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Abstract

Let (G be a m x n real matrix with full column rank and let .J be a n x n diagonal matrix
of signs, J;; € {—1,1}. The hyperbolic singular value decomposition (HSVD) of the pair
(G, J) is defined as G = UXV ™' where U is orthogonal, 3 is positive definite diagonal,
and V is J-orthogonal matrix, V7 .JV = .J. We analyze when it is possible to compute the
HSVD with high relative accuracy. This essentially means that each computed hyperbolic
singular value is guaranteed to have some correct digits, even if they have widely varying
magnitudes. We show that one-sided J-orthogonal Jacobi method method computes the
HSVD with high relative accuracy. More precisely, lett B = GD™', where 1) is diagonal such
that the columns of B have unit norms. Essentially, we show that the computed hyperbolic
singular values of the pair (G, .J) will have log,,(¢/0min(B)) correct decimal digits, where &
is machine precision. We give the necessary relative perturbation bounds and error analysis
of the algorithm. OQur numerical tests confirmed all theoretical results.

For the symmetric non-singular eigenvalue problem Hx = Az, we analyze the two-step
algorithm which consists of factorization H = GJGT followed by the computation of the
HSVD of the pair (G, J). Here (7 is square and non-singular. TLet B = DG, where D is
diagonal such that the rows of B have unit norms, and let. B be defined as above. Essentially,
we show that the computed eigenvalues of H will have ]ogm(a/afmn(/?}) +&/omin(B)) correct
decimal digits. This accuracy can be much higher then the one obtained by the classical
QR and Jacobi methods applied to /1, where the accuracy depends on the spectral condition
number of H, particularly if the matrices B and B are well conditioned, and we are interested
in the accurate computation of tiny eigenvalues. Again, we give the perturbation and error
bounds, and our theoretical predictions are confirmed by a series of numerical experiments.

We also give the corresponding results for eigenvectors and hyperbolic singular vectors.
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1 Introduction

The problem of computing eigenvalue and singular value decompositions of real matrices with
high relative accuracy has been considered by many authors, for example by Barlow and Demmel
[3], Demmel and Kahan [8], Demmel and Gragg [7], Demmel et al. [6], Drma¢ [10, 11], Mathias
[18], Slapnicar [23] and Veseli¢ [31]. The term “high relative accuracy” means that the algorithm
is capable of computing eigenvalues or singular values with higher relative accuracy than can be
obtained by classical QR algorithm [14, §8.3], [20, §8] or divide and conquer algorithm [14, §8.5],
[16]. More precisely, the latter two algorithms are backward stable and compute the eigenvalues
of a real symmetric matrix H with absolute error |A; — | < f(n)e||H||2. Here the original
eigenvalues \; and the computed eigenvalues A are in the same order, f(n) is a moderately
growing function of the matrix dimension n, £ is the machine precision, and ||H||3 is the spectral
norm of the matrix. For the relative error this implies

IXi = X f(n)e||H |2
EY . P

< f(n)er(H), (1)

provided H is non-singular. Here x(H) = ||H||2||H*||2 denotes the spectral condition number,
where H1 is the pseudo-inverse of H. Similarly, the QR algorithm [14, §8.6] or divide and
conquer algorithm [15] compute the singular values of a full column rank matrix G with the

relative accuracy /
L men(@), )
a;
where fi(n) is a moderately growing function of n.

There are many classes of matrices for which such accuracy results are inadequate, in par-
ticular for tiny eigenvalues or singular values, like bidiagonal matrices [8], acyclic matrices [7],
scaled diagonally dominant matrices [3] and well-scaled positive definite matrices [9] which ap-
ply in finite elements applications [21]. Tn all cases algorithms were given which compute the
solutions with higher accuracy then given in (1) or (2). The scheme of the analysis is always
the following:

relative perturbation theory + relative error analysis = relative error bounds.

In [9] Demmel and Veseli¢ proved that the Jacobi method [14, §8.4], [20, §9] computes the
eigenvalues of the positive definite symmetric matrix H with optimal relative accuracy. More
precisely: if we write H = DAD where D = dia,g([HM]Vz) and A; = 1, then

|A; — Al

S < Ba(men( ), (3

where fy(n) is a moderately growing function of n. This bound will hold even if the initial
matrix entries have e-relative uncertainties, that is, if one computes the eigenvalues of the
matrix H + §H where [§H;;| < ¢|H;;|. Such uncertainties typically occur when the matrix is
stored in the computer. Notice that log,, of the left hand side of (3) is the number of the
accurate decimal digits. It is important to notice that the matrix A is nearly optimally scaled
in the sense that (see [30])

k(A) <n min k(AAA).

A=diag

This inequality trivially implies that

k(A) < nk(H),



which, in turn, implies an important fact that the bound (3) can never be much worse than
the classical bound (1). Clearly, if the matrix H is strongly scaled in the sense that A is well-
conditioned and H is not, then the bound (3) will be much better than (1). Therefore, in such
cases the Jacobi method is the method of choice if one wants to compute eigenvalues with small
relative error. It is important to stress a caveat which is present in [9]: the Jacobi method
forms sequence of orthogonally similar matrices Hy which converges to a diagonal matrix whose
diagonal elements are the desired eigenvalues. To this sequence there corresponds the sequence
of scaled matrices Ay, defined by

Hk = DkAka, Dk = dlag([Hk]:/Q), (4)

such that [Ag];; = 1. The convergence of the series Hy to a diagonal matrix is equivalent to
convergence of the sequence Aj to the identity matrix. However, for (3) to hold, k(A) should
not grow much over x(A) during the algorithm. There is no theoretical proof that this is true,
instead a strong numerical evidence was given in [9].

Demmel and Veseli¢ also proved that essentially the same accuracy as in (3) is attained by
the following two step method: in the first step H is decomposed by the Cholesky factorization
as H = LLT: in the second step one-sided Jacobi method is applied from the right to L in order
to compute the singular value decomposition I, = UXV7T. Then A; = ¥:%, and the columns of I/
are the corresponding eigenvectors.

For the singular value decomposition, Demmel and Veseli¢ proved that the one-sided Jacobi
method applied from the right to a m x n full-column rank matrix G computes the singular
values with the relative accuracy bounded by

|oi — 7

< fa(n)er(B), (5)

i

where

G=BD, D =diag(|G). 8

that is, the columns of B have unit norms, and f3(n) is a moderately growing function of n.
Here B.; denotes the i-th column of the matrix B. In analogy to the symmetric positive definite
case described above, the bound (5) will be better than the classical bound (2) if the matrix B
is strongly scaled from the right in the sense that B is well-conditioned and G is not. There
is also a caveat analogous to the one in the symmetric positive definite case: the one-sided
Jacobi method from [9] forms a sequence of matrices (G which converges to a matrix with
orthogonal columns; the column-norms of the final matrix being the desired singular values. To
this sequence there corresponds the sequence of scaled matrices By defined by B, = GkD,?,
where Dy = diag(||[Gg].||2) such that ||[Bglills = 1. The convergence of the series Gy to a
matrix with orthogonal columns is equivalent to convergence of the sequence Bj to a matrix
with orthonormal columns implying that £(Bg) — 1 as k increases. However, for (5) to hold,
k(Byg) should not grow much over k(B) during the algorithm. Again, there is no theoretical
proof that this is true, instead a strong numerical evidence was given in [9].

When considering the classical SVD) this caveat can be removed by applying the one-sided
Jacobi method from the left, and not from the right (e.g. for square non-singular G, see [10, 12]
for details). Then the error analysis does not depend on growth of k(By), since this quantity
does not, change when performing rotations from the left. The disadvantage of this approach is
that it is in general slower than when one-sided Jacobi is applied from the right, this is, from
the side from which the matrix is well scaled. When considering the hyperbolic SVD, we cannot
apply this approach, since in the hyperbolic case the rotations must be performed from the



right, as we shall see later. The problem of computing the singular value decomposition with
high relative accuracy was further analyzed in [6].

To summarize, bounds (3) and (5) essentially show that the accuracy of the computed values
is determined by the condition of the scaled matrix, rather than the condition of the original
matrix. In particular, the singular values can be computed to high relative accuracy only if
the right hand side of (5) is less than one, and remains less than one during the algorithm. In
this paper we prove that the same is the case for the hyperbolic singular value decomposition
algorithm.

In this paper we consider two problems:

e the hyperbolic singular value decomposition (HSVD) for the pair (G,.J), and
e the classical eigenvalue problem for the non-singular indefinite symmetric matrix H.

The reason for considering such two different problems here, is that the HSVD is a part of our
highly accurate algorithm for the real symmetric eigenvalue problem.

The HSVD of the pair (G,.J), where G is a m x n full column rank matrix and J isan xn
diagonal matrix of signs, J = diag(+1), is defined as [19, 33]

G=UxvV"", (7)

were U is a m x m orthogonal matrix, ¥ = diag(o;) is a m x n diagonal matrix with o; > 0,
and V is a n x n J-orthogonal matrix, that is, V'.JV = .J. The diagonal entries o; are the
hyperbolic singular values of the pair (G,.J), the columns of U are the left singular vectors,
and the columns of V' are the right singular vectors. We prove that the one-sided .J-orthogonal
Jacobi method applied to the matrix G from the right computes the hyperbolic singular values
o; with the accuracy given by (5).

For the symmetric indefinite eigenvalue problem Hx = Az, we analyze the following two-step
algorithm originally proposed by Veseli¢ [31]:

e in the first step H is decomposed by the symmetric indefinite factorization [24] as H =
GJGT where .J is a diagonal matrix with J; € {—1,1};

e in the second step one-sided .J-orthogonal Jacobi method is applied from the right to ¢
in order to compute the hyperbolic singular value decomposition (7).

Note that (7), H = GJGT and VTJV = J imply H = US2JU"T. Hence, \; = 02.J;; are the
eigenvalues, and the columns of U are the corresponding eigenvectors of H. For this algorithm
we prove that it computes the eigenvalues A; with the accuracy essentially given by (3), where
A is obtained from |H|l= DAD, where DD = dia,g(lf-flz/z) such that A;; = 1, and |H|= VH?is
the positive definite polar factor of H.

Since we consider problems which involve the sign matrix .J, our results generalize the cor-
responding results from [9, 18, 10, 6], where .J = I, to larger classes of problems.

For the computed hyperbolic singular vectors we prove relative norm-wise error bounds.
Roughly speaking, these bounds are proportional to the condition of the scaled matrix B and
inversely proportional to relative gaps between singular values. Similarly, for the computed
eigenvectors we prove relative norm-wise error bounds which are proportional to the condition
of the scaled matrix A and inversely proportional to relative gap between eigenvalues. These
bounds are also proper generalization of the corresponding results from [9, 18, 10, 6].

The results of this paper are partially contained in [23]. Tet us briefly outline the major
differences. Tn [23], the one-sided .J-orthogonal Jacobi method was analyzed only to the extent



necessary for its use in the eigenvalue computations. Here we also discuss additional details
when this method is used as the HSVD solver. In particular, in Theorem 3 we give error bounds
for the computed right hyperbolic singular vectors (matrix V' from (7)). These bounds were
not derived in [23], due to lack of the adequate perturbation bounds. Further, the proof of the
error bound for the computed eigenvectors in [23] was based on the perturbation bound from
[32, Th. 2.48]. The proof of the eigenvector bound from our Theorem 5 is, on the other hand,
based on the perturbation bound from [29, Th. 6]. This is a better approach, since here the
eigenvalues that correspond to the observed invariant subspace need not be adjacent. Also, for
the symmetric indefinite factorization (see §3), instead of the error bound from [23, §4], we use
the sharper error bound from [24].

The paper is organized as follows. In §2 we describe the hyperbolic singular value decom-
position. In §2.1 we state the existing relative perturbation results. In §2.2 we describe the
one-sided .J-orthogonal Jacobi method, and in §2.3 we analyze one step of the method. Tn §2.4
we plug the error bounds from §2.3 into the perturbation bounds of §2.1 to obtain the overall
error bounds for the method. In §2.5 we give results of numerical experiments.

Section §3 deals with the symmetric eigenvalue problem. We first describe the above two-
step algorithm in more details, and state the existing error analysis. In §3.1 we state the existing
relative perturbation results for the symmetric eigenvalue problem. In §3.2 we give overall error
bounds for the two-step algorithm. Finally, in §3.3 we give results of numerical experiments.

2 Hyperbolic singular value decomposition

In this section we consider the HSVD (7) of the matrix pair (G, .J). From now on, we assume that
(i is a real matrix with full-column rank. Since V'.JV = Jimplies V=" = JV.J, the HSVD may
also be written as ¢ = UX.JVT.J. Similarly to the classical singular value decomposition (when
J = T), the HSVD is closely related to two eigenvalue problems. Matrix U is the eigenvector
matrix of the symmetric indefinite non-singular eigenvalue problem

H=GIGT =UuxJxTuT, (8)

the eigenvalues of H being \; = 02.J;;,i=1,...,n,and \; = 0,7 =n+1,...,m. Furthermore,
matrix V7' is the eigenvector matrix of the hyperbolic eigenvalue problem G7T Gz = XJx [25],

GTa=vTssv' v Tgv =1
the hyperbolic eigenvalues being \; = 0%, i =1,...,n. Also, I/ and V are related by
(].,1:77, = GV dia,g((r;1)7 (9)

where U. y., denotes the matrix of the first n columns of U.
The HSVD is a natural way to find the eigenvalues of a difference of two outer products

H=a6,GT - a6l
This is done by writing H in the product form
H=GJGT, G=[Gy Gy], J=diag(l,—TI),

and then solving the problem (8) via the HSVD (7) (see [19], [33]).

As already mentioned, one of the major applications of the HSVD is its use in the highly
accurate algorithm for solving the classical symmetric eigenvalue problem (see [31, 23]), as we
describe in §3.



2.1 Relative perturbation bounds

The relative perturbation bounds for the HSVD have been proved in [32, 25]. As already
mentioned, we consider G = BD scaled from the right as in (6). Let (G + §G,.J) be the
perturbed pair, where

0G =46BD.

We set,
B=6BB,  Brp=|dBBY|p. (10)

Obviously, if ||[§B]|2 or ||§ B|| 7 are known, which will be the case in our subsequent error analysis,

e 195 195
2 F

< — < —.

5 o (Tmin(B)7 BF o (Tmin(B)

In particular, for the element-wise perturbation of (7 of the form
0G| < elGl,
which typically appears when the matrix is being stored in computer memory, we have

1B ]2 Vv
< < , <e VT
5 7€Umin(B) 7€Umin(B) (Tmin(B)

According to [32, Th. 3.3], if 6GG is such that |[§Gz||2 < B||Gz||, for all vectors # and some
B < 1, then the singular values of the pairs (G,.J) and (G + §G,J), o; and 7;, respectively,
satisfy the inequalities

1< Zciyp (1)

3

Here we assume that o; and ; are in the increasing order. Since
186Gz = 158 Dalla = 1SB BB Dalls < 1B B 3l|Galla,

(11) holds with 8 defined by (10), as well.

Perturbation bounds for left and right singular vectors are given in terms of relative variants
of the well-known sin @ theorems [5]. Let &/ and U be two subspaces of the same dimension.
The sines of the canonical angles between the subspaces U/ and U are the diagonal entries of the
matrix sin O(U,U) which is defined as follows [28, Cor. 1.5.4]: let U/, and U form orthonormal
basis for 2, and Zj, respectively, where U is the orthogonal complement of U, and let QSW™*
be a singular value decomposition of UIT?. Then sin G)(U,Zj) =9.

In order to state the bounds, we introduce the following notation: let the HSVD of the pair

(G,.J) be written as

X
G=[u Uo}{ 22}[1/1 vl (12)
0 0

where Uy is m x k matrix, Uy is m X (n — k) matrix, and the rest of the matrices have the
corresponding dimensions. Similarly, let

>
G=arac=] 0 i (70}[1 Ik nl
0 0



Here we assume that o; and &; are in the same order (not necessarily increasing or decreasing).
More precisely, o; denotes the k-th largest hyperbolic singular value of the pair (G,.J), and &,
denotes the k-th largest hyperbolic singular value of the perturbed pair (é, J). Similarly to the
eigenvector and singular vector bounds which are used in [3, 9, 6], the bounds which we use also
depend on a relative gap between the singular values from 3y and those from ;. We use the
relative gap which is defined by

T’g(ihzz) —  min [T Tpp — 0444

~ 9
1<p<k  2maxi{c,,o
k+1<q<n { P q}

(13)

Notice that the relative gap contains diagonal elements of the sign matrix .J. This, for example,
implies that the hyperbolic singular values which correspond to diagonal elements of .J of different
signs are always well separated (the relative gap is in that case greater than 1/2).

We are now ready to state the perturbation bounds for singular subspaces. let U; and U
be the subspaces spanned by the columns of U; and 171, respectively. According to [26, Th. 3],
if 5 <1, then
2 6r 1
1=8 g3, %)

Further, let V; and V; be the subspaces spanned by the columns of V; and ‘71, respectively.
According to [26, Th. 4] (see also [25, Th. 4]), if 8, Br < 1/3, then

o, o (1 [~ "
[sin OV, Vi)l < [[V]]; (5154— 1+ sz) m7 (15)

3 Br
V1T-38
We can further simplify the above bound as follows: according to [27, Th. 3], ||[V]|3 is bounded
by

|| sin O Uy, Uy || < (14)

where

P =

VI3 < mAin K(A*G*GA),

where the minimum is over all matrices which commute with .J. Thus, by taking A = D', we
have

VI3 < /(D 1G=GD-1) = \/w(B*B) = x(B). (16)

By comparing the bound (14) with the bounds from [9, Th. 2.16, Cor. 2.17] and [17, Th. 4.3],
we see that the left (unitary) singular vectors in the HSVID) behave as well as the left singular
vectors in the classical SVD. Namely, all bounds essentially depend on 6B, onmin(B) and the
relative gap. On the other hand, the bound (15) for the right hyperbolic singular vectors has
an additional factor ||V|2 over the corresponding bounds from [9, Th. 2.16, Cor. 2.17] and [17,
Th. 4.3]. However, when applying (15) to the classical SVD with .J = I this term vanishes since
V is unitary. Since V is J-orthogonal, we have |V|[3 = (V). This additional factor is not
unusual, since the spectral condition number of the non-unitary eigenvectors appears naturally
in various other matrix perturbation bounds.

2.2 One-sided J-orthogonal Jacobi method

The one-sided or implicit J-orthogonal Jacobi method, originally proposed by Veseli¢ [31], con-
sists of an iterative application of the one-sided transformation

Gk+1 :er]lm (]7)



where G = Gy and J;, is a J-orthogonal Jacobi-type plane rotation. Let. A=) denote the 2 x 2
pivot submatrix of any square matrix A. The matrix .J, is equal to the identity matrix except

for the (i,7) 2 X 2 submatrix J,gm) obtained on the intersection of rows and columns ¢ and j. It

is defined by

[ ch  sh
sh «¢ch ] ! for Jii = = Jij,
g =
. sn ] s for JH = .]7‘7‘.
—sn €8 7

The pair (i,7) is the pivot pair. The .J-orthogonality of the matrix Jp implies that ch =
cosh @, sh =sinh ¥, ¢s = cosp and sn = sin ¢ for some ¥ and ¢, respectively. These two types
of rotations are called the hyperbolic and the orthogonal rotation, respectively. The parameter ¢
or 1 is chosen to annihilate the (i, j)-element of the Gram matrix Hy = GZGk In other words,
the transformation (17) makes the i-th and j-th columns of Gy, orthogonal. More precisely,
let

be the (i,7) pivot submatrix of H. Then

tan 2pp = 20, 7E<cpk<i,
b—a 4 - 4
or
tanh 2, — — 2¢ .
a-+b

In exact arithmetic, the sequence (17) is closely related to the two-sided .J-orthogonal Jacobi
method for the hyperbolic eigenvalue problem Haz = AJx, where H = GTG. Namely, in the
sequence

Hy= H, Hipr = J] HyJy, (18)

the matrix Hpiy obtains zeros at the positions (i,7) and (j,7). The sequence (18) converges
towards a diagonal matrix A = diag(A;) [31], and this convergence is quadratic [13].

One difference between orthogonal and hyperbolic rotations is that Trace (Hyy1) = Trace (Hy)
after orthogonal, and Trace (Hyy1) < Trace (Hj) after hyperbolic rotation. Using this trace re-
duction argument, Veseli¢ [31] proved that the hyperbolic tangent tends to zero as the sequence
H; converges. The second difference is that the condition of the rotation matrix .Ji is in the
orthogonal case one, while in the hyperbolic case it can be large. Notice that tanh 1 is bounded
as follows: set Hy — GZGk and define the scaled matrix Ay by (4). Then

//A(L.i) 1
| tanh o | < all k' )

Vr(AN) 4

This, in turn, implies that in the hyperbolic case

A0y < \r(a ).

The convergence of the sequence (18) towards a diagonal matrix implies that the sequence
(17) approaches the set of matrices with orthogonal columns. Assume that we terminate the



sequence (1R) after M steps, when the final matrix Hyy is sufficiently diagonal according to some
chosen stopping criterion. Then the columns of Gy are sufficiently orthogonal, and the HSVD
of the starting pair (G,.J) is approximated as follows (c.f. (9)):

g, =~ \/(HM)M:H(GM).?;HQ, 7::],...77/7

Viox Jodi-dv—a,
Uim ~ GVdiag(o; ") = Gy diag(o; ).

The choice of pivot pair (i,7) in the k-th step can be made according to various pivoting
strategies. Here we use the commonly used row-cyclic strategy [14, §8.4.4], [20, §9.4.2]:

(1,2),(1,3),...,(1,n),(2,3),---,(2,m), (3,4),---, (n— 1,n).
We now present our algorithm:

Algorithm 1 Implicit .J-orthogonal Jacobi method for the pair (G,J). Tolerance tol is a user
defined stopping criterion. V is initially the identity matrix.

repeat
fori="11ton—1
forj=i4+1ton

/* compute = [ Z ¢ ], the (i, ) submatriz of GTG */

b
a=3 5 Gy
b= G
c= ey Gri x Gy
/¥ if e =0, the step is skipped */
if c =0 then go to the next step
/* compute the parameter hyp: hyp = 1 for the orthogonal, and
hyp = —1 for the hyperbolic rotation, respectively */
hyp = Jii x T j;
/* compute the J—orthogonal Jacobi rotation which diagonalizes i */
¢ =hypx(b—hyp*a)/(2c)
t = sign(Q)/(IC| + V¢ + hyp)
h=+/1+hyp*t?
ch=1/h
sh=1t/h
sh1l = —hyp * sh
/* update columns i and j of G */
for k=110 m
tmp = G,
G = ch xtmp 4+ shl * Gk]‘
Gk]‘ = sh xtmp + ch * Gk]‘
endfor
/* update columns i and j of V. */
for k=11%0n
tmp = Vi,
Vi = ch xtmp + sh1 x Vk]‘
Vk]‘ = sh xtmp + ch * Vk]‘



endfor
endfor
endfor
until convergence (all |c|/v/ab < tol)
/* the computed hyperbolic singular values are o; = (374 (;Zi)]/2 */
/* the corresponding computed left singular vectors are the normalized columns

of the final G */

Notice that if G is square [9, 10, 18], the one-sided method can be applied from the right
either to G or GT, since for .J = T the matrices GT G and GGT have the same eigenvalues and
simply related eigenvectors. For .J # I, however, only application to ¢ from the right or to G
from the left makes sense.

Algorithm 1 gives only the simplest version of the method, in order to make the subsequent
error analysis clearer. In practice, however, we frequently use several enhancements which reduce
the operation count:

e keeping and updating the diagonal of the Gram matrix in a separate vector,
e fast rotations,
e fast self-scaling rotations.

Updating the diagonal elements of the Gram matrix in a separate vector makes the computation
of parameters a and b unnecessary, thus saving 4m operations in each step. Using fast rotations

i 1 o
J{ 7>_l5 ]]

saves another 2m multiplications in updating G and 2n multiplications in updating V. Fast

of the form

self-scaling or dynamically scaling rotations, originally introduced in [1], are used in order to
avoid possible underflows when using fast rotations.

The algorithms which use the above enhancements are described in detail and analyzed in
[23, §3.3, §3.4]. The error bounds for the solutions obtained by these algorithms differ only in
constants from the bounds which we derive for Algorithm 1 in subsequent sections.

2.3 Error analysis

In this section we give error analysis of one step of Algorithm 1. We use the standard model of
the finite precision floating-point arithmetic. The floating-point result fI(®) of the operation ®
is given by [34]

fllzoy) = (@oy(l+ee)
fiVz) = Va(l+e )

where (- represents any of the four basic arithmetic operations, '+, '—", "x” or '=’. Here e (8\/)
depends on z, y and @ (on z), but we always have |2g], |€\/| < g, where ¢ < 1 is the machine
precision.

Numerically subscripted s (like 21, £, etc.) will denote independent quantities bounded in
absolute value by £. All other sub- or superscripted &£’s will be defined in the proof.

Theorem 1 let the matriz G’ be obtained from the matriz G by applying one step of Algorithm
1 in floating-point arithmetic with precision . Then the following diagram commutes:

10



G floating ey

Jacobi
eract
rotation

G+ 606G

The top arrow indicates that ' is obtained from (G by applying one J-orthogonal Jacobi rotation
in floating-point arithmetic. The diagonal arrow indicates that G' is obtained from G + 6G
by applying one J-orthogonal plane rotation in exact arithmetic. Thus, the pairs (G',.J) and
(G + 6G,.J) have identical hyperbolic singular values and simply related singular vectors. G
is bounded as follows: let G = BD be scaled according to (6), and write G = §BD. Let
a=> GZ# b=>5", Gzy and ¢ =Y, Gy;Gr;. Notice that D;; = \/a and D;; = V. Further, let

a= fI> LG, b= fIO7 GZ7) and ¢ = fl(3°, GriGy;) be the computed values of a, b and c,

respectively. Let
A6 — [ 1 E/v?z@]

eNVab 1
and let £ = /4,(,4?(’77.7)), If AU s positive definite and max{k?,m, 10} < 0.01, then

16B]l2 < [[6B|r < C'e,

where !
13 in the orthogonal case,
C'=<{ R24+ 115427 in the hyperbolic case for max{?z,@}/ min{?z,g} <2,
85 in the hyperbolic case for max{?z,@}/ min{?z,g} > 2

ProOF. The orthogonal case was analyzed in several works. The values of (' obtained in these
works are the following: in [9, Th. 4.1] C' = 72, in [23, Th. 3.3.3] C' = 26, and in [18, Th. 4.2]
(' = 13, the last proof also being the simplest.

We continue with the proof of the hyperbolic case.

If ¢ = 0, then, according to Algorithm 1, nothing is done in this step, and the theorem holds
trivially.

From now on we assume that ¢ = 0. Also, we assume without loss of generality that a > b
(the proof for the case a < b is analogous). Let

a+b L sign (€)

By the positive definiteness of the matrix /4Al(’7"7), simple arithmetic shows that

(=- (19)

B2 41

> = > 1 20
o
i < ‘f+]<1. (21)
K

"Notice that 7' is defined through the quantity &, which is defined by the computed quantities a, b and ¢. This
is convenient since these quantities are readily available during the computation.

11



Indeed, since @ b > 2V (A],Z, we have
Vabt[7]
~ =+ 1 Py
Hz+]_\/5b—|2|+ _ Vab _a e
R2=1 Vo lel 2| 7
Vab— |
which proves (20). Inserting (20) into (19) gives (21).
Let t be the computed value of £. Tet

ch=1/\/1—12,  sh=1/y\/1-12,

define the exact rotation which takes G + G to G'. More precisely, in the sequel G’ will be

computed by using the error analysis, and 4G will be computed by using ' and the above
definition of ¢h and sh. TLater we shall need the obvious inequalities

—~2 —_— e~ ~2 1
sh <|sh|lech <ch = —. (22)
172

Tet ch and sh denote the computed quantities ch and sAfJ)/, respectively, that is

cAh—fz( ! _ ) .@—ﬂ( ‘ _ ) (23)
FIG/ (T = 12)) FIG/ (T = 12))

Notice an important fact that we can start our analysis from 7, instead of from the exact value

t. This is due to the fact that we are analyzing one-sided method the difference between # and
t, as the proof of this theorem shows, does not affect the accuracy of the method.
Suppose that we can write (23) as

sh=(1+egu)sh,  ch=(14¢cuy)ch. (24)
Then
- fl(;B * Gy + sh % Gi)

= [(1421) ch G+ (1 +£2) sh Gij](1 + 3)
= (1) (1 +23) (14 20n) ch G+ (14 22) (1 + 23) (1 +243) sh G,
= chGhi+ 871/(;14,7' + Fi,

where Fp; contains all e-terms, and, similarly,

72'7‘ = fl(@ *x G + FB * Gk]‘) = SA}JLGM + (TfLij + F]k]‘.

The columns F.; and F.; are bounded by

1Eilla < leileh||Guillz + 5] [shl G ll2,

2 < lesl [shl I Guall2 + 4] e |Gl 2

F;

.

If |esnly [een] < (0.5K + 4)e, which will be justified later, here

l€], 1€h] < leen| + 2.02e, lg5], |e5] < lesn| + 2.02e. (25)

12



For example, since the assumption of the theorem implies

e =VE2? < V0.0T < V0.01-0.001 < 0.0032,

we have
il <
<
< een] + 2.02¢.
Thus,
’ ’ o
@] =
where
106Gl <
<
<
and
160G il <
<
<

ler + &5 4+ €ch + €183 + 1800 + E380h + £163E 1]
2 + |ecn] + 0.001 4+ 2(0.5-0.0032 4+ 4 - 0.001)2 + 0.001 - (0.5-0.00324+ 4 - 0.001)e

ch || Eillz + |sh| |2

(I3l eh + leal sho) [|Glillz + (I5] + 4]} eh skl | Gjll2

Y, ) ~2 ch |sh b
(1241”4 241 55 + (1] + <41 5 ﬁ)ﬁ

I

.

|shl || E.ill2 + eh || .4l
(4l eh” + |eh] sho) |Gjlle + (141 + |eh))eh |shl |Gl

Y, ) ~2 ch |sh ¢
<|€ﬁ;| ch™ 4 |y sh + (|4 + |es|)eh |sh] ﬁ)ﬁ

F;

.

sh
ch

(26)

(27)

(28)

Notice that, since \/a = D;; = ||G.;]|2 and Vb = D;i = ||G.jll2, dividing (27) and (28) by /a
and /b gives bounds for ||§B.i||z and ||6B.j||2, respectively.

In order to bound the above inequalities we have to consider two cases, depending whether
Va/b in (28) is bounded away from infinity or not. More precisely, we shall consider cases

- . —~2 2
a/b < 2 and a/b > 2, respectively. In each case we will compute bounds for |g}], c¢h | sh |

ch|sh|, /b/a and \/a/b, and insert those bounds into (27) and (28).

~ ~2 ~2 o~ ~
Case 1. Let a/b < 2. In order to bound ch | sh | c¢h|sh| in terms of Kk, we must bound £ in
terms of . From (19) and the assumption 102 < 0.01, it follows that

(= fI¢) = /I (

Further,

a+b
2¢

) = (14 2¢)¢, lec] < 3.005¢.

FUC =1 = [(1425)¢ = 1](1 + 26)

= (T+e5)(1426)(1+20)°¢C — (1 +26)
= (I+e)(C—1).

13



Solving the last equality for g, taking absolute value, and using the assumption 10 < 0.01,

gives

e4+8.04C%  9.04?
les| < < £.
SENR R
We continue with the error analysis: solving the last equality in

FINE = 1) = (14 e /(1 +2)(C = 1) = (1 42,0/ - 1,

for ¢, taking absolute value, and using the assumption on g, gives

leu] = [(T+en)VT+e, — 1] < (1 +5)\/] + les| =1

< (14 + |€Z|2 1= +g)<1 + |€2'*|) 1
EN 9.04 (%¢ 5.53 (2
< 5—|—7(1—|—5) Sg_l_TC?——]]'OO] < sz]gl
Further,
ST+ =1) = [T+l + (1 + )/ = 11(1 +5)
= (T+e)Cl++/¢— 1)
where

|(€C =+ £8 =+ 5(88)|C| + (58 + Eu + 58571,) \/ CQ - ]|

e <
) ERVEE
N

9
< 4.02—————c+ (e +1.001 |g,|) ————=
¢l +4/¢% =1 ¢l +4/¢% =1
6.54 ||
< 402+ €.

VS

Since the right hand side is the decreasing function for [(| > 1, by using (20), we have

Iq K241

Jo1o 2R

les] <4.02246.54 (0.55 4+ 0.5) e < 10.56 kK e.

A

<057 +0.5,

and

Further,

- ﬂ( sign () )_ sign (<) (1 45
(14+¢2,)

I +4/¢2 1 (ICI++/¢2 1)

— (] —l—{ft)t,

14

(29)

(30)



where, by using (26),

} 11567 .
2ol + len] R qofe

le¢| < = =
T — e 1 —10.56 - 0.0032

Using this, (21), (26), the assumption max{#%, 10} < 0.01, and % > 1, we have

1 1
1-2  1-£2(1+¢2)2
< = ]2
- () e
< (F+1)°
T AR - R(24R%2e 4+ 48Ke 4+ 24+ 122 K32 4 2 - 1225222 4 122 K ?)
< u<0.28 (/?,—I—Q—I—l)
— 3574k — K
< 0.28% 4+ 0.84. (31)

The required bounds for c¢h , sh- and ch|sh| terms in (27) and (28) follow from this and (22).

Now we have to bound e, and 2., from (24) and insert those bounds into (25). Since sh
and ch are defined in terms of ¢ (c.f. (23)), we start the analysis from there. By using (31), we
have

JIO =) =[1— (1 4+ e10) (1 + ) = (1 +2,)(1 - 1),

where
2.01 e
|€w| S 1

< (0.563 7 4 1.689) =.

This, in turn, implies

h=fl(y/1—12) =1 +g12)\/(1 Feu)(1—12) = (1 4+ )1 — 12,

where
len] < |e1a] | ol 5 | < (0.282K + 1.847)
Therefore,
— 1 1
(‘h:f] — = — ]—I—{frg ‘l—l—{i‘ph (‘h
(\/1152) (]—I—gh,)\/]—t?( )= )
where

BRESE

cenl <
|een < Tl

< (0.29% + 2.86)

The same estimate holds for || since fI(t) =1,
lean] < (0.297 + 2.86)

The above bounds for |e4,| and |e.4| justify, in turn, the assumption made in deriving (25).
Inserting these bounds into (25) gives

lef] < (0.29% + 5) e, i=1,2,3,4. (32)

These inequalities bound the £/ terms in (27) and (28).

15



To complete the proof, we need to bound the \/b/a term in (27) and the y/a/b term in (28).
Systematic application of (19) and the assumption me < 0.01 implies (see, for example, the
classical error analysis of the scalar product in [14, § 2.4]):

a=a(l+e,), b="5b(1+¢ep), leal, |en] < 1.01me. (33)
This implies - - -
b b 1+1.01m b 1+1.01-0.01 b
b o A me b 1A <1.032, (34)
aa 1—101me ~ a 1-1.01-0.01 a
and, similarly,
: a 1+1.01m a
O I OmE 3l (35)
b=, 1-1.01me )

From (34) and the assumption a > b, we have

b
f < 1.02. (36)
a

By inserting this, (32), (22) and (31) into (27), we have
166Gl < Crvae, 8Bl < Cre, (31)

where

Ch = (24+2-1.02)(0.29% + 5)(0.28% + 0.84) < 0.3372 + 6.657 + 16.97.
Similarly, from (35) and the assumption ﬁ/@ < 2, we have

£<\/1.03-2< 1.44.

By inserting this, (32), (22) and (31) into (28), we have
186G jll2 < Cavbe,  [[8B.]l2 < Cae,

where

Co = (24+2-1.44)(0.29% + 5)(0.28% + 0.84).
By comparing this with (37), we see that Cy < 1.21 C, which finally gives

16Bl2 < |I6B|r < \/C? +C2e < V1 +1.212C & < (0.525% +10.55 4 26.7) ¢

as desired.
Case 2. Let a/b > 2. This case is easier to analyze since ( and ¢ from (19) are bounded away
from the respective worst-case bounds (20) and (21). However, in this case there is no upper

bound for \/a/b in (28). Instead, we use the identity ch |sh| = h’ |t], which transforms (28) to

—~2 —~2 —~—2 12
15Gi]1, < (|eg|ch + Ihl sh” + (1] + |4y eh w;)ﬁ, (38)

and bound the term |t|\/a/b.

We first compute the bounds for ch and |9AE| Using (19), positive definiteness of the matrix
A1) and the assumption a/b> 2, we have

> ”“’ f f

> 1.06.

N |
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In the last inequality we have used the fact that 2'/2 4+ 27 '/2 is a continuous function with
minimum at x = 1.
Further, g¢, €, and ¢, are estimated as in Case 1, while for £, holds (c.f. (29))

6.54 - 1.06
o] < 4.026 4+ —20 0 o <94,
1.062 — 1
Using this, (30), and the assumption 10e < 0.01, we have
~ 14 0.001
7| < + <0.73.

(1 —24-0.001)(1.06+ +/1.062 — 1)
Thus, N N
ch <147, |sh| < 1.07. (39)

Now we compute the bounds for g5, and ., and insert them into (25). Similarly as in Case
1, we have

A7) = (4e)(1-P), el < % <431
FI1 =12 = (T4ep)/1 —12, len] < 3.16¢,
ch = (1+4em)ch,  |ea] < 4.18¢,
sh = (14e.)sh, leon] < 4.18¢.

The last two bounds and & > 1 justify the assumptions made in deriving (25). Inserting these
bounds into (25) gives

I < 625, i=1,2,3,4. (40)
Using this, (39), (34) and Z/ﬁ < 1/2in the relation (27), one obtains
[0G ][> < 34.5V/ae, [0B.]]2 < 34.5¢. (41)
Further, similarly to (34), the relations (33) also imply
b b 14+1.01m b
< . & <1.032.
a —a 1—101me — a
Using this, (30) and the positive definiteness of the matrix %T“%”, we have
N 1+e | | \/AE
N < g =
(1= [z D)<l

= 206f<206\/10 f<21f

Therefore, in (38) we will have
~ [a
/- < 2.1.
7 <

Inserting this, (40) and (39) into (38), we obtain
16G 112 < T7Vhe,  ||I6Blla < TTe.
Finally, from this and (41), we have
16Bll2 < I16B]1x < 85-,

and the theorem is proved. N
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2.4 Overall error bounds

The overall error bounds for the HSVD computed by Algorithm 1 are obtained by plugging the
one-step error analysis of Theorem 1 into the perturbation bounds of Section 2.1.
The proof requires the following lemma due to Veseli¢:

Lemma 1 let

B"B=T+F, |\E

2:(<]7

where B is any real matriz with full column rank. Then there exists a matriz @ such that

QTQ =T and ||[B— Qs < .

Proor. We make the polar decomposition B = QP where Q7Q = I and P is Hermitian
positive definite matrix. Since QQTB = B, we have P2 =T+ FE,or (P+1)(P — 1) = F. Thus

1P =Tl < /(14 VT=0) <,

so that
IB=Ql2=QP —Qll2= 1P — 1l

and the lemma is proved. ®

The error in the computed hyperbolic singular values is bounded as follows.

Theorem 2 let G, 0 < k < M, be the sequence of matrices computed by Algorithm 1 from
the starting pair (G,.J). Here Go = G. Assume that Algorithm 1 converges, and that (G, J)
is the final pair which satisfies the stopping criterion. For 0 < k < M let G, = Br Dy be scaled
according to (6). Let o; be the i-th singular value of the pair (Go,.J), and let o = fI{(||Gar.il|2)
be the i-th computed singular value. Assume that the assumptions of Theorem 1 are satisfied in
each step of Algorithm 1, and let ' denote the constant C' from Theorem 1 in the k-th step. If,
additionally, max{n -tol,mne} < 0.01, then

(TI

1-8<L<145,

3

where
M—1 C
8= H (] + /7]?)] (T+1.05n-tol + 1.05mne)(1+ (0.51m+1.01)e) — 1,
E—0 (Tmin(Bk)

provided 5 < 1.

ProoF. lLet oar; be the hyperbolic singular values of the final pair (G'as,.J). Since

ot oars NGar s ol
9y M, || 77\/[,1,”2 . i 7 (42)
o; o; OM.i |G ar i) 2

we shall compute the bound for S in three steps.
According to Theorem 1, for every 0 < k< M — 1 we have

Gyt = (G + 0GH) T, (43)

where

(SGkZ(SBka, ||(§Bk||2 S(jk{f.

18



Here J;, is the exact rotation from the commutative diagram of Theorem 1 in the k-th step.

Further, for every 0 < k < M — 1 we can write

Grpr = (G+ 8GN Ty - Ty -+ Ty,

(44)

that is, we interpret (11 as being obtained by a sequence of exact transformations applied

to a perturbed starting matrix (G. The proof is by induction on k. For k& = 0 we simply
set. 0G0 = §Gy. Now suppose that (44) holds for some k£ > 1. By (43) and the induction

assumption we have

Gryr = (Gp40GH) Ty
= [(G46G* " NJy- Ty + 0G4 T
= (G+ 5(;(’<))jo .. .jk7
where B B
SG) = 5G4 5G L (T Tr) "
Set
§By = 8GL D, ", §BW) = sqkp-1,
where 1) = Dg. Then forevery 0 <k < M — 1

C

k
I6BHE BT, < (1 + 75) —1.
E ]];([) (Tmin(Bl)

The proof is by induction on k. For k = 0 the statement follows from Theorem 1 since

6B ||2 Co
sBOBH, = I6B, B, < 155, < '
|| ||2 || 0 0||2 - Umin(BO) B Umin(BO) :

(45)

(46)

Now suppose that (46) holds for some k > 1. Writing (45) for k + 1 and post-multiplying it by

D' Bt gives

SRR — §BBIBY 4 5G4 (Jo---Jp) DT BT
= dBWBY 4 6B Bl Bigi Dia (Jo - Jy) ' D' BY

= BWB 6B Bl G (Jo -+ Ty) "D BT

= dBWBY L 5B Bl (G +GW) D BT

= sBWBY 6B, B, (BB +6BH BY).

Taking norms and using Theorem 1 gives

Ck+1€

s B, < 1sB® By, 4
|| o< b (Bir)

(1+16BWBT,).

Finally, inserting the induction assumption and rearranging completes the proof of (46).
By using (46) for k = M — 1, and setting §G = SGM=1 and 6B = §G D", we have

Gy = (G+8G)To T+,
where

M —1

Cy

= _ o) 1> 16BBY.
(Tmin(Bk) 8) o || ||2

19

(47)

(48)



Then, according to (11) and (10), we have

OM i

1 Bar < <14 B (49)

3

We have, therefore, proved the first part of the expression for 3.
Now we have to account for two more facts:

e the columns of (Gps are not exactly orthogonal; instead py numerically satisfies the stop-
ping criterion,

e final singular values o/ are numerically computed norms of the columns of Gy.

First notice that
Gar = By D, Dirgii = |Gl 2-

Thus,
GGV g o,
Bl,Bu=I+F, FE;=0 - F= 2 G ks Mki_ £, (50)
Gl Gl

For the sake of simplicity we set?

a=|Guill3, b= ||G..jll3, = GrpiGug-
k

The classical error analysis of the scalar product (see, [14, § 2.4]) implies (33) and

| fl(e) — ¢| < 1.01 meZ|GM71ﬂ:| |Gl < 1.01mevab.
k

Since G'ar numerically satisfies the stopping criterion, by this and (33) we have

f,< el )_ e+ (fl(c) — )]
T\WVab) (T4 e)Va(4e)b(4e)(0 +ey)

Therefore, for © £ 7 we have

(] —|—€3) S tol.

|
Vab

ol O+/OF T mePT+2), (1) ~
< 1.02t0l + 1.01 me.

& 09 N

]

<

Here we have used the assumption max{m, 10} < e. Thus,

From this, (50) and Lemma 1, there exits an orthonormal matrix B such that

F

9 < 1.02ntol +1.01nme.

B = By + 6B, [6Bll2 < 1.02ntol + 1.01 nme.

Set. G = BDjys. Since the columns of (G are orthogonal, the hyperbolic singular values of the
pair (G, J) are o; = Dpgii = ||Garill2- Thus, (11) implies

G
g vl g (51)
TM.i

?These a, b and ¢ are different, than the ones from Theorem 1.
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where

198l _Nl9BI2
(Tmin(BM) 1 ||(§F‘¢||2

b < < 1.05ntol+1.04nme.
In the last inequality we have used the assumption max{n - tol,mne} < 0.01. This completes
the proof of the second part of the bound for 5.

Finally, we have to account for the difference between ||Gas .ill2 and of = fI(||Gar.il]2). We
have

ot = FIIGAl) = (1 + e HIGaAB0 + o) = (14 ) Gl
where |g,| < 1.01me as in (33), and, consequently, |¢'| < (0.51 m + 1.01) . Therefore,

/

1 (051 m+1.01)e< —20 — <14 (0.51m+1.01)e.
|G w2

The theorem follows by combining this, (51) and (49) with (42). =

We have two remarks. First, notice that the first order approximation for 5 reads

M —1
C
B=c3" ﬁJr 1.05n - tol + 1.05mne + (0.51 m+1.01) e + O(e?), (52)
E—0 Omin k

which is the form that was used in [9]. Second, in Theorem 1 both ||§B]|2 and ||[§B]||r are
bounded by C'e. By repeating the part of the proof of Theorem 2 between (43) and (4%) for
Frobenius norm, we easily see that (48) holds for the Frobenius norm, as well, that is

Bur > 9B B (53)

We need this result to prove our singular vector bounds.
The errors in the singular vectors are bounded as follows.

Theorem 3 Assume Algorithm 1 converges, and that (Gar,.J) is the final pair which satisfies
the stopping criterion. Let G = UXV ™" and Gy = U'S (V') ™" be the HSV Ds of the pairs (G, .J)
and (G, J), respectively, partitioned according to (12). Let o; and ol be the diagonal entries
of 3 and X, respectively. Here o; and o) may be in any, but same, order. Let Uy and U] be the
subspaces spanned by the columns of Uy and U], respectively, and let Vi and V| be the subspaces
spanned by the columns of Vi and V{, respectively. For 0 < k < M let (), = By D}, be scaled
according to (6), and let C} denote the constant C' from Theorem 1 in the k-th step. Finally,
let 3 v
- Cl, 35

’ kl;[o <]+(Tmin(Bk)€) b v VT35

and let vg(3], ) be defined according to (13). Then,

23 1
11— 5 Fg(24722)7

1 1 (&
;' = / < 2 — ] —ah? _ e
lsinOOr Vle < VIS (2“\/ +4¢) e 5] %)

Notice that 8 = Bar, where By is defined in (48).

|| sin @4, 17) ||

(VAN

(54)
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Proor. The first bound follows by inserting (47), (48) and (53) into (14), and the second
bound follows by inserting (47), (48) and (53) into (15). =

l.et us give some remarks concerning the practical application of the above theorems. The-
orem 3 is incomplete in the sense that we ignore the fact that the bounds hold for the exact
singular vectors of the final pair (Gas,J), and not for the actually computed ones. More pre-
cisely, in (54) we ignore the fact that the computed left singular vectors are the normalized
columns of the final matrix (Gar,.J). In (55) we ignore the round-off errors which occur in the
updating the columns of V in Algorithm 1, as well as the errors which are due to the fact that
these updates are performed with slightly perturbed rotation matrices. It is possible to include
these details, but they are technically very demanding. We decided not to do so since the bounds
of Theorem 3 show well the essential behavior of the errors in the computed singular vectors,
and including these details would greatly complicate the exposition.

Another important issue are the factors 1 /0 min(B,,) which appear in both theorems. Clearly,
B,, changes from step to step, and so does this factor. However, as Algorithm 1 converges,
1/0min(Bm) — 1. Also, there is strong numerical evidence in previous works [9, 10, 23] and
in our numerical experiments that this factor does not grow much during the computation.
The theoretical understanding of this phenomenon is weaker. Some (partial) theoretical results
can be found in [9, 23]. Tn [23, §3.2.2], an algorithm was derived with which upper bound for
1/0min(Bm) can be efficiently monitored.

From the above comments, and the fact that the constants in Theorems 1 and 2 come from
considering worst cases, we conclude that the error in the computed hyperbolic singular values

should be bounded by
o} — i !

a; o gnmin(B)

fo(m,m), (56)

where f,(m,n) is a factor which moderately grows with dimensions.

In numerical experiments we focus our attention to the individual singular vectors. lLet u;
be the left exact singular vector of o;, and let u. = u; + du; be the corresponding left computed
singular vector. Similarly as above, from (54) we expect the error in the computed left singular
vectors to be bounded by

1

duslle < .
Iomllz < & 2y ety

fu(m,n), (57)

where f,(m,n) is a factor which moderately grows with dimensions. Notice that this is just the
bound (56) divided by the corresponding relative gap. Also, since the exact singular values o; are
not available, here we use the relative gap which is defined by using only the computed singular
values. We can bound the errors introduced in the relative gap in this manner by Theorem 2.
However, this is unnecessary since the bound (57) depicts well the actual error (see Table 1).

Similarly, if v; and v = v; + dv; are the exact and the computed right singular vectors of a;,
respectively, by (55) we expect that the error is bounded by

1 1
min(B)  rg(0], ¥)

I6vill2 < e IV/]13 ~ fu(m,n), (58)

where f,(m,n) is a factor which moderately grows with dimensions. Here V' is the computed
right singular vector matrix, which is readily available upon completion of Algorithm 1.
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2.5 Numerical experiments

We performed series of experiments on randomly generated test pairs (G, .J). For each test pair
we first computed the HSVD by Algorithm 1 in double precision and assumed that to be the
exact solution. Then we solved the same problem by the single precision version of Algorithm
1, and verified that the expected error bounds (56), (57) and (58) are satisfied. Our programs
are written in Fortran, compiled by GNU g77 Fortran compiler, and executed on a Pentium
11T 866 Linux machine. In generating test pairs we have used the LAPACK [2] random number
generator dlaran.f.

We first describe the procedure used in generating test pairs, and the sets of parameters
used. Then we show the results of our experiments. Besides results concerning the accuracy, we
also show the number of cycles which were executed until the convergence.

For given dimensions m and n, we first generate random diagonal matrix Dy whose diagonal
entries” logarithm is uniformly distributed in the interval [~3/2,5/2]. We then form matrix
Go = Q1 Do@Q2 where Q1 and Q5 are random orthonormal matrices of dimensions mxmn and nxn,
respectively. Further, we generate random diagonal matrix 1Dy whose diagonal entries’ logarithm
is uniformly distributed in the interval [—v/2,~/2]. We then form the matrix G = GoDy. Thus,
#(B) ~ 10°, where ¢ = BD is scaled according to (6). Finally, we generate random n x n
diagonal matrix .J with elements in the set {—1,1}.

We tested matrices for m = 50,100, 200,400, and for each m we used n = m/2, m, which
gives eight classes of matrices. Further, we chose 5 =1,2,3,4and v=2,4,6,8,10,12,14. This
gives a total of 224 classes of matrices. In each class we constructed 60 test pairs, which totals
to 13440 experiments.

The results are as follows. Here ¢;, u; and v; denote the singular values and vectors computed
in double precision, and o, u. and v! denote the singular values and vectors computed in
single precision For each experiment we computed the maximal factors f,(n), f.(n) and f,(n)
according to (56), (57) and (58), respectively, that is

el -
fo(n) = AL o; /mein(B)7
e 1

u T = ' 4 g . 7
fuln) = e oo/ (- - )

e 1
v\t = ’ (S d VI : . )
fom) = max | ””2/(” (B Tl )

The behavior of f,(n), f.(n) and f,(n) is shown in Table 1.

n | 50 | 100 | 200 | 400

mean f,(n) || 1.82 | 3.30 | 6.23 | 12.2
max f,(n) 14.9 | 26.0 | 53.3 | 104.6
mean f,(n) || 3.67 | 7.92 | 16.3 | 32.6
max f,(n) 26.4 | 59.6 | 139.4 | 333.3
mean f,(n) || 0.656 | 1.35 | 3.00 | 6.61
max f,(n) 5.36 | 8.48 | 18.1 | 35.8

Table 1: Error factors in the computed HSVD in 13440 experiments

We see that the expectations given in (56), (57) and (58) are fully confirmed by numerical
experiments. Thus, we may conclude that it is indeed the scaled matrix B, and not the starting
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matrix (7 which governs the accuracy of the computed HSVID).

Further, in each experiment we monitored the number of cycles executed before convergence,
and the spectral condition of the right singular vector matrix, x(V’) = ||V’||3. The results are
in Table 2

n | 50 | 100 | 200 | 400
mean (cycles) 8 9 10 11
max(cycles) 13 15 16 18
mean k(V') || 4.27 | 4.44 | 4.46 | 4.45
max k (V) 48.4 1 29.4 | 23.5 | 23.3

Table 2: Number of cycles and £(V’) in 13440 experiments

3 Symmetric eigenvalue decomposition
We consider the classical symmetric eigenvalue problem
Hz = Az, x # 0, (59)
where H is a n X n non-singular matrix. The eigenvalue decomposition of H will be denoted by
H=UAUT,

where A is diagonal matrix whose diagonal entries are the eigenvalues of H, and U is orthonor-
mal matrix whose columns are the corresponding eigenvectors. As already mentioned in the
introduction, we use the following algorithm:

Algorithm 2 Figenvalue decomposition of a non-singular symmetric matriz H .

1. Factorize H as

PTHP = GyJGT, (60)

where P is a permutation matriz, G is non-singular lower block triangular matriz with
1 x 1 and 2 x 2 diagonal blocks, and J is diagonal matriz of signs, J; € {—1,1}.

2. Compute the hyperbolic singular values o; and the left singular vector matriz U of the pair
(G,.J), where G = PGy, by using Algorithm 1.

2 Jii, and the columns of U are the corresponding eigenvectors.

The eigenvalues of H are \; = o;

The aim of this section is to show that Algorithm 2 computes the eigenvalue decomposition
(59) with high relative accuracy. We first state the error bounds for the first step of the algorithm,
originally proved in [23, 24]. Tn §3.1 we then state the relative perturbation results for the
eigenvalues and eigenvectors of the problem (59). In §3.2 we give overall error bounds for
the eigensolution computed by Algorithm 2, and in §3.3 we describe results of our numerical
experiments which confirm the theoretical predictions.

Detailed description and the formal algorithm, as well as the error analysis of the symmetric
indefinite factorization (60) are given in [24, §2 and §3]. This factorization is, in fact, a mod-
ification of the well-known Bunch Parlett factorization [4]. The variant of the Bunch Parlett
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factorization with partial pivoting is implemented in the LAPACK routine dsytf2.f [2]. The
factorization (60) uses the original unequilibrated diagonal pivoting from [4], which defines the
permutation matrix P.

The error bound for the factorization (59) was proved in [24, Th. 3.1]: the factors G = PG,
and .JJ computed in floating-point arithmetic with precision £ are the exact factors of some
perturbed matrix H +dH, that is,

GIGT = H+6H,  |6H| <9n(H|+|G|G|T)e+ 0. (61)

3.1 Relative perturbation bounds

We shall use the relative perturbation bounds for the non-singular symmetric eigenvalue problem
from [32, 29]. The bounds are stated in terms of the spectral absolute value of H, | H|= VH?.
Notice that | H|is, in fact, the positive definite polar factor of H. Let the scaled matrix A be
defined by

|Hl= DAD,
where D is some non-singular diagonal matrix. Further, let H + 6 H be the perturbed matrix,
where

SH = DSAD.

According to [32, Th. 2.1],if 6 [ is such that |27 §Hz| < 77.77T|H|.71f07’ all vectors x and some
n < 1, then the eigenvalues of the matrices H and H + dH, A; and A;, respectively, satisfy the

inequalities B

A

l=n< =<1+ (62)
Since
12T6Hz| = [2"DT6ADz| = |27 DTSADz|)y < ||27 DT|[3]|6 Al|2]| D]z
5A
< @mﬂmm,
)\min(’4

if §A is known, then (62) holds with n defined by
_ Al
)‘min(A)

Further, if H = GJGT and G = USV " is the HSVD of the pair (G,.J), then ¥ = |A]'/2,
U =GV|A]7'? and

n (63)

GVVTGT = UINY AP0 = 0N UT = | HLL

Thus, we may rewrite (63) as
Al
2 (D'GV)

T min

(64)

This is convenient way to apply the bound (62), since an approximation of the matrix GV is
readily available upon completion of Algorithm 2 this is the final matrix Gy of Algorithm 1
and Theorem 2. Usual choice for the matrix D) is such that the matrix D' has unit rows.
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In order to state the eigenvector bound, let us partition the eigenvalue decomposition H =

UAUT as
_ Ay Uy
H=|u (]2][ AQ] [UQT]’ (65)

where Uy is n X k matrix, Uy is n X (n — k) matrix, and the rest of the matrices have the
corresponding dimensions. Let the perturbed matrix H = H 4+ §H = UAUT be partitioned
accordingly. Similarly as in §2.1, we define the relative gap by
- Xy — A
rg; (A1, A3) = min 7| b q|.

= (66)
E
k-;-?;?gn |)‘p)‘q|

Let U; and U; be the subspaces spanned by the columns of U/y and 171, respectively. By using
[29, Th. 6], one can easily prove that

VI3 VF 1

|| sin ©Uy U || < : : _ ,
V1 dalviz VT=7 e Ag)

(67)

where

_I6Alle _ lIsAllF _F
7*702 o

min(ﬁi]G)7 " ‘721111(7571(;)7 - 2-3y

3.2 Overall error bounds

The error bounds for the eigensolution computed by Algorithm 2 are obtained by adding the
error bounds for the first and the second step. More precisely, the error bounds are obtained by
inserting the error bound (61) into perturbation bounds (62), (64) and (67), and adding the error
bounds for the HSVD from §2.4. In §2.5 we have seen that the actual errors in computed HSVD
behave like the first order approximations of the bounds which were proved in §2.4. Having this
in mind, for the sake of simplicity, here we shall state and prove only first order bounds.

The error in computed eigenvalues is bounded as follows:

Theorem 4 Let X, be the eigenvalues of the matriz H computed by Algorithm 2 in floating-point
arithmetic with precision £, and let X; be the exact eigenvalues of H in the same order. Let (G, .J)
be the output of the first step of Algorithm 2, and let D be the positive definite diagonal matriz
such that the matriz B = D™'G has unit rows. For 0 < k<M let Gy, = BpDy, be the sequence
of matrices generated by Algorithm 1, starting from G = Gy, scaled according to (6). Assume
that the assumptions of Theorems 1 and 2 are satisfied in each step of Algorithm 1, and assume,
additionally, that ne < 0.001. Let 'y denote the constant C' from Theorem 1 in the k-th step of
Algorithm 1. Finally, let 8 be defined by (52). Then

/

A
1*77§)\—’1§1+77,

3

where

1
=201 n> —————— =+ 28+ 0(h).
" T By B4+0(=7)

min )

PrOOF. Set H = GJGT. Then H = H + §H, where §H is bounded by (61). Further, by
inserting

|H| <|GIGT| +18H| < |G| |G|" + |8H],
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into (61) we have
51 < 91 n (H+ GG = + O)

91 n (|GG + |8H ]+ 1G] G e + O(e?),

VANVAN

or

(1 —=91ne)|dH| <1820 |G| |G| e 4+ 0O(?).
Dividing this inequality by 1 — 91 n e and using the assumption ne < 0.001 gives
|6H | < 201 0 |G| |G| e + 0O(?).
Set §4 =D '§HD~". Then

16A] < 201 0| B||B|" e + O(2). (68)
Inserting this into (62) and (64) gives
N PRI +7
n= N, = 7,
where A; are the eigenvalues of ﬁ, and
dA 1
ﬁ:wgzm n?———— =+ O(=2). (69)
(leﬁn(BV) (leﬁn )

We have thus proved the first part of 7.
Further, we have \; = 62.J;;, where &; are the hyperbolic singular values of the pair (G, .J).
Similarly, we can write M = o/%.J;;. Since

)

>/>| >

P
S

squaring the bound of Theorem 2 gives
/

A
1f25+52gx—§1+25+52,

3

where the first order approximation for 3 is given by (52). The theorem now follows by com-
bining this with (69). =

The error in eigenvectors is bounded as follows:

Theorem 5 et the assumptions of Theorems 4 and 3 hold. Let the eigenvalue decompositions
of the matrices H = UNUT, H = GJGT = UNUT and H' = Gy JGT, = U'NU'T be partitioned
according to (65). Let Uy and U] be the subspaces spanned by the columns of Uy and Uj, respec-
tively. For 0 < k < M let G = By Dy, be scaled according to (6), and let Cy, denote the constant
C' from Theorem 1 in the k-th step. Let B be defined as in Theorem 3, and let

! gl
=201 n? ——— ¢ + O(£?), a= .
i oX. (B) (%) 2— 3~
Let rg, (/A\17 Ag) and rg(A], /A\Q) = rg(Eﬁ,ig)be defined according to (66) and (13), respectively.
Then,

V|2 1 2 1
|| ||2 7 ‘I‘ 5 i _ —I—O(€2)

| sin O, Uy || < : =
V1 dallVIE VI rm(AnAs) T8 re(Af AY)
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ProoF. The theorem follows by inserting (68) into (67), and adding the bound (54). m

The remarks made in §2.4 after Theorem 3 hold for Theorems 4 and 5, as well. In particular,
the bound of Theorem 5 holds for the exact left singular vectors of the final pair (Gas,.J), that
is, for the exact eigenvectors of the matrix GMJGX}, and not for the actually computed ones.

Also, notice that for the matrix G = B obtained by the first step of Algorithm 2, 1/0min(B)
is bounded by a function of O(3.781") irrespective of G (see [24, Th. 6.1]). In our experiments
1/0min(B) was never too large, which, together with the bound (16), implies that the quantities
(Tzﬁn(ﬁ‘/) and (Tzﬁn(lé) from Theorems 4 and 5 do not differ by much.

From the above discussion we conclude that the expected error in the computed eigenvalues

should be bounded by

|AL— A 1 1
)\7: S £ ((Tzﬁn(f)1(;]\/[) + (Tmin(B)) f/\(n)v (70)

where fy(n) is a factor which moderately grows with n. Here we have assumed that the matrix

G'ar is sufficiently good approximation of the matrix G'V.

Further, let u; be the eigenvector of A;, and let u) = u; + du; be the corresponding computed
eigenvector. Similarly as above, from Theorem 5 we conclude that the error in the computed
left eigenvectors should be bounded by

1 1
o2 (B) 181(NL AY)

min

[6uill2 < &

fu(n), (71)

where f,(n) is a factor which moderately grows with n. In (71) we also ignored the factor ||V]|3
in the first term and the contribution of the second term of the bound of Theorem 5, which is
justified by the numerical experiments in the following section (see Table 3).

3.3 Numerical experiments

Similarly as in §2.5, we performed series of experiments on randomly generated test matrices H.
For each test matrix we first computed the eigenvalue decomposition by Algorithm 2 in double
precision and assumed that to be the exact solution. Then we solved the same problem by the
single precision version of Algorithm 2, and verified that the expected error bounds (70) and
(71) are satisfied.

Test matrices were generated as follows. For given dimension n, we first generate random
diagonal matrix Iy whose diagonal entries’ logarithm is uniformly distributed in the interval
[—5/2,3/2]. We then form matrix Ag = Q1 DoJQT where Q) is random orthonormal matrix and
J is random diagonal matrix with J; € {—1,1}. Further, we generate random diagonal matrix
Dy whose diagonal entries’ logarithm is uniformly distributed in the interval [—v/2,~v/2]. We
then form the matrix H = Dy AgDy. Since all matrices are randomly generated, this procedure
generates matrix H for which usually /4,2(@) ~ 10% and x(H) ~ 1027. More precisely, additional
row-scaling of the factor of Ay does not influence the condition number of that factor, and the
condition number of H is primarily determined by x%(Dy).

We tested matrices for n = 50,100, 200,400. Further, we chose g = 1,2,3,4 and v =
2,4,6,8,10,12. This gives a total of 96 classes of matrices. In each class we constructed 100
test pairs, which totals to 9600 experiments.

The results are as follows. Here A; and u; denote the eigenvalues and eigenvectors computed
in double precision, and A} and u! denote the eigenvalues and eigenvectors computed in single
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precision For each experiment we computed the maximal factors fy(n) and f,(n) according to
(70) and (71), respectively, that is

|AT = Al ( £ £ )
n) = max ’ = + )
San) i=Tn A / o (BV)  Omin(B)

min

£ 1
) = X |6, — - .
R = o/ () i)

The behavior of fy(n) and f,(n) is shown in Table 3.

min

n | 50 | 100 | 200 | 400
mean fi(n) || 0.213 | 0.273 | 0.417 0.661
max f\(n) 6.10 4.94 6.61 9.84
mean f,(n) || 0.0596 | 0.0320 | 0.0176 | 0.00981
max f,(n) || 0.587 | 0.297 | 0.113 | 0.0581

Table 3: Error factors in 9600 experiments

We see that the expectations given in (70) and (71) are fully confirmed by numerical exper-
iments. Even more, f,(n) appears to be decreasing with n. Thus, we may conclude that it is
indeed the scaled matrices, and not the starting matrix H which governs the accuracy of the
computed eigensolution.

Further, in each experiment we monitored the number of cycles executed before convergence,
and the spectral condition of the matrix V. The results are in Table 4.

n | 50 | 100 | 200 | 400
mean (cycles) 6 7 8 9
max(cycles) 8 10 11 12

mean k(V) 7.80 | 13.9 | 254 47.4
maxs(V) || 28.1 | 39.7 | 77.3 | 140.432

Table 4: Number of cycles and (V) in 9600 experiments

From Table 4 we see that the convergence of Algorithm 1 is faster on pairs ((,.J) obtained by
the first step of Algorithm 2, than on the pairs generated in §2.5. This is due to the pivoting in
the symmetric indefinite factorization (60), since the columns of obtained G have higher degree
of orthogonality. Namely, as noted by several researchers (see e.g. [31]), the transition from the
pair (GJGT, 1) to the pair (GT(,.J) is essentially one step of Rutishauser’s LR algorithm and
usually carries some non-negligible diagonalization effect.

It is also possible to modify the algorithm in order to decrease the number of cycles until
convergence. Namely, the pair (G,.J) can be transformed by appropriate permutation to the
pair (G, Jy) with Jy = diag(l;, —I,,—;) and Gy =[G} GY] such that the columns of G} and G
have decreasing norms. However, this modification only slightly decreases the number of cycles
until convergence - the values in the first two rows of Table 4 are decreased by one.

We have also compared Algorithm 2 with the classical QR method as implemented in the
LAPACK routine ssyev.f [2] and with the classical two-sided Jacobi method [22]. Tn almost
all experiments with large x(H), the QR and the Jacobi method completely missed the tiny
eigenvalues. This behavior is expected since the relative errors in the tiny eigenvalues computed
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by both methods are bounded by ex(H) [14, 20, 34]. In cases where /4,2(@) ~ k(H) all three
methods performed equally well, as expected. More details on comparison of Algorithm 2 with

the QR and Jacobi method can be found in [9, 23].

4 Conclusion

We showed that the accuracy of the hyperbolic singular value decomposition of the pair (G, .J),
computed by the one-sided .J-orthogonal Jacobi method, depends on the spectral condition of
the scaled matrix and not on the condition of (. For matrix (G which is well scaled from the
right, the one-sided .J-orthogonal Jacobi method computes the hyperbolic singular values with
high relative accuracy, and the left and right singular vectors with high normwise accuracy.

For example, if the spectral condition of the scaled matrix is x(B) = 10, and we run the
computation in single precision accuracy with ¢ =272 22 1078, then the computed hyperbolic
singular values will have 4 or 5 accurate digits. Also, if the hyperbolic singular values are well
separated, that is, if there are no clusters of relatively close singular values, then the norm error
in the computed left and right singular vectors will be around 107°.

We also showed that the accuracy of the eigenvalue decomposition of a symmetric indefinite
matrix H, computed by the symmetric indefinite factorization H = G.JG" followed by the
one-sided .J-orthogonal Jacobi method, depends on the spectral condition of the scaled spectral
absolute value matrix |HI, and not on the condition of H. If |H] is well scaled, or, even
simpler, if the matrix (¢ is well scaled from the left and from the right, this algorithm computes
the eigenvalues with high relative accuracy, and the eigenvectors with high normwise accuracy.

For example, if the spectral condition of the scaled matrix is x(A) = 10?, or, equivalently,
if /4,2(@) = 10%, where B is the matrix ( scaled from the left, and we run the computation in
single precision accuracy, then the computed eigenvalues will have 4 or 5 accurate digits. Also, if
the eigenvalues are well separated, that is, if there are no clusters of relatively close eigenvalues,
then the norm error in the computed eigenvectors will be around 107°.

Numerical experiments showed that the constantsin the error bounds are indeed moderately
growing functions of the dimension. Also, the two-step method computes the eigenvalue decom-

position with uniformly higher accuracy than the classical methods.
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analysis, improved error bounds and improved presentation of the results.
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