(�1), is de�ned as [19, 33℄G = U�V �1; (7)were U is a m �m orthogonal matrix, � = diag(�i) is a m � n diagonal matrix with �i > 0,and V is a n � n J-orthogonal matrix, that is, V TJV = J . The diagonal entries �i are thehyperboli singular values of the pair (G; J), the olumns of U are the left singular vetors,and the olumns of V are the right singular vetors. We prove that the one-sided J-orthogonalJaobi method applied to the matrix G from the right omputes the hyperboli singular values�i with the auray given by (5).For the symmetri inde�nite eigenvalue problem Hx = �x, we analyze the following two-stepalgorithm originally proposed by Veseli� [31℄:� in the �rst step H is deomposed by the symmetri inde�nite fatorization [24℄ as H =GJGT where J is a diagonal matrix with Jii 2 f�1; 1g;� in the seond step one-sided J-orthogonal Jaobi method is applied from the right to Gin order to ompute the hyperboli singular value deomposition (7).Note that (7), H = GJGT and V TJV = J imply H = U�2JUT . Hene, �i = �2i Jii are theeigenvalues, and the olumns of U are the orresponding eigenvetors of H . For this algorithmwe prove that it omputes the eigenvalues �i with the auray essentially given by (3), whereA is obtained from H = DAD, where D = diag( H 1=2ii ) suh that Aii = 1, and H = pH2 isthe positive de�nite polar fator of H .Sine we onsider problems whih involve the sign matrix J , our results generalize the or-responding results from [9, 18, 10, 6℄, where J = I , to larger lasses of problems.For the omputed hyperboli singular vetors we prove relative norm-wise error bounds.Roughly speaking, these bounds are proportional to the ondition of the saled matrix B andinversely proportional to relative gaps between singular values. Similarly, for the omputedeigenvetors we prove relative norm-wise error bounds whih are proportional to the onditionof the saled matrix A and inversely proportional to relative gap between eigenvalues. Thesebounds are also proper generalization of the orresponding results from [9, 18, 10, 6℄.The results of this paper are partially ontained in [23℄. Let us briey outline the majordi�erenes. In [23℄, the one-sided J-orthogonal Jaobi method was analyzed only to the extent4



neessary for its use in the eigenvalue omputations. Here we also disuss additional detailswhen this method is used as the HSVD solver. In partiular, in Theorem 3 we give error boundsfor the omputed right hyperboli singular vetors (matrix V from (7)). These bounds werenot derived in [23℄, due to lak of the adequate perturbation bounds. Further, the proof of theerror bound for the omputed eigenvetors in [23℄ was based on the perturbation bound from[32, Th. 2.48℄. The proof of the eigenvetor bound from our Theorem 5 is, on the other hand,based on the perturbation bound from [29, Th. 6℄. This is a better approah, sine here theeigenvalues that orrespond to the observed invariant subspae need not be adjaent. Also, forthe symmetri inde�nite fatorization (see x3), instead of the error bound from [23, x4℄, we usethe sharper error bound from [24℄.The paper is organized as follows. In x2 we desribe the hyperboli singular value deom-position. In x2.1 we state the existing relative perturbation results. In x2.2 we desribe theone-sided J-orthogonal Jaobi method, and in x2.3 we analyze one step of the method. In x2.4we plug the error bounds from x2.3 into the perturbation bounds of x2.1 to obtain the overallerror bounds for the method. In x2.5 we give results of numerial experiments.Setion x3 deals with the symmetri eigenvalue problem. We �rst desribe the above two-step algorithm in more details, and state the existing error analysis. In x3.1 we state the existingrelative perturbation results for the symmetri eigenvalue problem. In x3.2 we give overall errorbounds for the two-step algorithm. Finally, in x3.3 we give results of numerial experiments.2 Hyperboli singular value deompositionIn this setion we onsider the HSVD (7) of the matrix pair (G; J). From now on, we assume thatG is a real matrix with full-olumn rank. Sine V TJV = J implies V �1 = JV TJ , the HSVD mayalso be written as G = U�JV TJ . Similarly to the lassial singular value deomposition (whenJ = I), the HSVD is losely related to two eigenvalue problems. Matrix U is the eigenvetormatrix of the symmetri inde�nite non-singular eigenvalue problemH = GJGT = U�J�TUT ; (8)the eigenvalues of H being �i = �2i Jii, i = 1; : : : ; n, and �i = 0, i = n + 1; : : : ; m. Furthermore,matrix V �1 is the eigenvetor matrix of the hyperboli eigenvalue problem GTGx = �Jx [25℄,GTG = V �T�T�V �1; V �TJV �1 = J;the hyperboli eigenvalues being �i = �2i , i = 1; : : : ; n. Also, U and V are related byU�;1:n = GV diag(��1i ); (9)where U�;1:n denotes the matrix of the �rst n olumns of U .The HSVD is a natural way to �nd the eigenvalues of a di�erene of two outer produtsH = G1GT1 �G2GT2 :This is done by writing H in the produt formH = GJGT ; G = [G1 G2 ℄ ; J = diag(I;�I);and then solving the problem (8) via the HSVD (7) (see [19℄, [33℄).As already mentioned, one of the major appliations of the HSVD is its use in the highlyaurate algorithm for solving the lassial symmetri eigenvalue problem (see [31, 23℄), as wedesribe in x3. 5



2.1 Relative perturbation boundsThe relative perturbation bounds for the HSVD have been proved in [32, 25℄. As alreadymentioned, we onsider G = BD saled from the right as in (6). Let (G + ÆG; J) be theperturbed pair, where ÆG = ÆBD:We set � = kÆBByk2; �F = kÆBBykF : (10)Obviously, if kÆBk2 or kÆBkF are known, whih will be the ase in our subsequent error analysis,then � � kÆBk2�min(B) ; �F � kÆBkF�min(B) :In partiular, for the element-wise perturbation of G of the formjÆGj � "jGj;whih typially appears when the matrix is being stored in omputer memory, we have� � " k jBj k2�min(B) � " pn�min(B) ; �F � " pn�min(B) :Aording to [32, Th. 3.3℄, if ÆG is suh that kÆGxk2 � �kGxk2 for all vetors x and some� < 1, then the singular values of the pairs (G; J) and (G + ÆG; J), �i and e�i, respetively,satisfy the inequalities 1� � � e�i�i � 1 + �: (11)Here we assume that �i and e�i are in the inreasing order. SinekÆGxk2 = kÆBDxk2 = kÆBByBDxk2 � kÆBByk2kGxk2;(11) holds with � de�ned by (10), as well.Perturbation bounds for left and right singular vetors are given in terms of relative variantsof the well-known sin� theorems [5℄. Let U and eU be two subspaes of the same dimension.The sines of the anonial angles between the subspaes U and eU are the diagonal entries of thematrix sin�(U ; eU) whih is de�ned as follows [28, Cor. I.5.4℄: let U? and eU form orthonormalbasis for U? and eU , respetively, where U? is the orthogonal omplement of U , and let QSW �be a singular value deomposition of U�? eU . Then sin�(U ; eU) = S.In order to state the bounds, we introdue the following notation: let the HSVD of the pair(G; J) be written as G = h U1 U2 U0 i 24�1 �20 0 35h V1 V2 i�1 ; (12)where U1 is m � k matrix, U2 is m � (n � k) matrix, and the rest of the matries have theorresponding dimensions. Similarly, leteG = G+ ÆG = h eU1 eU2 eU0 i24 e�1 e�20 0 35h eV1 eV2 i�1 :6



Here we assume that �i and e�i are in the same order (not neessarily inreasing or dereasing).More preisely, �i denotes the k-th largest hyperboli singular value of the pair (G; J), and e�idenotes the k-th largest hyperboli singular value of the perturbed pair ( eG; J). Similarly to theeigenvetor and singular vetor bounds whih are used in [3, 9, 6℄, the bounds whih we use alsodepend on a relative gap between the singular values from e�1 and those from �2. We use therelative gap whih is de�ned byrg(e�1;�2) = min1�p�kk+1�q�n je�pJpp � �qJqq j2maxfe�p; �qg ; (13)Notie that the relative gap ontains diagonal elements of the sign matrix J . This, for example,implies that the hyperboli singular values whih orrespond to diagonal elements of J of di�erentsigns are always well separated (the relative gap is in that ase greater than 1/2).We are now ready to state the perturbation bounds for singular subspaes. Let U1 and eU1be the subspaes spanned by the olumns of U1 and eU1, respetively. Aording to [26, Th. 3℄,if � < 1, then k sin�(U1; eU1)kF � 2 �F1� � � 1rg(e�1;�2) : (14)Further, let V1 and eV1 be the subspaes spanned by the olumns of V1 and eV1, respetively.Aording to [26, Th. 4℄ (see also [25, Th. 4℄), if �; �F < 1=3, thenk sin�(V1; eV1)kF � kV k22  12 +r1 + 14 2!  rg(e�1;�2) ; (15)where  = 3 �Fp1� 3 � :We an further simplify the above bound as follows: aording to [27, Th. 3℄, kV k22 is boundedby kV k22 � min� q�(��G�G�);where the minimum is over all matries whih ommute with J . Thus, by taking � = D�1, wehave kV k22 � q�(D�1G�GD�1) = q�(B�B) = �(B): (16)By omparing the bound (14) with the bounds from [9, Th. 2.16, Cor. 2.17℄ and [17, Th. 4.3℄,we see that the left (unitary) singular vetors in the HSVD behave as well as the left singularvetors in the lassial SVD. Namely, all bounds essentially depend on ÆB, �min(B) and therelative gap. On the other hand, the bound (15) for the right hyperboli singular vetors hasan additional fator kV k22 over the orresponding bounds from [9, Th. 2.16, Cor. 2.17℄ and [17,Th. 4.3℄. However, when applying (15) to the lassial SVD with J = I this term vanishes sineV is unitary. Sine V is J-orthogonal, we have kV k22 = �(V ). This additional fator is notunusual, sine the spetral ondition number of the non-unitary eigenvetors appears naturallyin various other matrix perturbation bounds.2.2 One-sided J-orthogonal Jaobi methodThe one-sided or impliit J-orthogonal Jaobi method, originally proposed by Veseli� [31℄, on-sists of an iterative appliation of the one-sided transformationGk+1 = GkJk ; (17)7



where G � G0 and Jk is a J-orthogonal Jaobi-type plane rotation. Let A(i;j) denote the 2� 2pivot submatrix of any square matrix A. The matrix Jk is equal to the identity matrix exeptfor the (i; j) 2� 2 submatrix J(i;j)k obtained on the intersetion of rows and olumns i and j. Itis de�ned by J(i;j)k = 8>>>>>><>>>>>>: " h shsh h # ; for Jii = �Jjj ;" s sn�sn s # ; for Jii = Jjj :The pair (i; j) is the pivot pair. The J-orthogonality of the matrix Jk implies that h =osh ; sh = sinh ; s = os' and sn = sin' for some  and ', respetively. These two typesof rotations are alled the hyperboli and the orthogonal rotation, respetively. The parameter 'or  is hosen to annihilate the (i; j)-element of the Gram matrix Hk = GTkGk. In other words,the transformation (17) makes the i-th and j-th olumns of Gk+1 orthogonal. More preisely,let H(i;j)k = " a  b #be the (i; j) pivot submatrix of Hk. Thentan 2'k = 2b� a; ��4 � 'k � �4 ;or tanh 2 k = � 2a+ b :In exat arithmeti, the sequene (17) is losely related to the two-sided J-orthogonal Jaobimethod for the hyperboli eigenvalue problem Hx = �Jx, where H = GTG. Namely, in thesequene H0 = H; Hk+1 = JTk HkJk; (18)the matrix Hk+1 obtains zeros at the positions (i; j) and (j; i). The sequene (18) onvergestowards a diagonal matrix � = diag(�i) [31℄, and this onvergene is quadrati [13℄.One di�erene between orthogonal and hyperboli rotations is that Trae (Hk+1) = Trae (Hk)after orthogonal, and Trae (Hk+1) < Trae (Hk) after hyperboli rotation. Using this trae re-dution argument, Veseli� [31℄ proved that the hyperboli tangent tends to zero as the sequeneHk onverges. The seond di�erene is that the ondition of the rotation matrix Jk is in theorthogonal ase one, while in the hyperboli ase it an be large. Notie that tanh k is boundedas follows: set Hk = GTkGk and de�ne the saled matrix Ak by (4). Thenj tanh kj � q�(A(i;j)k )� 1q�(A(i;j)k ) + 1 :This, in turn, implies that in the hyperboli ase�(J(i;j)k ) � q�(A(i;j)k ):The onvergene of the sequene (18) towards a diagonal matrix implies that the sequene(17) approahes the set of matries with orthogonal olumns. Assume that we terminate the8



sequene (18) afterM steps, when the �nal matrix HM is suÆiently diagonal aording to somehosen stopping riterion. Then the olumns of GM are suÆiently orthogonal, and the HSVDof the starting pair (G; J) is approximated as follows (.f. (9)):�i � q(HM)ii = k(GM)�ik2; i = 1; : : :n;V � J0J1 � � �JM�1;U�;1:n � GV diag(��1i ) = GM diag(��1i ):The hoie of pivot pair (i; j) in the k-th step an be made aording to various pivotingstrategies. Here we use the ommonly used row-yli strategy [14, x8.4.4℄, [20, x9.4.2℄:(1; 2); (1; 3); : : : ; (1; n); (2; 3); � � � ; (2; n); (3; 4); � � � ; (n� 1; n):We now present our algorithm:Algorithm 1 Impliit J-orthogonal Jaobi method for the pair (G; J). Tolerane tol is a userde�ned stopping riterion. V is initially the identity matrix.repeatfor i = 1 to n � 1for j = i+ 1 to n/* ompute bH = " a  b #, the (i; j) submatrix of GTG */a =Pmk=1G2kib =Pmk=1G2kj =Pmk=1Gki �Gkj/* if  = 0, the step is skipped */if  = 0 then go to the next step/* ompute the parameter hyp: hyp = 1 for the orthogonal, andhyp = �1 for the hyperboli rotation, respetively */hyp = Jii � Jjj/* ompute the J�orthogonal Jaobi rotation whih diagonalizes bH */� = hyp � (b� hyp � a)=(2)t = sign(�)=(j�j+p�2 + hyp)h = p1 + hyp � t2h = 1=hsh = t=hsh1 = �hyp � sh/* update olumns i and j of G */for k = 1 to mtmp = GkiGki = h � tmp+ sh1 �GkjGkj = sh � tmp+ h �Gkjendfor/* update olumns i and j of V */for k = 1 to ntmp = VkiVki = h � tmp+ sh1 � VkjVkj = sh � tmp + h � Vkj 9



endforendforendforuntil onvergene (all jj=pab � tol)/* the omputed hyperboli singular values are �i = (Pmk=1G2ki)1=2 *//* the orresponding omputed left singular vetors are the normalized olumnsof the �nal G */Notie that if G is square [9, 10, 18℄, the one-sided method an be applied from the righteither to G or GT , sine for J = I the matries GTG and GGT have the same eigenvalues andsimply related eigenvetors. For J 6= I , however, only appliation to G from the right or to GTfrom the left makes sense.Algorithm 1 gives only the simplest version of the method, in order to make the subsequenterror analysis learer. In pratie, however, we frequently use several enhanements whih reduethe operation ount:� keeping and updating the diagonal of the Gram matrix in a separate vetor,� fast rotations,� fast self-saling rotations.Updating the diagonal elements of the Gram matrix in a separate vetor makes the omputationof parameters a and b unneessary, thus saving 4m operations in eah step. Using fast rotationsof the form J(i;j)k = " 1 �� 1 #saves another 2m multipliations in updating G and 2n multipliations in updating V . Fastself-saling or dynamially saling rotations, originally introdued in [1℄, are used in order toavoid possible underows when using fast rotations.The algorithms whih use the above enhanements are desribed in detail and analyzed in[23, x3.3, x3.4℄. The error bounds for the solutions obtained by these algorithms di�er only inonstants from the bounds whih we derive for Algorithm 1 in subsequent setions.2.3 Error analysisIn this setion we give error analysis of one step of Algorithm 1. We use the standard model ofthe �nite preision oating-point arithmeti. The oating-point result fl(�) of the operation �is given by [34℄ fl(x� y) = (x� y)(1 + "�)fl(px) = px(1 + "p)where � represents any of the four basi arithmeti operations, '+', '�', '�' or '�'. Here "� ("p)depends on x, y and � (on x), but we always have j"�j; j"pj � ", where " � 1 is the mahinepreision.Numerially subsripted "'s (like "1, "2, et.) will denote independent quantities bounded inabsolute value by ". All other sub- or supersripted "'s will be de�ned in the proof.Theorem 1 Let the matrix G0 be obtained from the matrix G by applying one step of Algorithm1 in oating-point arithmeti with preision ". Then the following diagram ommutes:10



G+ ÆGG G0? -oatingJaobi�����exatrotationThe top arrow indiates that G0 is obtained from G by applying one J-orthogonal Jaobi rotationin oating-point arithmeti. The diagonal arrow indiates that G0 is obtained from G + ÆGby applying one J-orthogonal plane rotation in exat arithmeti. Thus, the pairs (G0; J) and(G + ÆG; J) have idential hyperboli singular values and simply related singular vetors. ÆGis bounded as follows: let G = BD be saled aording to (6), and write ÆG = ÆBD. Leta =Pk G2ki, b =Pk G2kj and  =Pk GkiGkj. Notie that Dii = pa and Djj = pb. Further, letba = fl(Pk G2ki), bb = fl(Pk G2kj) and b = fl(Pk GkiGkj) be the omputed values of a, b and ,respetively. Let bA(i;j) = " 1 b=pbabbb=pbabb 1 # ;and let b� = q�( bA(i;j)). If bA(i;j) is positive de�nite and maxfb�2; m; 10g "� 0:01, thenkÆBk2 � kÆBkF � C ";where 1 C = 8>><>>: 13 in the orthogonal ase;b�2 + 11 b� + 27 in the hyperboli ase for maxfba;bbg=minfba;bbg < 2;85 in the hyperboli ase for maxfba;bbg=minfba;bbg � 2Proof. The orthogonal ase was analyzed in several works. The values of C obtained in theseworks are the following: in [9, Th. 4.1℄ C = 72, in [23, Th. 3.3.3℄ C = 26, and in [18, Th. 4.2℄C = 13, the last proof also being the simplest.We ontinue with the proof of the hyperboli ase.If b = 0, then, aording to Algorithm 1, nothing is done in this step, and the theorem holdstrivially.From now on we assume that b 6= 0. Also, we assume without loss of generality that ba � bb(the proof for the ase ba < bb is analogous). Let�� = �ba+ bb2b ; �t = sign (��)j��j+q��2 � 1 : (19)By the positive de�niteness of the matrix bA(i;j), simple arithmeti shows thatj��j � b�2 + 1b�2 � 1 > 1; (20)j�tj � b� � 1b� + 1 < 1: (21)1Notie that C is de�ned through the quantity b�, whih is de�ned by the omputed quantities ba, bb and b. Thisis onvenient sine these quantities are readily available during the omputation.11



Indeed, sine ba+ bb � 2pbabb, we haveb�2 + 1b�2 � 1 = pbabb+jbjpbabb�jbj + 1pbabb+jbjpbabb�jbj � 1 = pbabbjbj � ba+ bb2jbj = j��j;whih proves (20). Inserting (20) into (19) gives (21).Let bt be the omputed value of �t. Letfh = 1=q1� bt2; fsh = bt=q1� bt2;de�ne the exat rotation whih takes G + ÆG to G0. More preisely, in the sequel G0 will beomputed by using the error analysis, and ÆG will be omputed by using G0 and the abovede�nition of fh and fsh. Later we shall need the obvious inequalitiesfsh2 � jfshjfh � fh2 = 11� bt2 : (22)Let h and sh denote the omputed quantities fh and fsh, respetively, that ish = fl0� 1fl(qfl(1� bt2) )1A ; sh = fl0� btf l(qfl(1� bt2) )1A : (23)Notie an important fat that we an start our analysis from bt, instead of from the exat valuet. This is due to the fat that we are analyzing one-sided method { the di�erene between bt andt, as the proof of this theorem shows, does not a�et the auray of the method.Suppose that we an write (23) assh = (1 + "sh)fsh; h = (1 + "h)fh: (24)Then G0ki = fl(h �Gki + sh �Gkj)= [(1 + "1)hGki + (1 + "2)shGkj ℄(1 + "3)= (1 + "1)(1 + "3)(1 + "h)fhGki + (1 + "2)(1 + "3)(1 + "sh)fshGkj= fhGki + fshGkj + Eki;where Eki ontains all "-terms, and, similarly,G0kj = fl(sh �Gki +h �Gkj) = fshGki +fhGkj +Ekj :The olumns E�i and E�j are bounded bykE�ik2 � j"01jfh kG�ik2 + j"02j jfshj kG�jk2;kE�jk2 � j"03j jfshj kG�ik2 + j"04jfh kG�jk2:If j"shj; j"hj � (0:5 b�+ 4)", whih will be justi�ed later, herej"01j; j"04j � j"hj+ 2:02"; j"02j; j"03j � j"shj+ 2:02": (25)12



For example, sine the assumption of the theorem impliesb� " = pb�2"2 � p0:01 " � p0:01 � 0:001 < 0:0032; (26)we havej"01j � j"1 + "3 + "h + "1"3 + "1"h + "3"h + "1"3"hj� 2"+ j"hj+ 0:001"+ 2(0:5 � 0:0032+ 4 � 0:001)"+ 0:001 � (0:5 � 0:0032+ 4 � 0:001)"� j"hj+ 2:02":Thus, h G0�i G0�j i = h G�i G�j i " fh fshfsh fh #+ h E�i E�j i=  h G�i G�j i+ h E�i E�j i " fh �fsh�fsh fh #! " fh fshfsh fh #= �h G�i G�j i+ h ÆG�i ÆG�j i� " fh fshfsh fh # ;where kÆG�ik2 � fh kE�ik2 + jfshj kE�jk2� (j"01jfh2 + j"03jfsh2) kG�ik2 + (j"02j+ j"04j)fh jfshj kG�jk2� �j"01jfh2 + j"03jfsh2 + (j"02j+ j"04j)fh jfshjsba �pa; (27)and kÆG�jk2 � jfshj kE�ik2 + fh kE�jk2� (j"04jfh2 + j"02jfsh2) kG�jk2 + (j"01j+ j"03j)fh jfshj kG�ik2� �j"04jfh2 + j"02jfsh2 + (j"01j+ j"03j)fh jfshjrab �pb: (28)Notie that, sine pa = Dii = kG�ik2 and pb = Djj = kG�jk2, dividing (27) and (28) by paand pb gives bounds for kÆB�ik2 and kÆB�jk2, respetively.In order to bound the above inequalities we have to onsider two ases, depending whetherpa=b in (28) is bounded away from in�nity or not. More preisely, we shall onsider asesba=bb < 2 and ba=bb � 2, respetively. In eah ase we will ompute bounds for j"0ij, fh2, fsh2,fh jfshj, pb=a and pa=b, and insert those bounds into (27) and (28).Case 1. Let ba=bb < 2. In order to bound fh2, fsh2, fh jfshj in terms of b�, we must bound bt interms of �t. From (19) and the assumption 10 " � 0:01, it follows thatb� = fl(��) = fl �ba+ bb2b ! = (1 + "�)��; j"�j � 3:005 ":Further, fl(b�2 � 1) = [(1 + "5)b�2 � 1℄(1+ "6)= (1 + "5)(1 + "6)(1 + "�)2��2 � (1 + "6)= (1 + "s)(��2 � 1):13



Solving the last equality for "s, taking absolute value, and using the assumption 10 " � 0:01,gives j"sj � "+ 8:04 ��2"��2 � 1 � 9:04 ��2��2 � 1 ":We ontinue with the error analysis: solving the last equality infl(qb�2 � 1 ) = (1 + "7)q(1 + "s)(��2 � 1) = (1 + "u)q��2 � 1;for "u, taking absolute value, and using the assumption on ", givesj"uj = j(1 + "7)p1 + "s � 1j � (1 + ")q1 + j"sj � 1� (1 + ")s1 + j"sj+ j"sj24 � 1 = (1 + ")�1 + j"sj2 �� 1� "+ j"sj2 (1 + ") � "+ 9:042 ��2 "��2 � 1 1:001 � 5:53 ��2��2 � 1 ":Further, fl(jb�j+qb�2 � 1 ) = [(1 + "�)j��j+ (1 + "u)q��2 � 1 ℄(1 + "8) (29)= (1 + "v)(j��j+q��2 � 1)where j"v j � j("� + "8 + "�"8)j��j+ ("8 + "u + "8"u)q��2 � 1jj��j+q��2 � 1� 4:02 j��jj��j+q��2 � 1 " + ("+ 1:001 j"uj) q��2 � 1j��j+q��2 � 1� 4:02 "+ 6:54 j��jq��2 � 1":Sine the right hand side is the dereasing funtion for j��j > 1, by using (20), we havej��jq��2 � 1 � b�2 + 12 b� � 0:5 b�+ 0:5;and j"vj � 4:02 "+ 6:54 (0:5b� + 0:5) " � 10:56 b� ":Further, bt = fl0� sign (b�)jb�j+qb�2 � 11A = sign (��)(1 + "v)(j��j+q��2 � 1)(1 + "9)= (1 + "t)�t; (30)14



where, by using (26), j"tj � j"9j+ j"vj1� j"vj � 11:56 b� "1� 10:56 � 0:0032 � 12 b� ":Using this, (21), (26), the assumption maxfb�2; 10g" � 0:01, and b� > 1, we have11� bt2 = 11� �t2(1 + "t)2� 11� �b��1b�+1�2 (1 + "t)2� (b�+ 1)24 b�� b� (24 b�2"+ 48 b� "+ 24 "+ 122 b�3"2 + 2 � 122 b�2"2 + 122 b�"2)� (b�+ 1)23:574 b� � 0:28 �b�+ 2 + 1b��� 0:28 b�+ 0:84: (31)The required bounds for fh2, fsh2 and fh jfshj terms in (27) and (28) follow from this and (22).Now we have to bound "sh and "h from (24) and insert those bounds into (25). Sine shand h are de�ned in terms of bt (.f. (23)), we start the analysis from there. By using (31), wehave fl(1� bt2) = [1� (1 + "10) bt2℄(1 + "11) = (1 + "w)(1� bt2);where j"wj � 2:01 "1� bt2 � (0:563 b� + 1:689) ":This, in turn, impliesbh = fl(q1� bt2) = (1 + "12)q(1 + "w)(1� bt2) = (1 + "h)q1� bt2;where j"hj � j"12j+ j"wj2 + j"12j j"wj2 � (0:282 b�+ 1:847) ":Therefore, h = fl 1p1� bt2! = 1(1 + "h)p1� bt2 (1 + "13) = (1 + "h)fh;where j"hj � j"13j+ j"hj1� j"hj � (0:29 b�+ 2:86) ":The same estimate holds for j"shj sine fl(bt) = bt,j"shj � (0:29 b�+ 2:86) ":The above bounds for j"shj and j"hj justify, in turn, the assumption made in deriving (25).Inserting these bounds into (25) givesj"0ij � (0:29 b� + 5) "; i = 1; 2; 3; 4: (32)These inequalities bound the "0i terms in (27) and (28).15



To omplete the proof, we need to bound the pb=a term in (27) and the pa=b term in (28).Systemati appliation of (19) and the assumption m" � 0:01 implies (see, for example, thelassial error analysis of the salar produt in [14, x 2.4℄):ba = a(1 + "a); bb = b(1 + "b); j"aj; j"bj � 1:01m": (33)This implies ba � bbba � 1 + 1:01m"1� 1:01m" � bbba � 1 + 1:01 � 0:011� 1:01 � 0:01 � 1:03 bbba; (34)and, similarly, ab � babb � 1 + 1:01m"1� 1:01m" � 1:03 babb : (35)From (34) and the assumption ba � bb, we haves ba < 1:02: (36)By inserting this, (32), (22) and (31) into (27), we havekÆG�ik2 � C1pa "; kÆB�ik2 � C1 "; (37)where C1 = (2 + 2 � 1:02)(0:29b�+ 5)(0:28 b�+ 0:84) � 0:33 b�2 + 6:65 b�+ 16:97:Similarly, from (35) and the assumption ba=bb < 2, we haverab < p1:03 � 2 � 1:44:By inserting this, (32), (22) and (31) into (28), we havekÆG�jk2 � C2pb "; kÆB�jk2 � C2 ";where C2 = (2 + 2 � 1:44)(0:29b�+ 5)(0:28 b�+ 0:84):By omparing this with (37), we see that C2 � 1:21C1, whih �nally giveskÆBk2 � kÆBkF � qC21 + C22 " � p1 + 1:212C1 " � (0:52 b�2 + 10:5 b�+ 26:7) ";as desired.Case 2. Let ba=bb � 2. This ase is easier to analyze sine �� and �t from (19) are bounded awayfrom the respetive worst-ase bounds (20) and (21). However, in this ase there is no upperbound for pa=b in (28). Instead, we use the identity fh jfshj = fh2jbtj, whih transforms (28) tokÆG�jk2 � �j"04jfh2 + j"02jfsh2 + (j"01j+ j"03j)fh2 jbtjrab �pb; (38)and bound the term jbtjpa=b.We �rst ompute the bounds for fh and jfshj. Using (19), positive de�niteness of the matrixbA(i;j), and the assumption ba=bb � 2, we havej��j � ba+ bb2pbabb = 12�sbabb +sbbba � � 12�p2 + 1p2 � � 1:06:16



In the last inequality we have used the fat that x1=2 + x�1=2 is a ontinuous funtion withminimum at x = 1.Further, "� , "s and "u are estimated as in Case 1, while for "v holds (.f. (29))j"vj � 4:02 "+ 6:54 � 1:06p1:062� 1 " � 24 ":Using this, (30), and the assumption 10 " � 0:01, we havejbtj � 1 + 0:001(1� 24 � 0:001)(1:06+p1:062 � 1) � 0:73:Thus, fh � 1:47; jfshj � 1:07: (39)Now we ompute the bounds for "sh and "h, and insert them into (25). Similarly as in Case1, we have fl(1� bt2) = (1 + "w)(1� bt2); j"wj � 2:01 "1� 0:732 � 4:31 ";fl(q1� bt2) = (1 + "h)q1� bt2; j"hj � 3:16 ";h = (1 + "h)fh; j"hj � 4:18 ";sh = (1 + "sh)fsh; j"shj � 4:18 ":The last two bounds and b� � 1 justify the assumptions made in deriving (25). Inserting thesebounds into (25) gives j"0ij � 6:2 "; i = 1; 2; 3; 4: (40)Using this, (39), (34) and bb=ba � 1=2 in the relation (27), one obtainskÆG�ik2 � 34:5pa "; kÆB�ik2 � 34:5 ": (41)Further, similarly to (34), the relations (33) also implybbba � ba � 1 + 1:01m"1� 1:01m" � 1:03 ba:Using this, (30) and the positive de�niteness of the matrix bA(i;j), we havejbtj � 1 + "(1� j"vj)j��j = 1:03 2jbjba+ bb � 2:06pbabbba= 2:06sbbba � 2:06p1:03s ba � 2:1sba:Therefore, in (38) we will have jbtjrab � 2:1:Inserting this, (40) and (39) into (38), we obtainkÆG�jk2 � 77pb "; kÆB�jk2 � 77 ":Finally, from this and (41), we havekÆBk2 � kÆBkF � 85 ";and the theorem is proved. 17



2.4 Overall error boundsThe overall error bounds for the HSVD omputed by Algorithm 1 are obtained by plugging theone-step error analysis of Theorem 1 into the perturbation bounds of Setion 2.1.The proof requires the following lemma due to Veseli�:Lemma 1 Let BTB = I +E; kEk2 = � < 1;where B is any real matrix with full olumn rank. Then there exists a matrix Q suh thatQTQ = I and kB �Qk2 � �.Proof. We make the polar deomposition B = QP where QTQ = I and P is Hermitianpositive de�nite matrix. Sine QQTB = B, we have P 2 = I +E, or (P + I)(P � I) = E. ThuskP � Ik2 � �=(1 +p1� �) � �;so that kB �Qk2 = kQP �Qk2 = kP � Ik2;and the lemma is proved.The error in the omputed hyperboli singular values is bounded as follows.Theorem 2 Let Gk, 0 � k � M , be the sequene of matries omputed by Algorithm 1 fromthe starting pair (G; J). Here G0 � G. Assume that Algorithm 1 onverges, and that (GM ; J)is the �nal pair whih satis�es the stopping riterion. For 0 � k �M let Gk = BkDk be saledaording to (6). Let �i be the i-th singular value of the pair (G0; J), and let �0i = fl(kGM;�ik2)be the i-th omputed singular value. Assume that the assumptions of Theorem 1 are satis�ed ineah step of Algorithm 1, and let Ck denote the onstant C from Theorem 1 in the k-th step. If,additionally, maxfn � tol;mn "g � 0:01, then1� � � �0i�i � 1 + �;where� = "M�1Yk=0 �1 + Ck�min(Bk)�# (1 + 1:05n � tol + 1:05mn")(1+ (0:51m+ 1:01) ")� 1;provided � < 1.Proof. Let �M;i be the hyperboli singular values of the �nal pair (GM ; J). Sine�0i�i = �M;i�i � kGM;�ik2�M;i � �0ikGM;�ik2 ; (42)we shall ompute the bound for � in three steps.Aording to Theorem 1, for every 0 � k �M � 1 we haveGk+1 = (Gk + ÆGk) eJk ; (43)where ÆGk = ÆBkDk; kÆBkk2 � Ck ":18



Here eJk is the exat rotation from the ommutative diagram of Theorem 1 in the k-th step.Further, for every 0 � k �M � 1 we an writeGk+1 = (G+ ÆG(k)) eJ0 � eJ1 � � � eJk; (44)that is, we interpret Gk+1 as being obtained by a sequene of exat transformations appliedto a perturbed starting matrix G. The proof is by indution on k. For k = 0 we simplyset ÆG(0) = ÆG0. Now suppose that (44) holds for some k � 1. By (43) and the indutionassumption we have Gk+1 = (Gk + ÆGk) eJk= [(G+ ÆG(k�1)) eJ0 � � � eJk�1 + ÆGk℄ eJk= (G+ ÆG(k)) eJ0 � � � eJk;where ÆG(k) = ÆG(k�1) + ÆGk( eJ0 � � � eJk�1)�1: (45)Set ÆBk = ÆGkD�1k ; ÆB(k) = ÆG(k)D�1;where D = D0. Then for every 0 � k �M � 1kÆB(k)Byk2 � kYl=0�1 + Cl�min(Bl) "�� 1: (46)The proof is by indution on k. For k = 0 the statement follows from Theorem 1 sinekÆB(0)Byk2 = kÆB0By0k2 � kÆB0k2�min(B0) � C0�min(B0) ":Now suppose that (46) holds for some k � 1. Writing (45) for k + 1 and post-multiplying it byD�1By gives ÆB(k+1)By = ÆB(k)By+ ÆGk+1( eJ0 � � � eJk)�1D�1By= ÆB(k)By+ ÆBk+1Byk+1Bk+1Dk+1( eJ0 � � � eJk)�1D�1By= ÆB(k)By+ ÆBk+1Byk+1Gk+1( eJ0 � � � eJk)�1D�1By= ÆB(k)By+ ÆBk+1Byk+1(G+ ÆG(k))D�1By= ÆB(k)By+ ÆBk+1Byk+1(BBy + ÆB(k)By):Taking norms and using Theorem 1 giveskÆB(k+1)Byk2 � kÆB(k)Byk2 + Ck+1"�min(Bk+1)(1 + kÆB(k)Byk2):Finally, inserting the indution assumption and rearranging ompletes the proof of (46).By using (46) for k =M � 1, and setting ÆG � ÆG(M�1) and ÆB = ÆGD�1, we haveGM = (G+ ÆG) eJ0 � � � eJM�1; (47)where �M � M�1Yk=0 �1 + Ck�min(Bk) "�� 1 � kÆBByk2: (48)19



Then, aording to (11) and (10), we have1� �M � �M;i�i � 1 + �M : (49)We have, therefore, proved the �rst part of the expression for �.Now we have to aount for two more fats:� the olumns of GM are not exatly orthogonal; instead GM numerially satis�es the stop-ping riterion,� �nal singular values �0i are numerially omputed norms of the olumns of GM .First notie that GM = BMDM ; DM;ii = kGM;�ik2:Thus, BTMBM = I +E; Eii = 0; Eij = Pk GM;kiGM;kjkGM;�ik2kGM;�jk2 ; i 6= j: (50)For the sake of simpliity we set2a = kGM;�ik22; b = kGM;�jk22;  =Xk GM;kiGM;kj :The lassial error analysis of the salar produt (see, [14, x 2.4℄) implies (33) andjfl()� j � 1:01m"Xk jGM;kij jGM;kjj � 1:01m"pa b:Sine GM numerially satis�es the stopping riterion, by this and (33) we havefl� jjpa b� = j+ (fl()� )j(1 + "1)pa (1 + "a) b (1+ "b)(1 + "2)(1 + "3) � tol:Therefore, for i 6= j we havejEij j = jjpa b � (1 + ")p(1 + 1:01m")2(1 + ")(1� ") tol + j(fl()� jpa � b� 1:02 tol+ 1:01m":Here we have used the assumption maxfm; 10g � ". Thus,kEk2 � 1:02n tol+ 1:01nm":From this, (50) and Lemma 1, there exits an orthonormal matrix �B suh that�B = BM + Æ �B; kÆ �Bk2 � 1:02n tol+ 1:01nm":Set �G = �BDM . Sine the olumns of �G are orthogonal, the hyperboli singular values of thepair ( �G; J) are ��i = DM;ii = kGM;�ik2. Thus, (11) implies1� �� � kGM;�ik2�M;i � 1 + ��; (51)2These a, b and  are di�erent than the ones from Theorem 1.20



where �� � kÆ �Bk2�min(BM) � kÆ �Bk21� kÆ �Bk2 � 1:05n tol+ 1:04nm":In the last inequality we have used the assumption maxfn � tol;mn "g � 0:01. This ompletesthe proof of the seond part of the bound for �.Finally, we have to aount for the di�erene between kGM;�ik2 and �0i = fl(kGM;�ik2). Wehave �0i = fl(kGM;�ik2) = (1 + "4)qkGM;�ik22(1 + "a) = (1 + "0) kGM;�ik2;where j"aj � 1:01m" as in (33), and, onsequently, j"0j � (0:51m+ 1:01) ". Therefore,1� (0:51m+ 1:01) " � �0ikGM;�ik2 � 1 + (0:51m+ 1:01) ":The theorem follows by ombining this, (51) and (49) with (42).We have two remarks. First, notie that the �rst order approximation for � reads� = "M�1Xk=0 Ck�min(Bk) + 1:05n � tol + 1:05mn"+ (0:51m+ 1:01) "+O("2); (52)whih is the form that was used in [9℄. Seond, in Theorem 1 both kÆBk2 and kÆBkF arebounded by C ". By repeating the part of the proof of Theorem 2 between (43) and (48) forFrobenius norm, we easily see that (48) holds for the Frobenius norm, as well, that is�M � kÆBBykF : (53)We need this result to prove our singular vetor bounds.The errors in the singular vetors are bounded as follows.Theorem 3 Assume Algorithm 1 onverges, and that (GM ; J) is the �nal pair whih satis�esthe stopping riterion. Let G = U�V �1 and GM = U 0�0(V 0)�1 be the HSVDs of the pairs (G; J)and (GM ; J), respetively, partitioned aording to (12). Let �i and �0i be the diagonal entriesof � and �0, respetively. Here �i and �0i may be in any, but same, order. Let U1 and U 01 be thesubspaes spanned by the olumns of U1 and U 01, respetively, and let V1 and V 01 be the subspaesspanned by the olumns of V1 and V 01, respetively. For 0 � k � M let Gk = BkDk be saledaording to (6), and let Ck denote the onstant C from Theorem 1 in the k-th step. Finally,let 3 � = M�1Yk=0 �1 + Ck�min(Bk) "�� 1;  = 3 �p1� 3 � ;and let rg(�01;�2) be de�ned aording to (13). Then,k sin�(U1;U 01)kF � 2 �1� � � 1rg(�01;�2) ; (54)k sin�(V1;V 01)kF � kV k22  12 +r1 + 14 2!  rg(�01;�2) : (55)3Notie that � = �M , where �M is de�ned in (48). 21



Proof. The �rst bound follows by inserting (47), (48) and (53) into (14), and the seondbound follows by inserting (47), (48) and (53) into (15).Let us give some remarks onerning the pratial appliation of the above theorems. The-orem 3 is inomplete in the sense that we ignore the fat that the bounds hold for the exatsingular vetors of the �nal pair (GM ; J), and not for the atually omputed ones. More pre-isely, in (54) we ignore the fat that the omputed left singular vetors are the normalizedolumns of the �nal matrix (GM ; J). In (55) we ignore the round-o� errors whih our in theupdating the olumns of V in Algorithm 1, as well as the errors whih are due to the fat thatthese updates are performed with slightly perturbed rotation matries. It is possible to inludethese details, but they are tehnially very demanding. We deided not to do so sine the boundsof Theorem 3 show well the essential behavior of the errors in the omputed singular vetors,and inluding these details would greatly ompliate the exposition.Another important issue are the fators 1=�min(Bm) whih appear in both theorems. Clearly,Bm hanges from step to step, and so does this fator. However, as Algorithm 1 onverges,1=�min(Bm) ! 1. Also, there is strong numerial evidene in previous works [9, 10, 23℄ andin our numerial experiments that this fator does not grow muh during the omputation.The theoretial understanding of this phenomenon is weaker. Some (partial) theoretial resultsan be found in [9, 23℄. In [23, x3.2.2℄, an algorithm was derived with whih upper bound for1=�min(Bm) an be eÆiently monitored.From the above omments, and the fat that the onstants in Theorems 1 and 2 ome fromonsidering worst ases, we onlude that the error in the omputed hyperboli singular valuesshould be bounded by j�0i � �ij�i � " 1�min(B) f�(m;n); (56)where f�(m;n) is a fator whih moderately grows with dimensions.In numerial experiments we fous our attention to the individual singular vetors. Let uibe the left exat singular vetor of �i, and let u0i = ui + Æui be the orresponding left omputedsingular vetor. Similarly as above, from (54) we expet the error in the omputed left singularvetors to be bounded by kÆuik2 � " 1�min(B) � 1rg(�0i;�02) fu(m;n); (57)where fu(m;n) is a fator whih moderately grows with dimensions. Notie that this is just thebound (56) divided by the orresponding relative gap. Also, sine the exat singular values �i arenot available, here we use the relative gap whih is de�ned by using only the omputed singularvalues. We an bound the errors introdued in the relative gap in this manner by Theorem 2.However, this is unneessary sine the bound (57) depits well the atual error (see Table 1).Similarly, if vi and v0i = vi + Ævi are the exat and the omputed right singular vetors of �i,respetively, by (55) we expet that the error is bounded bykÆvik2 � " kV 0k22 1�min(B) � 1rg(�0i;�02) fv(m;n); (58)where fv(m;n) is a fator whih moderately grows with dimensions. Here V 0 is the omputedright singular vetor matrix, whih is readily available upon ompletion of Algorithm 1.22



2.5 Numerial experimentsWe performed series of experiments on randomly generated test pairs (G; J). For eah test pairwe �rst omputed the HSVD by Algorithm 1 in double preision and assumed that to be theexat solution. Then we solved the same problem by the single preision version of Algorithm1, and veri�ed that the expeted error bounds (56), (57) and (58) are satis�ed. Our programsare written in Fortran, ompiled by GNU g77 Fortran ompiler, and exeuted on a PentiumIII 866 Linux mahine. In generating test pairs we have used the LAPACK [2℄ random numbergenerator dlaran.f.We �rst desribe the proedure used in generating test pairs, and the sets of parametersused. Then we show the results of our experiments. Besides results onerning the auray, wealso show the number of yles whih were exeuted until the onvergene.For given dimensions m and n, we �rst generate random diagonal matrix D0 whose diagonalentries' logarithm is uniformly distributed in the interval [��=2; �=2℄. We then form matrixG0 = Q1D0Q2 where Q1 and Q2 are random orthonormal matries of dimensions m�n and n�n,respetively. Further, we generate random diagonal matrixD1 whose diagonal entries' logarithmis uniformly distributed in the interval [�=2; =2℄. We then form the matrix G = G0D1. Thus,�(B) � 10�, where G = BD is saled aording to (6). Finally, we generate random n � ndiagonal matrix J with elements in the set f�1; 1g.We tested matries for m = 50; 100; 200; 400, and for eah m we used n = m=2; m, whihgives eight lasses of matries. Further, we hose � = 1; 2; 3; 4 and  = 2; 4; 6; 8; 10; 12; 14. Thisgives a total of 224 lasses of matries. In eah lass we onstruted 60 test pairs, whih totalsto 13440 experiments.The results are as follows. Here �i, ui and vi denote the singular values and vetors omputedin double preision, and �0i, u0i and v0i denote the singular values and vetors omputed insingle preision For eah experiment we omputed the maximal fators f�(n), fu(n) and fv(n)aording to (56), (57) and (58), respetively, that isf�(n) = maxi=1;:::;n j�0i � �ij�i = "�min(B) ;fu(n) = maxi=1;:::;n kÆuik2=� "�min(B) � 1rg(�0i;�02)�;fv(n) = maxi=1;:::;n kÆvik2=�kV 0k22 "�min(B) � 1rg(�0i;�02)�The behavior of f�(n), fu(n) and fv(n) is shown in Table 1.n 50 100 200 400mean f�(n) 1.82 3.30 6.23 12.2max f�(n) 14.9 26.0 53.3 104.6mean fu(n) 3.67 7.92 16.3 32.6max fu(n) 26.4 59.6 139.4 333.3mean fv(n) 0.656 1.35 3.00 6.61max fv(n) 5.36 8.48 18.1 35.8Table 1: Error fators in the omputed HSVD in 13440 experimentsWe see that the expetations given in (56), (57) and (58) are fully on�rmed by numerialexperiments. Thus, we may onlude that it is indeed the saled matrix B, and not the starting23



matrix G whih governs the auray of the omputed HSVD.Further, in eah experiment we monitored the number of yles exeuted before onvergene,and the spetral ondition of the right singular vetor matrix, �(V 0) = kV 0k22. The results arein Table 2 n 50 100 200 400mean(yles) 8 9 10 11max(yles) 13 15 16 18mean�(V 0) 4.27 4.44 4.46 4.45max �(V 0) 48.4 29.4 23.5 23.3Table 2: Number of yles and �(V 0) in 13440 experiments3 Symmetri eigenvalue deompositionWe onsider the lassial symmetri eigenvalue problemHx = �x; x 6= 0; (59)where H is a n�n non-singular matrix. The eigenvalue deomposition of H will be denoted byH = U�UT ;where � is diagonal matrix whose diagonal entries are the eigenvalues of H , and U is orthonor-mal matrix whose olumns are the orresponding eigenvetors. As already mentioned in theintrodution, we use the following algorithm:Algorithm 2 Eigenvalue deomposition of a non-singular symmetri matrix H.1. Fatorize H as PTHP = G1JGT1 ; (60)where P is a permutation matrix, G1 is non-singular lower blok triangular matrix with1� 1 and 2� 2 diagonal bloks, and J is diagonal matrix of signs, Jii 2 f�1; 1g.2. Compute the hyperboli singular values �i and the left singular vetor matrix U of the pair(G; J), where G = PG1, by using Algorithm 1.The eigenvalues of H are �i = �2i Jii, and the olumns of U are the orresponding eigenvetors.The aim of this setion is to show that Algorithm 2 omputes the eigenvalue deomposition(59) with high relative auray. We �rst state the error bounds for the �rst step of the algorithm,originally proved in [23, 24℄. In x3.1 we then state the relative perturbation results for theeigenvalues and eigenvetors of the problem (59). In x3.2 we give overall error bounds forthe eigensolution omputed by Algorithm 2, and in x3.3 we desribe results of our numerialexperiments whih on�rm the theoretial preditions.Detailed desription and the formal algorithm, as well as the error analysis of the symmetriinde�nite fatorization (60) are given in [24, x2 and x3℄. This fatorization is, in fat, a mod-i�ation of the well-known Bunh{Parlett fatorization [4℄. The variant of the Bunh{Parlett24



fatorization with partial pivoting is implemented in the LAPACK routine dsytf2.f [2℄. Thefatorization (60) uses the original unequilibrated diagonal pivoting from [4℄, whih de�nes thepermutation matrix P .The error bound for the fatorization (59) was proved in [24, Th. 3.1℄: the fators G = PG1and J omputed in oating-point arithmeti with preision " are the exat fators of someperturbed matrix H + ÆH , that is,GJGT = H + ÆH; jÆH j � 91n(jH j+ jGjjGjT)"+ O("2): (61)3.1 Relative perturbation boundsWe shall use the relative perturbation bounds for the non-singular symmetri eigenvalue problemfrom [32, 29℄. The bounds are stated in terms of the spetral absolute value of H , H = pH2.Notie that H is, in fat, the positive de�nite polar fator of H . Let the saled matrix bA bede�ned by H = bD bA bD;where bD is some non-singular diagonal matrix. Further, let H + ÆH be the perturbed matrix,where ÆH = bDÆA bD:Aording to [32, Th. 2.1℄, if ÆH is suh that jxT ÆHxj � �xT H x for all vetors x and some� < 1, then the eigenvalues of the matries H and H + ÆH , �i and e�i, respetively, satisfy theinequalities 1� � � e�i�i � 1 + �: (62)Sine jxT ÆHxj = jxT bDT ÆA bDxj = kxT bDT ÆA bDxk2 � kxT bDTk2kÆAk2k bDxk2� kÆAk2�min( bA) xT H x;if ÆA is known, then (62) holds with � de�ned by� = kÆAk2�min( bA) : (63)Further, if H = GJGT and G = U�V �1 is the HSVD of the pair (G; J), then � = j�j1=2,U = GV j�j�1=2, and GV V TGT = U j�j1=2j�j1=2UT = U j�jUT = H :Thus, we may rewrite (63) as � = kÆAk2�2min( bD�1GV ) : (64)This is onvenient way to apply the bound (62), sine an approximation of the matrix GV isreadily available upon ompletion of Algorithm 2 { this is the �nal matrix GM of Algorithm 1and Theorem 2. Usual hoie for the matrix bD is suh that the matrix bD�1G has unit rows.25



In order to state the eigenvetor bound, let us partition the eigenvalue deomposition H =U�UT as H = h U1 U2 i ��1 �2 � " UT1UT2 # ; (65)where U1 is n � k matrix, U2 is n � (n � k) matrix, and the rest of the matries have theorresponding dimensions. Let the perturbed matrix eH = H + ÆH = eU e� eUT be partitionedaordingly. Similarly as in x2.1, we de�ne the relative gap byrg1(e�1;�2) = min1�p�kk+1�q�n je�p � �qjqje�p�qj : (66)Let U1 and eU1 be the subspaes spanned by the olumns of U1 and eU1, respetively. By using[29, Th. 6℄, one an easily prove thatk sin�(U1; eU1)kF � kV k22q1� 4�kV k22 � Fp1�  � 1rg1(e�1;�2) ; (67)where  = kÆAk2�2min( bD�1G) ; F = kÆAkF�2min( bD�1G) ; � = F2� 3  :3.2 Overall error boundsThe error bounds for the eigensolution omputed by Algorithm 2 are obtained by adding theerror bounds for the �rst and the seond step. More preisely, the error bounds are obtained byinserting the error bound (61) into perturbation bounds (62), (64) and (67), and adding the errorbounds for the HSVD from x2.4. In x2.5 we have seen that the atual errors in omputed HSVDbehave like the �rst order approximations of the bounds whih were proved in x2.4. Having thisin mind, for the sake of simpliity, here we shall state and prove only �rst order bounds.The error in omputed eigenvalues is bounded as follows:Theorem 4 Let �0i be the eigenvalues of the matrix H omputed by Algorithm 2 in oating-pointarithmeti with preision ", and let �i be the exat eigenvalues of H in the same order. Let (G; J)be the output of the �rst step of Algorithm 2, and let bD be the positive de�nite diagonal matrixsuh that the matrix bB = bD�1G has unit rows. For 0 � k �M let Gk = BkDk be the sequeneof matries generated by Algorithm 1, starting from G = G0, saled aording to (6). Assumethat the assumptions of Theorems 1 and 2 are satis�ed in eah step of Algorithm 1, and assume,additionally, that n " � 0:001. Let Ck denote the onstant C from Theorem 1 in the k-th step ofAlgorithm 1. Finally, let � be de�ned by (52). Then1� � � �0i�i � 1 + �;where � = 201n2 1�2min( bBV ) " + 2 � +O("2):Proof. Set bH = GJGT . Then bH = H + ÆH , where ÆH is bounded by (61). Further, byinserting jH j � jGJGT j+ jÆH j � jGj jGjT + jÆH j;26



into (61) we have jÆH j � 91n (jH j+ jGj jGjT) "+O("2)� 91n (jGj jGjT + jÆH j+ jGj jGjT) "+ O("2);or (1� 91n ")jÆH j � 182n jGj jGjT "+O("2):Dividing this inequality by 1� 91n " and using the assumption n " � 0:001 givesjÆH j � 201n jGj jGjT " +O("2):Set ÆA = bD�1ÆH bD�1. Then jÆAj � 201nj bBj j bBjT "+ O("2): (68)Inserting this into (62) and (64) gives1� b� � b�i�i � 1 + b�;where b�i are the eigenvalues of bH , andb� = k jÆAj k2�2min( bBV ) � 201n2 1�2min( bBV ) " +O("2): (69)We have thus proved the �rst part of �.Further, we have b�i = b�2i Jii, where b�i are the hyperboli singular values of the pair (G; J).Similarly, we an write �0i = �02i Jii. Sine �0ib�i = �02ib�2i ;squaring the bound of Theorem 2 gives1� 2 � + �2 � �0ib�i � 1 + 2 � + �2;where the �rst order approximation for � is given by (52). The theorem now follows by om-bining this with (69).The error in eigenvetors is bounded as follows:Theorem 5 Let the assumptions of Theorems 4 and 3 hold. Let the eigenvalue deompositionsof the matries H = U�UT , bH = GJGT = bU b� bUT and H 0 = GMJGTM = U 0�0U 0T be partitionedaording to (65). Let U1 and U 01 be the subspaes spanned by the olumns of U1 and U 01, respe-tively. For 0 � k �M let Gk = BkDk be saled aording to (6), and let Ck denote the onstantC from Theorem 1 in the k-th step. Let � be de�ned as in Theorem 3, and let = 201n2 1�2min( bB) "+O("2); � = 2� 3  :Let rg1(b�1;�2) and rg(�01; b�2) � rg(�01; b�2)be de�ned aording to (66) and (13), respetively.Then,k sin�(U1;U 01)kF � kV k22q1� 4�kV k22 � p1�  � 1rg1(b�1;�2) + 2 �1� � � 1rg(�01; b�2) +O("2):27



Proof. The theorem follows by inserting (68) into (67), and adding the bound (54).The remarks made in x2.4 after Theorem 3 hold for Theorems 4 and 5, as well. In partiular,the bound of Theorem 5 holds for the exat left singular vetors of the �nal pair (GM ; J), thatis, for the exat eigenvetors of the matrix GMJGTM , and not for the atually omputed ones.Also, notie that for the matrix G = BD obtained by the �rst step of Algorithm 2, 1=�min(B)is bounded by a funtion of O(3:781n) irrespetive of G (see [24, Th. 6.1℄). In our experiments1=�min(B) was never too large, whih, together with the bound (16), implies that the quantities�2min( bBV ) and �2min( bB) from Theorems 4 and 5 do not di�er by muh.From the above disussion we onlude that the expeted error in the omputed eigenvaluesshould be bounded by j�0i � �ij�i � "� 1�2min( bD�1GM ) + 1�min(B)� f�(n); (70)where f�(n) is a fator whih moderately grows with n. Here we have assumed that the matrixGM is suÆiently good approximation of the matrix GV .Further, let ui be the eigenvetor of �i, and let u0i = ui+ Æui be the orresponding omputedeigenvetor. Similarly as above, from Theorem 5 we onlude that the error in the omputedleft eigenvetors should be bounded bykÆuik2 � " 1�2min( bB) � 1rg1(�0i;�02) fu(n); (71)where fu(n) is a fator whih moderately grows with n. In (71) we also ignored the fator kV k22in the �rst term and the ontribution of the seond term of the bound of Theorem 5, whih isjusti�ed by the numerial experiments in the following setion (see Table 3).3.3 Numerial experimentsSimilarly as in x2.5, we performed series of experiments on randomly generated test matries H .For eah test matrix we �rst omputed the eigenvalue deomposition by Algorithm 2 in doublepreision and assumed that to be the exat solution. Then we solved the same problem by thesingle preision version of Algorithm 2, and veri�ed that the expeted error bounds (70) and(71) are satis�ed.Test matries were generated as follows. For given dimension n, we �rst generate randomdiagonal matrix D0 whose diagonal entries' logarithm is uniformly distributed in the interval[��=2; �=2℄. We then form matrix A0 = Q1D0JQT1 where Q1 is random orthonormal matrix andJ is random diagonal matrix with Jii 2 f�1; 1g. Further, we generate random diagonal matrixD1 whose diagonal entries' logarithm is uniformly distributed in the interval [�=2; =2℄. Wethen form the matrix H = D1A0D1. Sine all matries are randomly generated, this proeduregenerates matrix H for whih usually �2( bB) � 10� and �(H) � 102 . More preisely, additionalrow-saling of the fator of A0 does not inuene the ondition number of that fator, and theondition number of H is primarily determined by �2(D1).We tested matries for n = 50; 100; 200; 400. Further, we hose � = 1; 2; 3; 4 and  =2; 4; 6; 8; 10; 12. This gives a total of 96 lasses of matries. In eah lass we onstruted 100test pairs, whih totals to 9600 experiments.The results are as follows. Here �i and ui denote the eigenvalues and eigenvetors omputedin double preision, and �0i and u0i denote the eigenvalues and eigenvetors omputed in single28



preision For eah experiment we omputed the maximal fators f�(n) and fu(n) aording to(70) and (71), respetively, that isf�(n) = maxi=1;:::;n j�0i � �ij�i =� "�2min( bBV ) + "�min(B)�;fu(n) = maxi=1;:::;n kÆuik2=� "�2min( bB) � 1rg1(�0i;�02)�:The behavior of f�(n) and fu(n) is shown in Table 3.n 50 100 200 400mean f�(n) 0.213 0.273 0.417 0.661max f�(n) 6.10 4.94 6.61 9.84mean fu(n) 0.0596 0.0320 0.0176 0.00981max fu(n) 0.587 0.297 0.113 0.0581Table 3: Error fators in 9600 experimentsWe see that the expetations given in (70) and (71) are fully on�rmed by numerial exper-iments. Even more, fu(n) appears to be dereasing with n. Thus, we may onlude that it isindeed the saled matries, and not the starting matrix H whih governs the auray of theomputed eigensolution.Further, in eah experiment we monitored the number of yles exeuted before onvergene,and the spetral ondition of the matrix V . The results are in Table 4.n 50 100 200 400mean(yles) 6 7 8 9max(yles) 8 10 11 12mean �(V ) 7.80 13.9 25.4 47.4max�(V ) 28.1 39.7 77.3 140.432Table 4: Number of yles and �(V ) in 9600 experimentsFrom Table 4 we see that the onvergene of Algorithm 1 is faster on pairs (G; J) obtained bythe �rst step of Algorithm 2, than on the pairs generated in x2.5. This is due to the pivoting inthe symmetri inde�nite fatorization (60), sine the olumns of obtained G have higher degreeof orthogonality. Namely, as noted by several researhers (see e.g. [31℄), the transition from thepair (GJGT ; I) to the pair (GTG; J) is essentially one step of Rutishauser's LR algorithm andusually arries some non-negligible diagonalization e�et.It is also possible to modify the algorithm in order to derease the number of yles untilonvergene. Namely, the pair (G; J) an be transformed by appropriate permutation to thepair (G1; J1) with J1 = diag(Il;�In�l) and G1 = [G01 G002 ℄ suh that the olumns of G01 and G001have dereasing norms. However, this modi�ation only slightly dereases the number of ylesuntil onvergene - the values in the �rst two rows of Table 4 are dereased by one.We have also ompared Algorithm 2 with the lassial QR method as implemented in theLAPACK routine ssyev.f [2℄ and with the lassial two-sided Jaobi method [22℄. In almostall experiments with large �(H), the QR and the Jaobi method ompletely missed the tinyeigenvalues. This behavior is expeted sine the relative errors in the tiny eigenvalues omputed29



by both methods are bounded by "�(H) [14, 20, 34℄. In ases where �2( bB) � �(H) all threemethods performed equally well, as expeted. More details on omparison of Algorithm 2 withthe QR and Jaobi method an be found in [9, 23℄.4 ConlusionWe showed that the auray of the hyperboli singular value deomposition of the pair (G; J),omputed by the one-sided J-orthogonal Jaobi method, depends on the spetral ondition ofthe saled matrix and not on the ondition of G. For matrix G whih is well saled from theright, the one-sided J-orthogonal Jaobi method omputes the hyperboli singular values withhigh relative auray, and the left and right singular vetors with high normwise auray.For example, if the spetral ondition of the saled matrix is �(B) = 103, and we run theomputation in single preision auray with " = 2�23 � 10�8, then the omputed hyperbolisingular values will have 4 or 5 aurate digits. Also, if the hyperboli singular values are wellseparated, that is, if there are no lusters of relatively lose singular values, then the norm errorin the omputed left and right singular vetors will be around 10�5.We also showed that the auray of the eigenvalue deomposition of a symmetri inde�nitematrix H , omputed by the symmetri inde�nite fatorization H = GJGT followed by theone-sided J-orthogonal Jaobi method, depends on the spetral ondition of the saled spetralabsolute value matrix H , and not on the ondition of H . If H is well saled, or, evensimpler, if the matrix G is well saled from the left and from the right, this algorithm omputesthe eigenvalues with high relative auray, and the eigenvetors with high normwise auray.For example, if the spetral ondition of the saled matrix is �( bA) = 103, or, equivalently,if �2( bB) = 103, where bB is the matrix G saled from the left, and we run the omputation insingle preision auray, then the omputed eigenvalues will have 4 or 5 aurate digits. Also, ifthe eigenvalues are well separated, that is, if there are no lusters of relatively lose eigenvalues,then the norm error in the omputed eigenvetors will be around 10�5.Numerial experiments showed that the onstants in the error bounds are indeed moderatelygrowing funtions of the dimension. Also, the two-step method omputes the eigenvalue deom-position with uniformly higher auray than the lassial methods.I would like to thank Kre�simir Veseli�, Fernuniversit�at Hagen, James Demmel, UC Berkeley,Jesse Barlow, The Pennsylvania State University, Eberhard Pietzsh, Universit�at Heidelberg,Zlatko Drma�, University of Zagreb, and Xiaofeng Wang for fruitful disussions and their helpfulomments. I also thank the referees for helpful omments whih led to more detailed erroranalysis, improved error bounds and improved presentation of the results.Referenes[1℄ A. A. Anda and H. Park, Fast plane rotations with dynami saling, SIAM J. Matrix Anal. Appl.,15:162{174, 1994.[2℄ E. Anderson et al, LAPACK Users' Guide, SIAM, Philadelphia, 1995.[3℄ J. Barlow and J. Demmel, Computing aurate eigensystems of saled diagonally dominant matries,SIAM J. Numer. Anal., 27:762{791, 1990.[4℄ J. R. Bunh and B. N. Parlett, Diret methods for solving symmetri inde�nite systems of linearequations, SIAM J. Numer. Anal., 8:639{655, 1971.30
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