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tLet G be a m�n real matrix with full 
olumn rank and let J be a n�n diagonal matrixof signs, Jii 2 f�1; 1g. The hyperboli
 singular value de
omposition (HSVD) of the pair(G; J) is de�ned as G = U�V �1, where U is orthogonal, � is positive de�nite diagonal,and V is J-orthogonal matrix, V T JV = J . We analyze when it is possible to 
ompute theHSVD with high relative a

ura
y. This essentially means that ea
h 
omputed hyperboli
singular value is guaranteed to have some 
orre
t digits, even if they have widely varyingmagnitudes. We show that one-sided J-orthogonal Ja
obi method method 
omputes theHSVD with high relative a

ura
y. More pre
isely, let B = GD�1, where D is diagonal su
hthat the 
olumns of B have unit norms. Essentially, we show that the 
omputed hyperboli
singular values of the pair (G; J) will have log10("=�min(B)) 
orre
t de
imal digits, where "is ma
hine pre
ision. We give the ne
essary relative perturbation bounds and error analysisof the algorithm. Our numeri
al tests 
on�rmed all theoreti
al results.For the symmetri
 non-singular eigenvalue problem Hx = �x, we analyze the two-stepalgorithm whi
h 
onsists of fa
torization H = GJGT followed by the 
omputation of theHSVD of the pair (G; J). Here G is square and non-singular. Let bB = bDG, where bD isdiagonal su
h that the rows of bB have unit norms, and let B be de�ned as above. Essentially,we show that the 
omputed eigenvalues of H will have log10("=�2min( bB)+ "=�min(B)) 
orre
tde
imal digits. This a

ura
y 
an be mu
h higher then the one obtained by the 
lassi
alQR and Ja
obi methods applied to H, where the a

ura
y depends on the spe
tral 
onditionnumber ofH, parti
ularly if the matri
es B and bB are well 
onditioned, and we are interestedin the a

urate 
omputation of tiny eigenvalues. Again, we give the perturbation and errorbounds, and our theoreti
al predi
tions are 
on�rmed by a series of numeri
al experiments.We also give the 
orresponding results for eigenve
tors and hyperboli
 singular ve
tors.Keywords: Hyperboli
 singular value de
omposition; Symmetri
 eigenvalue problem; Sym-metri
 inde�nite de
omposition; Ja
obi method; Relative perturbation theory; High relativea

ura
yAMS 
lassi�
ation: 65F15, 65G05, 65F35, 15A18�This work is partially 
ontained in the author's Ph.D Thesis [23℄ whi
h was done at the Fernuniversit�at Hagen,Germany, under the supervision of Professor Kre�simir Veseli�
. The author a
knowledges the grant 037012 of theCroatian Ministry of S
ien
e and Te
hnology.yUniversity of Split, Fa
ulty of Ele
tri
al Engineering, Me
hani
al Engineering, and Naval Ar
hite
ture,R. Bo�skovi�
a b.b., 21000 Split, Croatia (Ivan.Slapni
ar�fesb.hr). The penultimate revision of this work waswritten while the author was visiting the Department of Mathemati
s and Statisti
s, Utah State University,Logan, UT. 1



1 Introdu
tionThe problem of 
omputing eigenvalue and singular value de
ompositions of real matri
es withhigh relative a

ura
y has been 
onsidered by many authors, for example by Barlow and Demmel[3℄, Demmel and Kahan [8℄, Demmel and Gragg [7℄, Demmel et al. [6℄, Drma�
 [10, 11℄, Mathias[18℄, Slapni�
ar [23℄ and Veseli�
 [31℄. The term \high relative a

ura
y" means that the algorithmis 
apable of 
omputing eigenvalues or singular values with higher relative a

ura
y than 
an beobtained by 
lassi
al QR algorithm [14, x8.3℄, [20, x8℄ or divide and 
onquer algorithm [14, x8.5℄,[16℄. More pre
isely, the latter two algorithms are ba
kward stable and 
ompute the eigenvaluesof a real symmetri
 matrix H with absolute error j�i � �0ij � f(n)"kHk2. Here the originaleigenvalues �i and the 
omputed eigenvalues �0i are in the same order, f(n) is a moderatelygrowing fun
tion of the matrix dimension n, " is the ma
hine pre
ision, and kHk2 is the spe
tralnorm of the matrix. For the relative error this impliesj�i � �0ijj�ij � f(n)"kHk2j�ij � f(n)"�(H); (1)provided H is non-singular. Here �(H) = kHk2kHyk2 denotes the spe
tral 
ondition number,where Hy is the pseudo-inverse of H . Similarly, the QR algorithm [14, x8.6℄ or divide and
onquer algorithm [15℄ 
ompute the singular values of a full 
olumn rank matrix G with therelative a

ura
y j�i � �0ij�i � f1(n)"�(G); (2)where f1(n) is a moderately growing fun
tion of n.There are many 
lasses of matri
es for whi
h su
h a

ura
y results are inadequate, in par-ti
ular for tiny eigenvalues or singular values, like bidiagonal matri
es [8℄, a
y
li
 matri
es [7℄,s
aled diagonally dominant matri
es [3℄ and well-s
aled positive de�nite matri
es [9℄ whi
h ap-ply in �nite elements appli
ations [21℄. In all 
ases algorithms were given whi
h 
ompute thesolutions with higher a

ura
y then given in (1) or (2). The s
heme of the analysis is alwaysthe following:relative perturbation theory + relative error analysis = relative error bounds.In [9℄ Demmel and Veseli�
 proved that the Ja
obi method [14, x8.4℄, [20, x9℄ 
omputes theeigenvalues of the positive de�nite symmetri
 matrix H with optimal relative a

ura
y. Morepre
isely: if we write H = DAD where D = diag([Hii℄1=2) and Aii = 1, thenj�i � �0ij�i � f2(n)"�(A); (3)where f2(n) is a moderately growing fun
tion of n. This bound will hold even if the initialmatrix entries have "-relative un
ertainties, that is, if one 
omputes the eigenvalues of thematrix H + ÆH where jÆHijj � "jHij j. Su
h un
ertainties typi
ally o

ur when the matrix isstored in the 
omputer. Noti
e that log10 of the left hand side of (3) is the number of thea

urate de
imal digits. It is important to noti
e that the matrix A is nearly optimally s
aledin the sense that (see [30℄) �(A) � n min�=diag�(�A�):This inequality trivially implies that �(A) � n�(H);2



whi
h, in turn, implies an important fa
t that the bound (3) 
an never be mu
h worse thanthe 
lassi
al bound (1). Clearly, if the matrix H is strongly s
aled in the sense that A is well-
onditioned and H is not, then the bound (3) will be mu
h better than (1). Therefore, in su
h
ases the Ja
obi method is the method of 
hoi
e if one wants to 
ompute eigenvalues with smallrelative error. It is important to stress a 
aveat whi
h is present in [9℄: the Ja
obi methodforms sequen
e of orthogonally similar matri
es Hk whi
h 
onverges to a diagonal matrix whosediagonal elements are the desired eigenvalues. To this sequen
e there 
orresponds the sequen
eof s
aled matri
es Ak, de�ned byHk = DkAkDk; Dk = diag([Hk℄1=2ii ); (4)su
h that [Ak℄ii = 1. The 
onvergen
e of the series Hk to a diagonal matrix is equivalent to
onvergen
e of the sequen
e Ak to the identity matrix. However, for (3) to hold, �(Ak) shouldnot grow mu
h over �(A) during the algorithm. There is no theoreti
al proof that this is true,instead a strong numeri
al eviden
e was given in [9℄.Demmel and Veseli�
 also proved that essentially the same a

ura
y as in (3) is attained bythe following two step method: in the �rst step H is de
omposed by the Cholesky fa
torizationas H = LLT ; in the se
ond step one-sided Ja
obi method is applied from the right to L in orderto 
ompute the singular value de
omposition L = U�V T . Then �i = �2ii, and the 
olumns of Uare the 
orresponding eigenve
tors.For the singular value de
omposition, Demmel and Veseli�
 proved that the one-sided Ja
obimethod applied from the right to a m � n full-
olumn rank matrix G 
omputes the singularvalues with the relative a

ura
y bounded byj�i � �0ij�i � f3(n)"�(B); (5)where G = BD; D = diag(kG�ik2); (6)that is, the 
olumns of B have unit norms, and f3(n) is a moderately growing fun
tion of n.Here B�i denotes the i-th 
olumn of the matrix B. In analogy to the symmetri
 positive de�nite
ase des
ribed above, the bound (5) will be better than the 
lassi
al bound (2) if the matrix Bis strongly s
aled from the right in the sense that B is well-
onditioned and G is not. Thereis also a 
aveat analogous to the one in the symmetri
 positive de�nite 
ase: the one-sidedJa
obi method from [9℄ forms a sequen
e of matri
es Gk whi
h 
onverges to a matrix withorthogonal 
olumns; the 
olumn-norms of the �nal matrix being the desired singular values. Tothis sequen
e there 
orresponds the sequen
e of s
aled matri
es Bk de�ned by Bk = GkD�1k ,where Dk = diag(k[Gk℄�ik2) su
h that k[Bk℄�ik2 = 1. The 
onvergen
e of the series Gk to amatrix with orthogonal 
olumns is equivalent to 
onvergen
e of the sequen
e Bk to a matrixwith orthonormal 
olumns implying that �(Bk) ! 1 as k in
reases. However, for (5) to hold,�(Bk) should not grow mu
h over �(B) during the algorithm. Again, there is no theoreti
alproof that this is true, instead a strong numeri
al eviden
e was given in [9℄.When 
onsidering the 
lassi
al SVD this 
aveat 
an be removed by applying the one-sidedJa
obi method from the left, and not from the right (e.g. for square non-singular G, see [10, 12℄for details). Then the error analysis does not depend on growth of �(Bk), sin
e this quantitydoes not 
hange when performing rotations from the left. The disadvantage of this approa
h isthat it is in general slower than when one-sided Ja
obi is applied from the right, this is, fromthe side from whi
h the matrix is well s
aled. When 
onsidering the hyperboli
 SVD, we 
annotapply this approa
h, sin
e in the hyperboli
 
ase the rotations must be performed from the3



right, as we shall see later. The problem of 
omputing the singular value de
omposition withhigh relative a

ura
y was further analyzed in [6℄.To summarize, bounds (3) and (5) essentially show that the a

ura
y of the 
omputed valuesis determined by the 
ondition of the s
aled matrix, rather than the 
ondition of the originalmatrix. In parti
ular, the singular values 
an be 
omputed to high relative a

ura
y only ifthe right hand side of (5) is less than one, and remains less than one during the algorithm. Inthis paper we prove that the same is the 
ase for the hyperboli
 singular value de
ompositionalgorithm.In this paper we 
onsider two problems:� the hyperboli
 singular value de
omposition (HSVD) for the pair (G; J), and� the 
lassi
al eigenvalue problem for the non-singular inde�nite symmetri
 matrix H .The reason for 
onsidering su
h two di�erent problems here, is that the HSVD is a part of ourhighly a

urate algorithm for the real symmetri
 eigenvalue problem.The HSVD of the pair (G; J), where G is a m� n full 
olumn rank matrix and J is a n� ndiagonal matrix of signs, J = diag(�1), is de�ned as [19, 33℄G = U�V �1; (7)were U is a m �m orthogonal matrix, � = diag(�i) is a m � n diagonal matrix with �i > 0,and V is a n � n J-orthogonal matrix, that is, V TJV = J . The diagonal entries �i are thehyperboli
 singular values of the pair (G; J), the 
olumns of U are the left singular ve
tors,and the 
olumns of V are the right singular ve
tors. We prove that the one-sided J-orthogonalJa
obi method applied to the matrix G from the right 
omputes the hyperboli
 singular values�i with the a

ura
y given by (5).For the symmetri
 inde�nite eigenvalue problem Hx = �x, we analyze the following two-stepalgorithm originally proposed by Veseli�
 [31℄:� in the �rst step H is de
omposed by the symmetri
 inde�nite fa
torization [24℄ as H =GJGT where J is a diagonal matrix with Jii 2 f�1; 1g;� in the se
ond step one-sided J-orthogonal Ja
obi method is applied from the right to Gin order to 
ompute the hyperboli
 singular value de
omposition (7).Note that (7), H = GJGT and V TJV = J imply H = U�2JUT . Hen
e, �i = �2i Jii are theeigenvalues, and the 
olumns of U are the 
orresponding eigenve
tors of H . For this algorithmwe prove that it 
omputes the eigenvalues �i with the a

ura
y essentially given by (3), whereA is obtained from H = DAD, where D = diag( H 1=2ii ) su
h that Aii = 1, and H = pH2 isthe positive de�nite polar fa
tor of H .Sin
e we 
onsider problems whi
h involve the sign matrix J , our results generalize the 
or-responding results from [9, 18, 10, 6℄, where J = I , to larger 
lasses of problems.For the 
omputed hyperboli
 singular ve
tors we prove relative norm-wise error bounds.Roughly speaking, these bounds are proportional to the 
ondition of the s
aled matrix B andinversely proportional to relative gaps between singular values. Similarly, for the 
omputedeigenve
tors we prove relative norm-wise error bounds whi
h are proportional to the 
onditionof the s
aled matrix A and inversely proportional to relative gap between eigenvalues. Thesebounds are also proper generalization of the 
orresponding results from [9, 18, 10, 6℄.The results of this paper are partially 
ontained in [23℄. Let us brie
y outline the majordi�eren
es. In [23℄, the one-sided J-orthogonal Ja
obi method was analyzed only to the extent4



ne
essary for its use in the eigenvalue 
omputations. Here we also dis
uss additional detailswhen this method is used as the HSVD solver. In parti
ular, in Theorem 3 we give error boundsfor the 
omputed right hyperboli
 singular ve
tors (matrix V from (7)). These bounds werenot derived in [23℄, due to la
k of the adequate perturbation bounds. Further, the proof of theerror bound for the 
omputed eigenve
tors in [23℄ was based on the perturbation bound from[32, Th. 2.48℄. The proof of the eigenve
tor bound from our Theorem 5 is, on the other hand,based on the perturbation bound from [29, Th. 6℄. This is a better approa
h, sin
e here theeigenvalues that 
orrespond to the observed invariant subspa
e need not be adja
ent. Also, forthe symmetri
 inde�nite fa
torization (see x3), instead of the error bound from [23, x4℄, we usethe sharper error bound from [24℄.The paper is organized as follows. In x2 we des
ribe the hyperboli
 singular value de
om-position. In x2.1 we state the existing relative perturbation results. In x2.2 we des
ribe theone-sided J-orthogonal Ja
obi method, and in x2.3 we analyze one step of the method. In x2.4we plug the error bounds from x2.3 into the perturbation bounds of x2.1 to obtain the overallerror bounds for the method. In x2.5 we give results of numeri
al experiments.Se
tion x3 deals with the symmetri
 eigenvalue problem. We �rst des
ribe the above two-step algorithm in more details, and state the existing error analysis. In x3.1 we state the existingrelative perturbation results for the symmetri
 eigenvalue problem. In x3.2 we give overall errorbounds for the two-step algorithm. Finally, in x3.3 we give results of numeri
al experiments.2 Hyperboli
 singular value de
ompositionIn this se
tion we 
onsider the HSVD (7) of the matrix pair (G; J). From now on, we assume thatG is a real matrix with full-
olumn rank. Sin
e V TJV = J implies V �1 = JV TJ , the HSVD mayalso be written as G = U�JV TJ . Similarly to the 
lassi
al singular value de
omposition (whenJ = I), the HSVD is 
losely related to two eigenvalue problems. Matrix U is the eigenve
tormatrix of the symmetri
 inde�nite non-singular eigenvalue problemH = GJGT = U�J�TUT ; (8)the eigenvalues of H being �i = �2i Jii, i = 1; : : : ; n, and �i = 0, i = n + 1; : : : ; m. Furthermore,matrix V �1 is the eigenve
tor matrix of the hyperboli
 eigenvalue problem GTGx = �Jx [25℄,GTG = V �T�T�V �1; V �TJV �1 = J;the hyperboli
 eigenvalues being �i = �2i , i = 1; : : : ; n. Also, U and V are related byU�;1:n = GV diag(��1i ); (9)where U�;1:n denotes the matrix of the �rst n 
olumns of U .The HSVD is a natural way to �nd the eigenvalues of a di�eren
e of two outer produ
tsH = G1GT1 �G2GT2 :This is done by writing H in the produ
t formH = GJGT ; G = [G1 G2 ℄ ; J = diag(I;�I);and then solving the problem (8) via the HSVD (7) (see [19℄, [33℄).As already mentioned, one of the major appli
ations of the HSVD is its use in the highlya

urate algorithm for solving the 
lassi
al symmetri
 eigenvalue problem (see [31, 23℄), as wedes
ribe in x3. 5



2.1 Relative perturbation boundsThe relative perturbation bounds for the HSVD have been proved in [32, 25℄. As alreadymentioned, we 
onsider G = BD s
aled from the right as in (6). Let (G + ÆG; J) be theperturbed pair, where ÆG = ÆBD:We set � = kÆBByk2; �F = kÆBBykF : (10)Obviously, if kÆBk2 or kÆBkF are known, whi
h will be the 
ase in our subsequent error analysis,then � � kÆBk2�min(B) ; �F � kÆBkF�min(B) :In parti
ular, for the element-wise perturbation of G of the formjÆGj � "jGj;whi
h typi
ally appears when the matrix is being stored in 
omputer memory, we have� � " k jBj k2�min(B) � " pn�min(B) ; �F � " pn�min(B) :A

ording to [32, Th. 3.3℄, if ÆG is su
h that kÆGxk2 � �kGxk2 for all ve
tors x and some� < 1, then the singular values of the pairs (G; J) and (G + ÆG; J), �i and e�i, respe
tively,satisfy the inequalities 1� � � e�i�i � 1 + �: (11)Here we assume that �i and e�i are in the in
reasing order. Sin
ekÆGxk2 = kÆBDxk2 = kÆBByBDxk2 � kÆBByk2kGxk2;(11) holds with � de�ned by (10), as well.Perturbation bounds for left and right singular ve
tors are given in terms of relative variantsof the well-known sin� theorems [5℄. Let U and eU be two subspa
es of the same dimension.The sines of the 
anoni
al angles between the subspa
es U and eU are the diagonal entries of thematrix sin�(U ; eU) whi
h is de�ned as follows [28, Cor. I.5.4℄: let U? and eU form orthonormalbasis for U? and eU , respe
tively, where U? is the orthogonal 
omplement of U , and let QSW �be a singular value de
omposition of U�? eU . Then sin�(U ; eU) = S.In order to state the bounds, we introdu
e the following notation: let the HSVD of the pair(G; J) be written as G = h U1 U2 U0 i 24�1 �20 0 35h V1 V2 i�1 ; (12)where U1 is m � k matrix, U2 is m � (n � k) matrix, and the rest of the matri
es have the
orresponding dimensions. Similarly, leteG = G+ ÆG = h eU1 eU2 eU0 i24 e�1 e�20 0 35h eV1 eV2 i�1 :6



Here we assume that �i and e�i are in the same order (not ne
essarily in
reasing or de
reasing).More pre
isely, �i denotes the k-th largest hyperboli
 singular value of the pair (G; J), and e�idenotes the k-th largest hyperboli
 singular value of the perturbed pair ( eG; J). Similarly to theeigenve
tor and singular ve
tor bounds whi
h are used in [3, 9, 6℄, the bounds whi
h we use alsodepend on a relative gap between the singular values from e�1 and those from �2. We use therelative gap whi
h is de�ned byrg(e�1;�2) = min1�p�kk+1�q�n je�pJpp � �qJqq j2maxfe�p; �qg ; (13)Noti
e that the relative gap 
ontains diagonal elements of the sign matrix J . This, for example,implies that the hyperboli
 singular values whi
h 
orrespond to diagonal elements of J of di�erentsigns are always well separated (the relative gap is in that 
ase greater than 1/2).We are now ready to state the perturbation bounds for singular subspa
es. Let U1 and eU1be the subspa
es spanned by the 
olumns of U1 and eU1, respe
tively. A

ording to [26, Th. 3℄,if � < 1, then k sin�(U1; eU1)kF � 2 �F1� � � 1rg(e�1;�2) : (14)Further, let V1 and eV1 be the subspa
es spanned by the 
olumns of V1 and eV1, respe
tively.A

ording to [26, Th. 4℄ (see also [25, Th. 4℄), if �; �F < 1=3, thenk sin�(V1; eV1)kF � kV k22  12 +r1 + 14 2!  rg(e�1;�2) ; (15)where  = 3 �Fp1� 3 � :We 
an further simplify the above bound as follows: a

ording to [27, Th. 3℄, kV k22 is boundedby kV k22 � min� q�(��G�G�);where the minimum is over all matri
es whi
h 
ommute with J . Thus, by taking � = D�1, wehave kV k22 � q�(D�1G�GD�1) = q�(B�B) = �(B): (16)By 
omparing the bound (14) with the bounds from [9, Th. 2.16, Cor. 2.17℄ and [17, Th. 4.3℄,we see that the left (unitary) singular ve
tors in the HSVD behave as well as the left singularve
tors in the 
lassi
al SVD. Namely, all bounds essentially depend on ÆB, �min(B) and therelative gap. On the other hand, the bound (15) for the right hyperboli
 singular ve
tors hasan additional fa
tor kV k22 over the 
orresponding bounds from [9, Th. 2.16, Cor. 2.17℄ and [17,Th. 4.3℄. However, when applying (15) to the 
lassi
al SVD with J = I this term vanishes sin
eV is unitary. Sin
e V is J-orthogonal, we have kV k22 = �(V ). This additional fa
tor is notunusual, sin
e the spe
tral 
ondition number of the non-unitary eigenve
tors appears naturallyin various other matrix perturbation bounds.2.2 One-sided J-orthogonal Ja
obi methodThe one-sided or impli
it J-orthogonal Ja
obi method, originally proposed by Veseli�
 [31℄, 
on-sists of an iterative appli
ation of the one-sided transformationGk+1 = GkJk ; (17)7



where G � G0 and Jk is a J-orthogonal Ja
obi-type plane rotation. Let A(i;j) denote the 2� 2pivot submatrix of any square matrix A. The matrix Jk is equal to the identity matrix ex
eptfor the (i; j) 2� 2 submatrix J(i;j)k obtained on the interse
tion of rows and 
olumns i and j. Itis de�ned by J(i;j)k = 8>>>>>><>>>>>>: " 
h shsh 
h # ; for Jii = �Jjj ;" 
s sn�sn 
s # ; for Jii = Jjj :The pair (i; j) is the pivot pair. The J-orthogonality of the matrix Jk implies that 
h =
osh ; sh = sinh ; 
s = 
os' and sn = sin' for some  and ', respe
tively. These two typesof rotations are 
alled the hyperboli
 and the orthogonal rotation, respe
tively. The parameter 'or  is 
hosen to annihilate the (i; j)-element of the Gram matrix Hk = GTkGk. In other words,the transformation (17) makes the i-th and j-th 
olumns of Gk+1 orthogonal. More pre
isely,let H(i;j)k = " a 

 b #be the (i; j) pivot submatrix of Hk. Thentan 2'k = 2
b� a; ��4 � 'k � �4 ;or tanh 2 k = � 2
a+ b :In exa
t arithmeti
, the sequen
e (17) is 
losely related to the two-sided J-orthogonal Ja
obimethod for the hyperboli
 eigenvalue problem Hx = �Jx, where H = GTG. Namely, in thesequen
e H0 = H; Hk+1 = JTk HkJk; (18)the matrix Hk+1 obtains zeros at the positions (i; j) and (j; i). The sequen
e (18) 
onvergestowards a diagonal matrix � = diag(�i) [31℄, and this 
onvergen
e is quadrati
 [13℄.One di�eren
e between orthogonal and hyperboli
 rotations is that Tra
e (Hk+1) = Tra
e (Hk)after orthogonal, and Tra
e (Hk+1) < Tra
e (Hk) after hyperboli
 rotation. Using this tra
e re-du
tion argument, Veseli�
 [31℄ proved that the hyperboli
 tangent tends to zero as the sequen
eHk 
onverges. The se
ond di�eren
e is that the 
ondition of the rotation matrix Jk is in theorthogonal 
ase one, while in the hyperboli
 
ase it 
an be large. Noti
e that tanh k is boundedas follows: set Hk = GTkGk and de�ne the s
aled matrix Ak by (4). Thenj tanh kj � q�(A(i;j)k )� 1q�(A(i;j)k ) + 1 :This, in turn, implies that in the hyperboli
 
ase�(J(i;j)k ) � q�(A(i;j)k ):The 
onvergen
e of the sequen
e (18) towards a diagonal matrix implies that the sequen
e(17) approa
hes the set of matri
es with orthogonal 
olumns. Assume that we terminate the8



sequen
e (18) afterM steps, when the �nal matrix HM is suÆ
iently diagonal a

ording to some
hosen stopping 
riterion. Then the 
olumns of GM are suÆ
iently orthogonal, and the HSVDof the starting pair (G; J) is approximated as follows (
.f. (9)):�i � q(HM)ii = k(GM)�ik2; i = 1; : : :n;V � J0J1 � � �JM�1;U�;1:n � GV diag(��1i ) = GM diag(��1i ):The 
hoi
e of pivot pair (i; j) in the k-th step 
an be made a

ording to various pivotingstrategies. Here we use the 
ommonly used row-
y
li
 strategy [14, x8.4.4℄, [20, x9.4.2℄:(1; 2); (1; 3); : : : ; (1; n); (2; 3); � � � ; (2; n); (3; 4); � � � ; (n� 1; n):We now present our algorithm:Algorithm 1 Impli
it J-orthogonal Ja
obi method for the pair (G; J). Toleran
e tol is a userde�ned stopping 
riterion. V is initially the identity matrix.repeatfor i = 1 to n � 1for j = i+ 1 to n/* 
ompute bH = " a 

 b #, the (i; j) submatrix of GTG */a =Pmk=1G2kib =Pmk=1G2kj
 =Pmk=1Gki �Gkj/* if 
 = 0, the step is skipped */if 
 = 0 then go to the next step/* 
ompute the parameter hyp: hyp = 1 for the orthogonal, andhyp = �1 for the hyperboli
 rotation, respe
tively */hyp = Jii � Jjj/* 
ompute the J�orthogonal Ja
obi rotation whi
h diagonalizes bH */� = hyp � (b� hyp � a)=(2
)t = sign(�)=(j�j+p�2 + hyp)h = p1 + hyp � t2
h = 1=hsh = t=hsh1 = �hyp � sh/* update 
olumns i and j of G */for k = 1 to mtmp = GkiGki = 
h � tmp+ sh1 �GkjGkj = sh � tmp+ 
h �Gkjendfor/* update 
olumns i and j of V */for k = 1 to ntmp = VkiVki = 
h � tmp+ sh1 � VkjVkj = sh � tmp + 
h � Vkj 9



endforendforendforuntil 
onvergen
e (all j
j=pab � tol)/* the 
omputed hyperboli
 singular values are �i = (Pmk=1G2ki)1=2 *//* the 
orresponding 
omputed left singular ve
tors are the normalized 
olumnsof the �nal G */Noti
e that if G is square [9, 10, 18℄, the one-sided method 
an be applied from the righteither to G or GT , sin
e for J = I the matri
es GTG and GGT have the same eigenvalues andsimply related eigenve
tors. For J 6= I , however, only appli
ation to G from the right or to GTfrom the left makes sense.Algorithm 1 gives only the simplest version of the method, in order to make the subsequenterror analysis 
learer. In pra
ti
e, however, we frequently use several enhan
ements whi
h redu
ethe operation 
ount:� keeping and updating the diagonal of the Gram matrix in a separate ve
tor,� fast rotations,� fast self-s
aling rotations.Updating the diagonal elements of the Gram matrix in a separate ve
tor makes the 
omputationof parameters a and b unne
essary, thus saving 4m operations in ea
h step. Using fast rotationsof the form J(i;j)k = " 1 �� 1 #saves another 2m multipli
ations in updating G and 2n multipli
ations in updating V . Fastself-s
aling or dynami
ally s
aling rotations, originally introdu
ed in [1℄, are used in order toavoid possible under
ows when using fast rotations.The algorithms whi
h use the above enhan
ements are des
ribed in detail and analyzed in[23, x3.3, x3.4℄. The error bounds for the solutions obtained by these algorithms di�er only in
onstants from the bounds whi
h we derive for Algorithm 1 in subsequent se
tions.2.3 Error analysisIn this se
tion we give error analysis of one step of Algorithm 1. We use the standard model ofthe �nite pre
ision 
oating-point arithmeti
. The 
oating-point result fl(�) of the operation �is given by [34℄ fl(x� y) = (x� y)(1 + "�)fl(px) = px(1 + "p)where � represents any of the four basi
 arithmeti
 operations, '+', '�', '�' or '�'. Here "� ("p)depends on x, y and � (on x), but we always have j"�j; j"pj � ", where " � 1 is the ma
hinepre
ision.Numeri
ally subs
ripted "'s (like "1, "2, et
.) will denote independent quantities bounded inabsolute value by ". All other sub- or supers
ripted "'s will be de�ned in the proof.Theorem 1 Let the matrix G0 be obtained from the matrix G by applying one step of Algorithm1 in 
oating-point arithmeti
 with pre
ision ". Then the following diagram 
ommutes:10



G+ ÆGG G0? -
oatingJa
obi�����exa
trotationThe top arrow indi
ates that G0 is obtained from G by applying one J-orthogonal Ja
obi rotationin 
oating-point arithmeti
. The diagonal arrow indi
ates that G0 is obtained from G + ÆGby applying one J-orthogonal plane rotation in exa
t arithmeti
. Thus, the pairs (G0; J) and(G + ÆG; J) have identi
al hyperboli
 singular values and simply related singular ve
tors. ÆGis bounded as follows: let G = BD be s
aled a

ording to (6), and write ÆG = ÆBD. Leta =Pk G2ki, b =Pk G2kj and 
 =Pk GkiGkj. Noti
e that Dii = pa and Djj = pb. Further, letba = fl(Pk G2ki), bb = fl(Pk G2kj) and b
 = fl(Pk GkiGkj) be the 
omputed values of a, b and 
,respe
tively. Let bA(i;j) = " 1 b
=pbabbb
=pbabb 1 # ;and let b� = q�( bA(i;j)). If bA(i;j) is positive de�nite and maxfb�2; m; 10g "� 0:01, thenkÆBk2 � kÆBkF � C ";where 1 C = 8>><>>: 13 in the orthogonal 
ase;b�2 + 11 b� + 27 in the hyperboli
 
ase for maxfba;bbg=minfba;bbg < 2;85 in the hyperboli
 
ase for maxfba;bbg=minfba;bbg � 2Proof. The orthogonal 
ase was analyzed in several works. The values of C obtained in theseworks are the following: in [9, Th. 4.1℄ C = 72, in [23, Th. 3.3.3℄ C = 26, and in [18, Th. 4.2℄C = 13, the last proof also being the simplest.We 
ontinue with the proof of the hyperboli
 
ase.If b
 = 0, then, a

ording to Algorithm 1, nothing is done in this step, and the theorem holdstrivially.From now on we assume that b
 6= 0. Also, we assume without loss of generality that ba � bb(the proof for the 
ase ba < bb is analogous). Let�� = �ba+ bb2b
 ; �t = sign (��)j��j+q��2 � 1 : (19)By the positive de�niteness of the matrix bA(i;j), simple arithmeti
 shows thatj��j � b�2 + 1b�2 � 1 > 1; (20)j�tj � b� � 1b� + 1 < 1: (21)1Noti
e that C is de�ned through the quantity b�, whi
h is de�ned by the 
omputed quantities ba, bb and b
. Thisis 
onvenient sin
e these quantities are readily available during the 
omputation.11



Indeed, sin
e ba+ bb � 2pbabb, we haveb�2 + 1b�2 � 1 = pbabb+jb
jpbabb�jb
j + 1pbabb+jb
jpbabb�jb
j � 1 = pbabbjb
j � ba+ bb2jb
j = j��j;whi
h proves (20). Inserting (20) into (19) gives (21).Let bt be the 
omputed value of �t. Letf
h = 1=q1� bt2; fsh = bt=q1� bt2;de�ne the exa
t rotation whi
h takes G + ÆG to G0. More pre
isely, in the sequel G0 will be
omputed by using the error analysis, and ÆG will be 
omputed by using G0 and the abovede�nition of f
h and fsh. Later we shall need the obvious inequalitiesfsh2 � jfshjf
h � f
h2 = 11� bt2 : (22)Let 

h and 
sh denote the 
omputed quantities f
h and fsh, respe
tively, that is

h = fl0� 1fl(qfl(1� bt2) )1A ; 
sh = fl0� btf l(qfl(1� bt2) )1A : (23)Noti
e an important fa
t that we 
an start our analysis from bt, instead of from the exa
t valuet. This is due to the fa
t that we are analyzing one-sided method { the di�eren
e between bt andt, as the proof of this theorem shows, does not a�e
t the a

ura
y of the method.Suppose that we 
an write (23) as
sh = (1 + "sh)fsh; 

h = (1 + "
h)f
h: (24)Then G0ki = fl(

h �Gki + 
sh �Gkj)= [(1 + "1)

hGki + (1 + "2)
shGkj ℄(1 + "3)= (1 + "1)(1 + "3)(1 + "
h)f
hGki + (1 + "2)(1 + "3)(1 + "sh)fshGkj= f
hGki + fshGkj + Eki;where Eki 
ontains all "-terms, and, similarly,G0kj = fl(
sh �Gki +

h �Gkj) = fshGki +f
hGkj +Ekj :The 
olumns E�i and E�j are bounded bykE�ik2 � j"01jf
h kG�ik2 + j"02j jfshj kG�jk2;kE�jk2 � j"03j jfshj kG�ik2 + j"04jf
h kG�jk2:If j"shj; j"
hj � (0:5 b�+ 4)", whi
h will be justi�ed later, herej"01j; j"04j � j"
hj+ 2:02"; j"02j; j"03j � j"shj+ 2:02": (25)12



For example, sin
e the assumption of the theorem impliesb� " = pb�2"2 � p0:01 " � p0:01 � 0:001 < 0:0032; (26)we havej"01j � j"1 + "3 + "
h + "1"3 + "1"
h + "3"
h + "1"3"
hj� 2"+ j"
hj+ 0:001"+ 2(0:5 � 0:0032+ 4 � 0:001)"+ 0:001 � (0:5 � 0:0032+ 4 � 0:001)"� j"
hj+ 2:02":Thus, h G0�i G0�j i = h G�i G�j i " f
h fshfsh f
h #+ h E�i E�j i=  h G�i G�j i+ h E�i E�j i " f
h �fsh�fsh f
h #! " f
h fshfsh f
h #= �h G�i G�j i+ h ÆG�i ÆG�j i� " f
h fshfsh f
h # ;where kÆG�ik2 � f
h kE�ik2 + jfshj kE�jk2� (j"01jf
h2 + j"03jfsh2) kG�ik2 + (j"02j+ j"04j)f
h jfshj kG�jk2� �j"01jf
h2 + j"03jfsh2 + (j"02j+ j"04j)f
h jfshjsba �pa; (27)and kÆG�jk2 � jfshj kE�ik2 + f
h kE�jk2� (j"04jf
h2 + j"02jfsh2) kG�jk2 + (j"01j+ j"03j)f
h jfshj kG�ik2� �j"04jf
h2 + j"02jfsh2 + (j"01j+ j"03j)f
h jfshjrab �pb: (28)Noti
e that, sin
e pa = Dii = kG�ik2 and pb = Djj = kG�jk2, dividing (27) and (28) by paand pb gives bounds for kÆB�ik2 and kÆB�jk2, respe
tively.In order to bound the above inequalities we have to 
onsider two 
ases, depending whetherpa=b in (28) is bounded away from in�nity or not. More pre
isely, we shall 
onsider 
asesba=bb < 2 and ba=bb � 2, respe
tively. In ea
h 
ase we will 
ompute bounds for j"0ij, f
h2, fsh2,f
h jfshj, pb=a and pa=b, and insert those bounds into (27) and (28).Case 1. Let ba=bb < 2. In order to bound f
h2, fsh2, f
h jfshj in terms of b�, we must bound bt interms of �t. From (19) and the assumption 10 " � 0:01, it follows thatb� = fl(��) = fl �ba+ bb2b
 ! = (1 + "�)��; j"�j � 3:005 ":Further, fl(b�2 � 1) = [(1 + "5)b�2 � 1℄(1+ "6)= (1 + "5)(1 + "6)(1 + "�)2��2 � (1 + "6)= (1 + "s)(��2 � 1):13



Solving the last equality for "s, taking absolute value, and using the assumption 10 " � 0:01,gives j"sj � "+ 8:04 ��2"��2 � 1 � 9:04 ��2��2 � 1 ":We 
ontinue with the error analysis: solving the last equality infl(qb�2 � 1 ) = (1 + "7)q(1 + "s)(��2 � 1) = (1 + "u)q��2 � 1;for "u, taking absolute value, and using the assumption on ", givesj"uj = j(1 + "7)p1 + "s � 1j � (1 + ")q1 + j"sj � 1� (1 + ")s1 + j"sj+ j"sj24 � 1 = (1 + ")�1 + j"sj2 �� 1� "+ j"sj2 (1 + ") � "+ 9:042 ��2 "��2 � 1 1:001 � 5:53 ��2��2 � 1 ":Further, fl(jb�j+qb�2 � 1 ) = [(1 + "�)j��j+ (1 + "u)q��2 � 1 ℄(1 + "8) (29)= (1 + "v)(j��j+q��2 � 1)where j"v j � j("� + "8 + "�"8)j��j+ ("8 + "u + "8"u)q��2 � 1jj��j+q��2 � 1� 4:02 j��jj��j+q��2 � 1 " + ("+ 1:001 j"uj) q��2 � 1j��j+q��2 � 1� 4:02 "+ 6:54 j��jq��2 � 1":Sin
e the right hand side is the de
reasing fun
tion for j��j > 1, by using (20), we havej��jq��2 � 1 � b�2 + 12 b� � 0:5 b�+ 0:5;and j"vj � 4:02 "+ 6:54 (0:5b� + 0:5) " � 10:56 b� ":Further, bt = fl0� sign (b�)jb�j+qb�2 � 11A = sign (��)(1 + "v)(j��j+q��2 � 1)(1 + "9)= (1 + "t)�t; (30)14



where, by using (26), j"tj � j"9j+ j"vj1� j"vj � 11:56 b� "1� 10:56 � 0:0032 � 12 b� ":Using this, (21), (26), the assumption maxfb�2; 10g" � 0:01, and b� > 1, we have11� bt2 = 11� �t2(1 + "t)2� 11� �b��1b�+1�2 (1 + "t)2� (b�+ 1)24 b�� b� (24 b�2"+ 48 b� "+ 24 "+ 122 b�3"2 + 2 � 122 b�2"2 + 122 b�"2)� (b�+ 1)23:574 b� � 0:28 �b�+ 2 + 1b��� 0:28 b�+ 0:84: (31)The required bounds for f
h2, fsh2 and f
h jfshj terms in (27) and (28) follow from this and (22).Now we have to bound "sh and "
h from (24) and insert those bounds into (25). Sin
e 
shand 

h are de�ned in terms of bt (
.f. (23)), we start the analysis from there. By using (31), wehave fl(1� bt2) = [1� (1 + "10) bt2℄(1 + "11) = (1 + "w)(1� bt2);where j"wj � 2:01 "1� bt2 � (0:563 b� + 1:689) ":This, in turn, impliesbh = fl(q1� bt2) = (1 + "12)q(1 + "w)(1� bt2) = (1 + "h)q1� bt2;where j"hj � j"12j+ j"wj2 + j"12j j"wj2 � (0:282 b�+ 1:847) ":Therefore, 

h = fl 1p1� bt2! = 1(1 + "h)p1� bt2 (1 + "13) = (1 + "
h)f
h;where j"
hj � j"13j+ j"hj1� j"hj � (0:29 b�+ 2:86) ":The same estimate holds for j"shj sin
e fl(bt) = bt,j"shj � (0:29 b�+ 2:86) ":The above bounds for j"shj and j"
hj justify, in turn, the assumption made in deriving (25).Inserting these bounds into (25) givesj"0ij � (0:29 b� + 5) "; i = 1; 2; 3; 4: (32)These inequalities bound the "0i terms in (27) and (28).15



To 
omplete the proof, we need to bound the pb=a term in (27) and the pa=b term in (28).Systemati
 appli
ation of (19) and the assumption m" � 0:01 implies (see, for example, the
lassi
al error analysis of the s
alar produ
t in [14, x 2.4℄):ba = a(1 + "a); bb = b(1 + "b); j"aj; j"bj � 1:01m": (33)This implies ba � bbba � 1 + 1:01m"1� 1:01m" � bbba � 1 + 1:01 � 0:011� 1:01 � 0:01 � 1:03 bbba; (34)and, similarly, ab � babb � 1 + 1:01m"1� 1:01m" � 1:03 babb : (35)From (34) and the assumption ba � bb, we haves ba < 1:02: (36)By inserting this, (32), (22) and (31) into (27), we havekÆG�ik2 � C1pa "; kÆB�ik2 � C1 "; (37)where C1 = (2 + 2 � 1:02)(0:29b�+ 5)(0:28 b�+ 0:84) � 0:33 b�2 + 6:65 b�+ 16:97:Similarly, from (35) and the assumption ba=bb < 2, we haverab < p1:03 � 2 � 1:44:By inserting this, (32), (22) and (31) into (28), we havekÆG�jk2 � C2pb "; kÆB�jk2 � C2 ";where C2 = (2 + 2 � 1:44)(0:29b�+ 5)(0:28 b�+ 0:84):By 
omparing this with (37), we see that C2 � 1:21C1, whi
h �nally giveskÆBk2 � kÆBkF � qC21 + C22 " � p1 + 1:212C1 " � (0:52 b�2 + 10:5 b�+ 26:7) ";as desired.Case 2. Let ba=bb � 2. This 
ase is easier to analyze sin
e �� and �t from (19) are bounded awayfrom the respe
tive worst-
ase bounds (20) and (21). However, in this 
ase there is no upperbound for pa=b in (28). Instead, we use the identity f
h jfshj = f
h2jbtj, whi
h transforms (28) tokÆG�jk2 � �j"04jf
h2 + j"02jfsh2 + (j"01j+ j"03j)f
h2 jbtjrab �pb; (38)and bound the term jbtjpa=b.We �rst 
ompute the bounds for f
h and jfshj. Using (19), positive de�niteness of the matrixbA(i;j), and the assumption ba=bb � 2, we havej��j � ba+ bb2pbabb = 12�sbabb +sbbba � � 12�p2 + 1p2 � � 1:06:16



In the last inequality we have used the fa
t that x1=2 + x�1=2 is a 
ontinuous fun
tion withminimum at x = 1.Further, "� , "s and "u are estimated as in Case 1, while for "v holds (
.f. (29))j"vj � 4:02 "+ 6:54 � 1:06p1:062� 1 " � 24 ":Using this, (30), and the assumption 10 " � 0:01, we havejbtj � 1 + 0:001(1� 24 � 0:001)(1:06+p1:062 � 1) � 0:73:Thus, f
h � 1:47; jfshj � 1:07: (39)Now we 
ompute the bounds for "sh and "
h, and insert them into (25). Similarly as in Case1, we have fl(1� bt2) = (1 + "w)(1� bt2); j"wj � 2:01 "1� 0:732 � 4:31 ";fl(q1� bt2) = (1 + "h)q1� bt2; j"hj � 3:16 ";

h = (1 + "
h)f
h; j"
hj � 4:18 ";
sh = (1 + "sh)fsh; j"shj � 4:18 ":The last two bounds and b� � 1 justify the assumptions made in deriving (25). Inserting thesebounds into (25) gives j"0ij � 6:2 "; i = 1; 2; 3; 4: (40)Using this, (39), (34) and bb=ba � 1=2 in the relation (27), one obtainskÆG�ik2 � 34:5pa "; kÆB�ik2 � 34:5 ": (41)Further, similarly to (34), the relations (33) also implybbba � ba � 1 + 1:01m"1� 1:01m" � 1:03 ba:Using this, (30) and the positive de�niteness of the matrix bA(i;j), we havejbtj � 1 + "(1� j"vj)j��j = 1:03 2jb
jba+ bb � 2:06pbabbba= 2:06sbbba � 2:06p1:03s ba � 2:1sba:Therefore, in (38) we will have jbtjrab � 2:1:Inserting this, (40) and (39) into (38), we obtainkÆG�jk2 � 77pb "; kÆB�jk2 � 77 ":Finally, from this and (41), we havekÆBk2 � kÆBkF � 85 ";and the theorem is proved. 17



2.4 Overall error boundsThe overall error bounds for the HSVD 
omputed by Algorithm 1 are obtained by plugging theone-step error analysis of Theorem 1 into the perturbation bounds of Se
tion 2.1.The proof requires the following lemma due to Veseli�
:Lemma 1 Let BTB = I +E; kEk2 = � < 1;where B is any real matrix with full 
olumn rank. Then there exists a matrix Q su
h thatQTQ = I and kB �Qk2 � �.Proof. We make the polar de
omposition B = QP where QTQ = I and P is Hermitianpositive de�nite matrix. Sin
e QQTB = B, we have P 2 = I +E, or (P + I)(P � I) = E. ThuskP � Ik2 � �=(1 +p1� �) � �;so that kB �Qk2 = kQP �Qk2 = kP � Ik2;and the lemma is proved.The error in the 
omputed hyperboli
 singular values is bounded as follows.Theorem 2 Let Gk, 0 � k � M , be the sequen
e of matri
es 
omputed by Algorithm 1 fromthe starting pair (G; J). Here G0 � G. Assume that Algorithm 1 
onverges, and that (GM ; J)is the �nal pair whi
h satis�es the stopping 
riterion. For 0 � k �M let Gk = BkDk be s
aleda

ording to (6). Let �i be the i-th singular value of the pair (G0; J), and let �0i = fl(kGM;�ik2)be the i-th 
omputed singular value. Assume that the assumptions of Theorem 1 are satis�ed inea
h step of Algorithm 1, and let Ck denote the 
onstant C from Theorem 1 in the k-th step. If,additionally, maxfn � tol;mn "g � 0:01, then1� � � �0i�i � 1 + �;where� = "M�1Yk=0 �1 + Ck�min(Bk)�# (1 + 1:05n � tol + 1:05mn")(1+ (0:51m+ 1:01) ")� 1;provided � < 1.Proof. Let �M;i be the hyperboli
 singular values of the �nal pair (GM ; J). Sin
e�0i�i = �M;i�i � kGM;�ik2�M;i � �0ikGM;�ik2 ; (42)we shall 
ompute the bound for � in three steps.A

ording to Theorem 1, for every 0 � k �M � 1 we haveGk+1 = (Gk + ÆGk) eJk ; (43)where ÆGk = ÆBkDk; kÆBkk2 � Ck ":18



Here eJk is the exa
t rotation from the 
ommutative diagram of Theorem 1 in the k-th step.Further, for every 0 � k �M � 1 we 
an writeGk+1 = (G+ ÆG(k)) eJ0 � eJ1 � � � eJk; (44)that is, we interpret Gk+1 as being obtained by a sequen
e of exa
t transformations appliedto a perturbed starting matrix G. The proof is by indu
tion on k. For k = 0 we simplyset ÆG(0) = ÆG0. Now suppose that (44) holds for some k � 1. By (43) and the indu
tionassumption we have Gk+1 = (Gk + ÆGk) eJk= [(G+ ÆG(k�1)) eJ0 � � � eJk�1 + ÆGk℄ eJk= (G+ ÆG(k)) eJ0 � � � eJk;where ÆG(k) = ÆG(k�1) + ÆGk( eJ0 � � � eJk�1)�1: (45)Set ÆBk = ÆGkD�1k ; ÆB(k) = ÆG(k)D�1;where D = D0. Then for every 0 � k �M � 1kÆB(k)Byk2 � kYl=0�1 + Cl�min(Bl) "�� 1: (46)The proof is by indu
tion on k. For k = 0 the statement follows from Theorem 1 sin
ekÆB(0)Byk2 = kÆB0By0k2 � kÆB0k2�min(B0) � C0�min(B0) ":Now suppose that (46) holds for some k � 1. Writing (45) for k + 1 and post-multiplying it byD�1By gives ÆB(k+1)By = ÆB(k)By+ ÆGk+1( eJ0 � � � eJk)�1D�1By= ÆB(k)By+ ÆBk+1Byk+1Bk+1Dk+1( eJ0 � � � eJk)�1D�1By= ÆB(k)By+ ÆBk+1Byk+1Gk+1( eJ0 � � � eJk)�1D�1By= ÆB(k)By+ ÆBk+1Byk+1(G+ ÆG(k))D�1By= ÆB(k)By+ ÆBk+1Byk+1(BBy + ÆB(k)By):Taking norms and using Theorem 1 giveskÆB(k+1)Byk2 � kÆB(k)Byk2 + Ck+1"�min(Bk+1)(1 + kÆB(k)Byk2):Finally, inserting the indu
tion assumption and rearranging 
ompletes the proof of (46).By using (46) for k =M � 1, and setting ÆG � ÆG(M�1) and ÆB = ÆGD�1, we haveGM = (G+ ÆG) eJ0 � � � eJM�1; (47)where �M � M�1Yk=0 �1 + Ck�min(Bk) "�� 1 � kÆBByk2: (48)19



Then, a

ording to (11) and (10), we have1� �M � �M;i�i � 1 + �M : (49)We have, therefore, proved the �rst part of the expression for �.Now we have to a

ount for two more fa
ts:� the 
olumns of GM are not exa
tly orthogonal; instead GM numeri
ally satis�es the stop-ping 
riterion,� �nal singular values �0i are numeri
ally 
omputed norms of the 
olumns of GM .First noti
e that GM = BMDM ; DM;ii = kGM;�ik2:Thus, BTMBM = I +E; Eii = 0; Eij = Pk GM;kiGM;kjkGM;�ik2kGM;�jk2 ; i 6= j: (50)For the sake of simpli
ity we set2a = kGM;�ik22; b = kGM;�jk22; 
 =Xk GM;kiGM;kj :The 
lassi
al error analysis of the s
alar produ
t (see, [14, x 2.4℄) implies (33) andjfl(
)� 
j � 1:01m"Xk jGM;kij jGM;kjj � 1:01m"pa b:Sin
e GM numeri
ally satis�es the stopping 
riterion, by this and (33) we havefl� j
jpa b� = j
+ (fl(
)� 
)j(1 + "1)pa (1 + "a) b (1+ "b)(1 + "2)(1 + "3) � tol:Therefore, for i 6= j we havejEij j = j
jpa b � (1 + ")p(1 + 1:01m")2(1 + ")(1� ") tol + j(fl(
)� 
jpa � b� 1:02 tol+ 1:01m":Here we have used the assumption maxfm; 10g � ". Thus,kEk2 � 1:02n tol+ 1:01nm":From this, (50) and Lemma 1, there exits an orthonormal matrix �B su
h that�B = BM + Æ �B; kÆ �Bk2 � 1:02n tol+ 1:01nm":Set �G = �BDM . Sin
e the 
olumns of �G are orthogonal, the hyperboli
 singular values of thepair ( �G; J) are ��i = DM;ii = kGM;�ik2. Thus, (11) implies1� �� � kGM;�ik2�M;i � 1 + ��; (51)2These a, b and 
 are di�erent than the ones from Theorem 1.20



where �� � kÆ �Bk2�min(BM) � kÆ �Bk21� kÆ �Bk2 � 1:05n tol+ 1:04nm":In the last inequality we have used the assumption maxfn � tol;mn "g � 0:01. This 
ompletesthe proof of the se
ond part of the bound for �.Finally, we have to a

ount for the di�eren
e between kGM;�ik2 and �0i = fl(kGM;�ik2). Wehave �0i = fl(kGM;�ik2) = (1 + "4)qkGM;�ik22(1 + "a) = (1 + "0) kGM;�ik2;where j"aj � 1:01m" as in (33), and, 
onsequently, j"0j � (0:51m+ 1:01) ". Therefore,1� (0:51m+ 1:01) " � �0ikGM;�ik2 � 1 + (0:51m+ 1:01) ":The theorem follows by 
ombining this, (51) and (49) with (42).We have two remarks. First, noti
e that the �rst order approximation for � reads� = "M�1Xk=0 Ck�min(Bk) + 1:05n � tol + 1:05mn"+ (0:51m+ 1:01) "+O("2); (52)whi
h is the form that was used in [9℄. Se
ond, in Theorem 1 both kÆBk2 and kÆBkF arebounded by C ". By repeating the part of the proof of Theorem 2 between (43) and (48) forFrobenius norm, we easily see that (48) holds for the Frobenius norm, as well, that is�M � kÆBBykF : (53)We need this result to prove our singular ve
tor bounds.The errors in the singular ve
tors are bounded as follows.Theorem 3 Assume Algorithm 1 
onverges, and that (GM ; J) is the �nal pair whi
h satis�esthe stopping 
riterion. Let G = U�V �1 and GM = U 0�0(V 0)�1 be the HSVDs of the pairs (G; J)and (GM ; J), respe
tively, partitioned a

ording to (12). Let �i and �0i be the diagonal entriesof � and �0, respe
tively. Here �i and �0i may be in any, but same, order. Let U1 and U 01 be thesubspa
es spanned by the 
olumns of U1 and U 01, respe
tively, and let V1 and V 01 be the subspa
esspanned by the 
olumns of V1 and V 01, respe
tively. For 0 � k � M let Gk = BkDk be s
aleda

ording to (6), and let Ck denote the 
onstant C from Theorem 1 in the k-th step. Finally,let 3 � = M�1Yk=0 �1 + Ck�min(Bk) "�� 1;  = 3 �p1� 3 � ;and let rg(�01;�2) be de�ned a

ording to (13). Then,k sin�(U1;U 01)kF � 2 �1� � � 1rg(�01;�2) ; (54)k sin�(V1;V 01)kF � kV k22  12 +r1 + 14 2!  rg(�01;�2) : (55)3Noti
e that � = �M , where �M is de�ned in (48). 21



Proof. The �rst bound follows by inserting (47), (48) and (53) into (14), and the se
ondbound follows by inserting (47), (48) and (53) into (15).Let us give some remarks 
on
erning the pra
ti
al appli
ation of the above theorems. The-orem 3 is in
omplete in the sense that we ignore the fa
t that the bounds hold for the exa
tsingular ve
tors of the �nal pair (GM ; J), and not for the a
tually 
omputed ones. More pre-
isely, in (54) we ignore the fa
t that the 
omputed left singular ve
tors are the normalized
olumns of the �nal matrix (GM ; J). In (55) we ignore the round-o� errors whi
h o

ur in theupdating the 
olumns of V in Algorithm 1, as well as the errors whi
h are due to the fa
t thatthese updates are performed with slightly perturbed rotation matri
es. It is possible to in
ludethese details, but they are te
hni
ally very demanding. We de
ided not to do so sin
e the boundsof Theorem 3 show well the essential behavior of the errors in the 
omputed singular ve
tors,and in
luding these details would greatly 
ompli
ate the exposition.Another important issue are the fa
tors 1=�min(Bm) whi
h appear in both theorems. Clearly,Bm 
hanges from step to step, and so does this fa
tor. However, as Algorithm 1 
onverges,1=�min(Bm) ! 1. Also, there is strong numeri
al eviden
e in previous works [9, 10, 23℄ andin our numeri
al experiments that this fa
tor does not grow mu
h during the 
omputation.The theoreti
al understanding of this phenomenon is weaker. Some (partial) theoreti
al results
an be found in [9, 23℄. In [23, x3.2.2℄, an algorithm was derived with whi
h upper bound for1=�min(Bm) 
an be eÆ
iently monitored.From the above 
omments, and the fa
t that the 
onstants in Theorems 1 and 2 
ome from
onsidering worst 
ases, we 
on
lude that the error in the 
omputed hyperboli
 singular valuesshould be bounded by j�0i � �ij�i � " 1�min(B) f�(m;n); (56)where f�(m;n) is a fa
tor whi
h moderately grows with dimensions.In numeri
al experiments we fo
us our attention to the individual singular ve
tors. Let uibe the left exa
t singular ve
tor of �i, and let u0i = ui + Æui be the 
orresponding left 
omputedsingular ve
tor. Similarly as above, from (54) we expe
t the error in the 
omputed left singularve
tors to be bounded by kÆuik2 � " 1�min(B) � 1rg(�0i;�02) fu(m;n); (57)where fu(m;n) is a fa
tor whi
h moderately grows with dimensions. Noti
e that this is just thebound (56) divided by the 
orresponding relative gap. Also, sin
e the exa
t singular values �i arenot available, here we use the relative gap whi
h is de�ned by using only the 
omputed singularvalues. We 
an bound the errors introdu
ed in the relative gap in this manner by Theorem 2.However, this is unne
essary sin
e the bound (57) depi
ts well the a
tual error (see Table 1).Similarly, if vi and v0i = vi + Ævi are the exa
t and the 
omputed right singular ve
tors of �i,respe
tively, by (55) we expe
t that the error is bounded bykÆvik2 � " kV 0k22 1�min(B) � 1rg(�0i;�02) fv(m;n); (58)where fv(m;n) is a fa
tor whi
h moderately grows with dimensions. Here V 0 is the 
omputedright singular ve
tor matrix, whi
h is readily available upon 
ompletion of Algorithm 1.22



2.5 Numeri
al experimentsWe performed series of experiments on randomly generated test pairs (G; J). For ea
h test pairwe �rst 
omputed the HSVD by Algorithm 1 in double pre
ision and assumed that to be theexa
t solution. Then we solved the same problem by the single pre
ision version of Algorithm1, and veri�ed that the expe
ted error bounds (56), (57) and (58) are satis�ed. Our programsare written in Fortran, 
ompiled by GNU g77 Fortran 
ompiler, and exe
uted on a PentiumIII 866 Linux ma
hine. In generating test pairs we have used the LAPACK [2℄ random numbergenerator dlaran.f.We �rst des
ribe the pro
edure used in generating test pairs, and the sets of parametersused. Then we show the results of our experiments. Besides results 
on
erning the a

ura
y, wealso show the number of 
y
les whi
h were exe
uted until the 
onvergen
e.For given dimensions m and n, we �rst generate random diagonal matrix D0 whose diagonalentries' logarithm is uniformly distributed in the interval [��=2; �=2℄. We then form matrixG0 = Q1D0Q2 where Q1 and Q2 are random orthonormal matri
es of dimensions m�n and n�n,respe
tively. Further, we generate random diagonal matrixD1 whose diagonal entries' logarithmis uniformly distributed in the interval [�
=2; 
=2℄. We then form the matrix G = G0D1. Thus,�(B) � 10�, where G = BD is s
aled a

ording to (6). Finally, we generate random n � ndiagonal matrix J with elements in the set f�1; 1g.We tested matri
es for m = 50; 100; 200; 400, and for ea
h m we used n = m=2; m, whi
hgives eight 
lasses of matri
es. Further, we 
hose � = 1; 2; 3; 4 and 
 = 2; 4; 6; 8; 10; 12; 14. Thisgives a total of 224 
lasses of matri
es. In ea
h 
lass we 
onstru
ted 60 test pairs, whi
h totalsto 13440 experiments.The results are as follows. Here �i, ui and vi denote the singular values and ve
tors 
omputedin double pre
ision, and �0i, u0i and v0i denote the singular values and ve
tors 
omputed insingle pre
ision For ea
h experiment we 
omputed the maximal fa
tors f�(n), fu(n) and fv(n)a

ording to (56), (57) and (58), respe
tively, that isf�(n) = maxi=1;:::;n j�0i � �ij�i = "�min(B) ;fu(n) = maxi=1;:::;n kÆuik2=� "�min(B) � 1rg(�0i;�02)�;fv(n) = maxi=1;:::;n kÆvik2=�kV 0k22 "�min(B) � 1rg(�0i;�02)�The behavior of f�(n), fu(n) and fv(n) is shown in Table 1.n 50 100 200 400mean f�(n) 1.82 3.30 6.23 12.2max f�(n) 14.9 26.0 53.3 104.6mean fu(n) 3.67 7.92 16.3 32.6max fu(n) 26.4 59.6 139.4 333.3mean fv(n) 0.656 1.35 3.00 6.61max fv(n) 5.36 8.48 18.1 35.8Table 1: Error fa
tors in the 
omputed HSVD in 13440 experimentsWe see that the expe
tations given in (56), (57) and (58) are fully 
on�rmed by numeri
alexperiments. Thus, we may 
on
lude that it is indeed the s
aled matrix B, and not the starting23



matrix G whi
h governs the a

ura
y of the 
omputed HSVD.Further, in ea
h experiment we monitored the number of 
y
les exe
uted before 
onvergen
e,and the spe
tral 
ondition of the right singular ve
tor matrix, �(V 0) = kV 0k22. The results arein Table 2 n 50 100 200 400mean(
y
les) 8 9 10 11max(
y
les) 13 15 16 18mean�(V 0) 4.27 4.44 4.46 4.45max �(V 0) 48.4 29.4 23.5 23.3Table 2: Number of 
y
les and �(V 0) in 13440 experiments3 Symmetri
 eigenvalue de
ompositionWe 
onsider the 
lassi
al symmetri
 eigenvalue problemHx = �x; x 6= 0; (59)where H is a n�n non-singular matrix. The eigenvalue de
omposition of H will be denoted byH = U�UT ;where � is diagonal matrix whose diagonal entries are the eigenvalues of H , and U is orthonor-mal matrix whose 
olumns are the 
orresponding eigenve
tors. As already mentioned in theintrodu
tion, we use the following algorithm:Algorithm 2 Eigenvalue de
omposition of a non-singular symmetri
 matrix H.1. Fa
torize H as PTHP = G1JGT1 ; (60)where P is a permutation matrix, G1 is non-singular lower blo
k triangular matrix with1� 1 and 2� 2 diagonal blo
ks, and J is diagonal matrix of signs, Jii 2 f�1; 1g.2. Compute the hyperboli
 singular values �i and the left singular ve
tor matrix U of the pair(G; J), where G = PG1, by using Algorithm 1.The eigenvalues of H are �i = �2i Jii, and the 
olumns of U are the 
orresponding eigenve
tors.The aim of this se
tion is to show that Algorithm 2 
omputes the eigenvalue de
omposition(59) with high relative a

ura
y. We �rst state the error bounds for the �rst step of the algorithm,originally proved in [23, 24℄. In x3.1 we then state the relative perturbation results for theeigenvalues and eigenve
tors of the problem (59). In x3.2 we give overall error bounds forthe eigensolution 
omputed by Algorithm 2, and in x3.3 we des
ribe results of our numeri
alexperiments whi
h 
on�rm the theoreti
al predi
tions.Detailed des
ription and the formal algorithm, as well as the error analysis of the symmetri
inde�nite fa
torization (60) are given in [24, x2 and x3℄. This fa
torization is, in fa
t, a mod-i�
ation of the well-known Bun
h{Parlett fa
torization [4℄. The variant of the Bun
h{Parlett24



fa
torization with partial pivoting is implemented in the LAPACK routine dsytf2.f [2℄. Thefa
torization (60) uses the original unequilibrated diagonal pivoting from [4℄, whi
h de�nes thepermutation matrix P .The error bound for the fa
torization (59) was proved in [24, Th. 3.1℄: the fa
tors G = PG1and J 
omputed in 
oating-point arithmeti
 with pre
ision " are the exa
t fa
tors of someperturbed matrix H + ÆH , that is,GJGT = H + ÆH; jÆH j � 91n(jH j+ jGjjGjT)"+ O("2): (61)3.1 Relative perturbation boundsWe shall use the relative perturbation bounds for the non-singular symmetri
 eigenvalue problemfrom [32, 29℄. The bounds are stated in terms of the spe
tral absolute value of H , H = pH2.Noti
e that H is, in fa
t, the positive de�nite polar fa
tor of H . Let the s
aled matrix bA bede�ned by H = bD bA bD;where bD is some non-singular diagonal matrix. Further, let H + ÆH be the perturbed matrix,where ÆH = bDÆA bD:A

ording to [32, Th. 2.1℄, if ÆH is su
h that jxT ÆHxj � �xT H x for all ve
tors x and some� < 1, then the eigenvalues of the matri
es H and H + ÆH , �i and e�i, respe
tively, satisfy theinequalities 1� � � e�i�i � 1 + �: (62)Sin
e jxT ÆHxj = jxT bDT ÆA bDxj = kxT bDT ÆA bDxk2 � kxT bDTk2kÆAk2k bDxk2� kÆAk2�min( bA) xT H x;if ÆA is known, then (62) holds with � de�ned by� = kÆAk2�min( bA) : (63)Further, if H = GJGT and G = U�V �1 is the HSVD of the pair (G; J), then � = j�j1=2,U = GV j�j�1=2, and GV V TGT = U j�j1=2j�j1=2UT = U j�jUT = H :Thus, we may rewrite (63) as � = kÆAk2�2min( bD�1GV ) : (64)This is 
onvenient way to apply the bound (62), sin
e an approximation of the matrix GV isreadily available upon 
ompletion of Algorithm 2 { this is the �nal matrix GM of Algorithm 1and Theorem 2. Usual 
hoi
e for the matrix bD is su
h that the matrix bD�1G has unit rows.25



In order to state the eigenve
tor bound, let us partition the eigenvalue de
omposition H =U�UT as H = h U1 U2 i ��1 �2 � " UT1UT2 # ; (65)where U1 is n � k matrix, U2 is n � (n � k) matrix, and the rest of the matri
es have the
orresponding dimensions. Let the perturbed matrix eH = H + ÆH = eU e� eUT be partitioneda

ordingly. Similarly as in x2.1, we de�ne the relative gap byrg1(e�1;�2) = min1�p�kk+1�q�n je�p � �qjqje�p�qj : (66)Let U1 and eU1 be the subspa
es spanned by the 
olumns of U1 and eU1, respe
tively. By using[29, Th. 6℄, one 
an easily prove thatk sin�(U1; eU1)kF � kV k22q1� 4�kV k22 � 
Fp1� 
 � 1rg1(e�1;�2) ; (67)where 
 = kÆAk2�2min( bD�1G) ; 
F = kÆAkF�2min( bD�1G) ; � = 
F2� 3 
 :3.2 Overall error boundsThe error bounds for the eigensolution 
omputed by Algorithm 2 are obtained by adding theerror bounds for the �rst and the se
ond step. More pre
isely, the error bounds are obtained byinserting the error bound (61) into perturbation bounds (62), (64) and (67), and adding the errorbounds for the HSVD from x2.4. In x2.5 we have seen that the a
tual errors in 
omputed HSVDbehave like the �rst order approximations of the bounds whi
h were proved in x2.4. Having thisin mind, for the sake of simpli
ity, here we shall state and prove only �rst order bounds.The error in 
omputed eigenvalues is bounded as follows:Theorem 4 Let �0i be the eigenvalues of the matrix H 
omputed by Algorithm 2 in 
oating-pointarithmeti
 with pre
ision ", and let �i be the exa
t eigenvalues of H in the same order. Let (G; J)be the output of the �rst step of Algorithm 2, and let bD be the positive de�nite diagonal matrixsu
h that the matrix bB = bD�1G has unit rows. For 0 � k �M let Gk = BkDk be the sequen
eof matri
es generated by Algorithm 1, starting from G = G0, s
aled a

ording to (6). Assumethat the assumptions of Theorems 1 and 2 are satis�ed in ea
h step of Algorithm 1, and assume,additionally, that n " � 0:001. Let Ck denote the 
onstant C from Theorem 1 in the k-th step ofAlgorithm 1. Finally, let � be de�ned by (52). Then1� � � �0i�i � 1 + �;where � = 201n2 1�2min( bBV ) " + 2 � +O("2):Proof. Set bH = GJGT . Then bH = H + ÆH , where ÆH is bounded by (61). Further, byinserting jH j � jGJGT j+ jÆH j � jGj jGjT + jÆH j;26



into (61) we have jÆH j � 91n (jH j+ jGj jGjT) "+O("2)� 91n (jGj jGjT + jÆH j+ jGj jGjT) "+ O("2);or (1� 91n ")jÆH j � 182n jGj jGjT "+O("2):Dividing this inequality by 1� 91n " and using the assumption n " � 0:001 givesjÆH j � 201n jGj jGjT " +O("2):Set ÆA = bD�1ÆH bD�1. Then jÆAj � 201nj bBj j bBjT "+ O("2): (68)Inserting this into (62) and (64) gives1� b� � b�i�i � 1 + b�;where b�i are the eigenvalues of bH , andb� = k jÆAj k2�2min( bBV ) � 201n2 1�2min( bBV ) " +O("2): (69)We have thus proved the �rst part of �.Further, we have b�i = b�2i Jii, where b�i are the hyperboli
 singular values of the pair (G; J).Similarly, we 
an write �0i = �02i Jii. Sin
e �0ib�i = �02ib�2i ;squaring the bound of Theorem 2 gives1� 2 � + �2 � �0ib�i � 1 + 2 � + �2;where the �rst order approximation for � is given by (52). The theorem now follows by 
om-bining this with (69).The error in eigenve
tors is bounded as follows:Theorem 5 Let the assumptions of Theorems 4 and 3 hold. Let the eigenvalue de
ompositionsof the matri
es H = U�UT , bH = GJGT = bU b� bUT and H 0 = GMJGTM = U 0�0U 0T be partitioneda

ording to (65). Let U1 and U 01 be the subspa
es spanned by the 
olumns of U1 and U 01, respe
-tively. For 0 � k �M let Gk = BkDk be s
aled a

ording to (6), and let Ck denote the 
onstantC from Theorem 1 in the k-th step. Let � be de�ned as in Theorem 3, and let
 = 201n2 1�2min( bB) "+O("2); � = 
2� 3 
 :Let rg1(b�1;�2) and rg(�01; b�2) � rg(�01; b�2)be de�ned a

ording to (66) and (13), respe
tively.Then,k sin�(U1;U 01)kF � kV k22q1� 4�kV k22 � 
p1� 
 � 1rg1(b�1;�2) + 2 �1� � � 1rg(�01; b�2) +O("2):27



Proof. The theorem follows by inserting (68) into (67), and adding the bound (54).The remarks made in x2.4 after Theorem 3 hold for Theorems 4 and 5, as well. In parti
ular,the bound of Theorem 5 holds for the exa
t left singular ve
tors of the �nal pair (GM ; J), thatis, for the exa
t eigenve
tors of the matrix GMJGTM , and not for the a
tually 
omputed ones.Also, noti
e that for the matrix G = BD obtained by the �rst step of Algorithm 2, 1=�min(B)is bounded by a fun
tion of O(3:781n) irrespe
tive of G (see [24, Th. 6.1℄). In our experiments1=�min(B) was never too large, whi
h, together with the bound (16), implies that the quantities�2min( bBV ) and �2min( bB) from Theorems 4 and 5 do not di�er by mu
h.From the above dis
ussion we 
on
lude that the expe
ted error in the 
omputed eigenvaluesshould be bounded by j�0i � �ij�i � "� 1�2min( bD�1GM ) + 1�min(B)� f�(n); (70)where f�(n) is a fa
tor whi
h moderately grows with n. Here we have assumed that the matrixGM is suÆ
iently good approximation of the matrix GV .Further, let ui be the eigenve
tor of �i, and let u0i = ui+ Æui be the 
orresponding 
omputedeigenve
tor. Similarly as above, from Theorem 5 we 
on
lude that the error in the 
omputedleft eigenve
tors should be bounded bykÆuik2 � " 1�2min( bB) � 1rg1(�0i;�02) fu(n); (71)where fu(n) is a fa
tor whi
h moderately grows with n. In (71) we also ignored the fa
tor kV k22in the �rst term and the 
ontribution of the se
ond term of the bound of Theorem 5, whi
h isjusti�ed by the numeri
al experiments in the following se
tion (see Table 3).3.3 Numeri
al experimentsSimilarly as in x2.5, we performed series of experiments on randomly generated test matri
es H .For ea
h test matrix we �rst 
omputed the eigenvalue de
omposition by Algorithm 2 in doublepre
ision and assumed that to be the exa
t solution. Then we solved the same problem by thesingle pre
ision version of Algorithm 2, and veri�ed that the expe
ted error bounds (70) and(71) are satis�ed.Test matri
es were generated as follows. For given dimension n, we �rst generate randomdiagonal matrix D0 whose diagonal entries' logarithm is uniformly distributed in the interval[��=2; �=2℄. We then form matrix A0 = Q1D0JQT1 where Q1 is random orthonormal matrix andJ is random diagonal matrix with Jii 2 f�1; 1g. Further, we generate random diagonal matrixD1 whose diagonal entries' logarithm is uniformly distributed in the interval [�
=2; 
=2℄. Wethen form the matrix H = D1A0D1. Sin
e all matri
es are randomly generated, this pro
eduregenerates matrix H for whi
h usually �2( bB) � 10� and �(H) � 102
 . More pre
isely, additionalrow-s
aling of the fa
tor of A0 does not in
uen
e the 
ondition number of that fa
tor, and the
ondition number of H is primarily determined by �2(D1).We tested matri
es for n = 50; 100; 200; 400. Further, we 
hose � = 1; 2; 3; 4 and 
 =2; 4; 6; 8; 10; 12. This gives a total of 96 
lasses of matri
es. In ea
h 
lass we 
onstru
ted 100test pairs, whi
h totals to 9600 experiments.The results are as follows. Here �i and ui denote the eigenvalues and eigenve
tors 
omputedin double pre
ision, and �0i and u0i denote the eigenvalues and eigenve
tors 
omputed in single28



pre
ision For ea
h experiment we 
omputed the maximal fa
tors f�(n) and fu(n) a

ording to(70) and (71), respe
tively, that isf�(n) = maxi=1;:::;n j�0i � �ij�i =� "�2min( bBV ) + "�min(B)�;fu(n) = maxi=1;:::;n kÆuik2=� "�2min( bB) � 1rg1(�0i;�02)�:The behavior of f�(n) and fu(n) is shown in Table 3.n 50 100 200 400mean f�(n) 0.213 0.273 0.417 0.661max f�(n) 6.10 4.94 6.61 9.84mean fu(n) 0.0596 0.0320 0.0176 0.00981max fu(n) 0.587 0.297 0.113 0.0581Table 3: Error fa
tors in 9600 experimentsWe see that the expe
tations given in (70) and (71) are fully 
on�rmed by numeri
al exper-iments. Even more, fu(n) appears to be de
reasing with n. Thus, we may 
on
lude that it isindeed the s
aled matri
es, and not the starting matrix H whi
h governs the a

ura
y of the
omputed eigensolution.Further, in ea
h experiment we monitored the number of 
y
les exe
uted before 
onvergen
e,and the spe
tral 
ondition of the matrix V . The results are in Table 4.n 50 100 200 400mean(
y
les) 6 7 8 9max(
y
les) 8 10 11 12mean �(V ) 7.80 13.9 25.4 47.4max�(V ) 28.1 39.7 77.3 140.432Table 4: Number of 
y
les and �(V ) in 9600 experimentsFrom Table 4 we see that the 
onvergen
e of Algorithm 1 is faster on pairs (G; J) obtained bythe �rst step of Algorithm 2, than on the pairs generated in x2.5. This is due to the pivoting inthe symmetri
 inde�nite fa
torization (60), sin
e the 
olumns of obtained G have higher degreeof orthogonality. Namely, as noted by several resear
hers (see e.g. [31℄), the transition from thepair (GJGT ; I) to the pair (GTG; J) is essentially one step of Rutishauser's LR algorithm andusually 
arries some non-negligible diagonalization e�e
t.It is also possible to modify the algorithm in order to de
rease the number of 
y
les until
onvergen
e. Namely, the pair (G; J) 
an be transformed by appropriate permutation to thepair (G1; J1) with J1 = diag(Il;�In�l) and G1 = [G01 G002 ℄ su
h that the 
olumns of G01 and G001have de
reasing norms. However, this modi�
ation only slightly de
reases the number of 
y
lesuntil 
onvergen
e - the values in the �rst two rows of Table 4 are de
reased by one.We have also 
ompared Algorithm 2 with the 
lassi
al QR method as implemented in theLAPACK routine ssyev.f [2℄ and with the 
lassi
al two-sided Ja
obi method [22℄. In almostall experiments with large �(H), the QR and the Ja
obi method 
ompletely missed the tinyeigenvalues. This behavior is expe
ted sin
e the relative errors in the tiny eigenvalues 
omputed29



by both methods are bounded by "�(H) [14, 20, 34℄. In 
ases where �2( bB) � �(H) all threemethods performed equally well, as expe
ted. More details on 
omparison of Algorithm 2 withthe QR and Ja
obi method 
an be found in [9, 23℄.4 Con
lusionWe showed that the a

ura
y of the hyperboli
 singular value de
omposition of the pair (G; J),
omputed by the one-sided J-orthogonal Ja
obi method, depends on the spe
tral 
ondition ofthe s
aled matrix and not on the 
ondition of G. For matrix G whi
h is well s
aled from theright, the one-sided J-orthogonal Ja
obi method 
omputes the hyperboli
 singular values withhigh relative a

ura
y, and the left and right singular ve
tors with high normwise a

ura
y.For example, if the spe
tral 
ondition of the s
aled matrix is �(B) = 103, and we run the
omputation in single pre
ision a

ura
y with " = 2�23 � 10�8, then the 
omputed hyperboli
singular values will have 4 or 5 a

urate digits. Also, if the hyperboli
 singular values are wellseparated, that is, if there are no 
lusters of relatively 
lose singular values, then the norm errorin the 
omputed left and right singular ve
tors will be around 10�5.We also showed that the a

ura
y of the eigenvalue de
omposition of a symmetri
 inde�nitematrix H , 
omputed by the symmetri
 inde�nite fa
torization H = GJGT followed by theone-sided J-orthogonal Ja
obi method, depends on the spe
tral 
ondition of the s
aled spe
tralabsolute value matrix H , and not on the 
ondition of H . If H is well s
aled, or, evensimpler, if the matrix G is well s
aled from the left and from the right, this algorithm 
omputesthe eigenvalues with high relative a

ura
y, and the eigenve
tors with high normwise a

ura
y.For example, if the spe
tral 
ondition of the s
aled matrix is �( bA) = 103, or, equivalently,if �2( bB) = 103, where bB is the matrix G s
aled from the left, and we run the 
omputation insingle pre
ision a

ura
y, then the 
omputed eigenvalues will have 4 or 5 a

urate digits. Also, ifthe eigenvalues are well separated, that is, if there are no 
lusters of relatively 
lose eigenvalues,then the norm error in the 
omputed eigenve
tors will be around 10�5.Numeri
al experiments showed that the 
onstants in the error bounds are indeed moderatelygrowing fun
tions of the dimension. Also, the two-step method 
omputes the eigenvalue de
om-position with uniformly higher a

ura
y than the 
lassi
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