
ON SPECTRAL CONDITION OF J -HERMITIANOPERATORSKre�simir Veseli�c� and Ivan Slapni�caryAbstractThe spectral condition of a matrix H is the in�mum of the condition numbers �(Z) =kZkkZ�1k, taken over all Z such that Z�1HZ is diagonal. This number controls the sensitivityof the spectrum of H under perturbations. A matrix is called J-Hermitian if H� = JHJ forsome J = J� = J�1. When diagonalizing J-Hermitian matrices it is natural to look at J-unitary matrices Z, that is, those that satisfy Z�JZ = J . Our �rst result is: if there issuch J-unitary Z, then the in�mum above is taken on J-unitary Z, that is, the J unitarydiagonalization is the most stable of all. For the special case when J-Hermitian matrix hasde�nite spectrum, we give various upper bounds for the spectral condition, and show that all J-unitaries Z which diagonalize such matrix have the same condition number. Our estimates aregiven in the spectral norm and the Hilbert{Schmidt norm. Our results are, in fact, formulatedand proved in a general Hilbert space (with the notion of \diagonalization" appropriatelygeneralized) and are applicable even to unbounded operators. We apply our theory to theKlein{Gordon operator thus improving a previously known bound.1 Introduction and preliminariesLet X be a Hilbert space over the real or complex �eld � with the scalar product (x; y) linear inthe second variable.1 All operators in X will be linear, everywhere de�ned and bounded, if notspeci�ed otherwise. An operator in X is called non-singular, if it has an everywhere de�ned andbounded inverse. If X has a �nite dimension n then X will be automatically identi�ed with thestandard �n with (x; y) = x�y and linear operators in X will be identi�ed with matrices of ordern. An operator in J in X is called fundamental symmetry ifJ = J� = J�1holds. The operators P+ = (I + J)=2 ; P� = (I � J)=2are the corresponding fundamental projections. A principal subject of our considerations will bethe so-called J-Hermitian operators, characterized by the relationH� = JHJ:This just means that the operator G = JH (1.1)�Fernuniversit�at Hagen, Lehrgebiet Mathematische Physik, Postfach 940, D-58084 Hagen, Germany, e-mail:Kresimir.Veselic@FernUni-Hagen.de.yUniversity of Split, Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture, R.Bo�skovi�ca b.b, 21000 Split, Croatia, e-mail: Ivan.Slapnicar@fesb.hr. Part of this work was done while the authorwas visiting Fernuniversit�at Hagen. The author was also supported by the grant 037012 from the Croatian Ministryof Science and Technology.1This, together with other notational conventions and terminology are taken from [7].1



1 INTRODUCTION AND PRELIMINARIES 2is Hermitian. Another important class of operators closely related to the J-Hermitians are theJ-unitary operators2, de�ned by U�JU = J and UJU� = J:Obviously all J-unitaries form a multiplicative group, which is non-bounded for J inde�nite. WithH J-Hermitian and U J-unitary the similarityH 0 = U�1HUpreserves the J-hermiticity and this is the basis of the use of the J-unitarity in the spectral theory ofJ-Hermitian operators ([12, 6]) as well in numerical algorithms with such matrices ([18, 19, 20, 13]).Let �(H) = kHk kH�1k denote the condition number of a non-singular operator H . If J isinde�nite then the condition number of a J-unitary U , �(U) = kUk kU�1k can be arbitrarily high,in fact, we have �(U) = kUk kJU�Jk = kUk2:Note that for a J-unitary U the value �(U) equals 1, if and only if UJ = JU or, equivalently,if U is both unitary and J-unitary. In want of a better term we shall call such matrices andoperators jointly unitary. Similarly, we call a J-Hermitian commuting with J jointly Hermitian.Such operator is Hermitian in the ordinary sense.Suppose now that a matrix Z diagonalizes a J-Hermitian H , that is, H 0 = Z�1HZ is diagonal.In Numerical Linear Algebra this matrix is commonly called 'the matrix of eigenvectors' forH . Thenotion of 'diagonalization' can be given a natural meaning in an arbitrary, even in�nite dimensionalHilbert space: we just ask that Z�1HZ is Hermitian, and this is the way we state and prove ourtheorems below. Indeed, once we have obtained a Hermitian matrix Z�1HZ, it can further bediagonalized by a unitary similarity which does not change the condition number. >From thenumerical point of view we are interested in the spectral condition of a J-Hermitian H , de�ned byinf �(Z); (1.2)where the in�mum is taken over all non-singular matrices diagonalizing H . This number is knownto control the sensitivity of the spectrum of H under perturbations. Our article gives informationson this quantity. Our results, as well as the organization of the paper, can be summarized asfollows:� In Section 2 we �rst consider the important class of J-Hermitian operators H , namely thosewith \de�nite spectrum". Such operators are called strongly stable by Krein ([8]). We showthat all J-unitary U diagonalizing such an H have the same condition.� In Section 3 we compare J-unitaries which diagonalize a J-Hermitian H with other non-singulars that do the same. The answer is: J-unitaries are always the best. This remains soeven if we drop the condition of de�nite spectrum and consider all similarities reducing Hto a given block-diagonal form. Thus, in addition to preserving J-hermiticity, the J-unitarysimilarity is also the most stable one.� In Section 4 we give a bound for �(U) in the important special case where G = JH is itselfpositive de�nite. The bound reads�(U) � minp�(D�GD);where the minimum is taken over all non-singular D which commute with J . This resulthas applications in the perturbation and error analysis in the standard Hermitian eigen-value problem ([2, 18, 22, 13]) and it con�rms a conjecture, obtained by numerical evidence,acquired in [13]. This bound is attainable.2For � = R the terms J-symmetric, J-orthogonal, respectively, are more common.



2 OPERATORS WITH DEFINITE SPECTRUM 3� In Section 5 we consider another, somewhat larger subclass with de�nite spectrum, charac-terized by infkxk=1(j(x;Gx)j + j(x; Jx)j) > 0;(G from (1.1)) which is well-known to be equivalent to the existence of a real � such thatJ(H � �I) is positive de�nite. Such operators will be called J-de�nite. In addition, H ,or at least some part of it, is supposed to be trace class. We obtain an estimate for theHilbert-Schmidt distance of a diagonalizing U from a point from the (standard) unit sphere.� In Section 6 we apply our theory to the operators of the Klein-Gordon type studied in [15],[16], [17] and improve a bound, obtained in [16]. The unboundedness of the operator involvedis conveniently overcome by a simple cut-o� argument.A standard representation of the fundamental symmetry is given byJ = � I 00 �I � : (1.3)Here the diagonal blocks need not have the same dimension and one of them may be void. Othercommon forms of J are � 0 II 0 � or � 0 iI�iI 0 � ;where the respective identities have necessarily the same size. For the block form (1.3) a jointlyunitary looks like � U1 00 U2 � ;where U1 and U2 are unitary. Similarly, a jointly Hermitian looks like� H1 00 H2 � ;where H1 and H2 are Hermitian. Of course, a jointly Hermitian H can be diagonalized by a jointlyunitary U . There is no loss of generality in representing a general J in the form (1.3) and wewill often use it in our proofs. On the other hand, in applications - be it for �nite matrices ordi�erential operators - other forms of J may be more convenient.Acknowledgment. The authors express their thanks to I. Keglevi�c, Hagen and T. Azizov, Vorone�z for theircomments which lead to more elegant versions of some of our proofs.2 Operators with de�nite spectrumA J-Hermitian operator H is said to have a de�nite spectrum if its spectrum �(H) can be dividedinto two disjoint parts �+ and �� with �nite distance such that the corresponding Dunford spec-tral projections Q+ and Q� satisfy �(x; JQ�x) � 0. Krein ([8]) calls such operators stronglystable because the reality of their spectrum and their diagonalizability survive small J-Hermitianperturbations. Another characterization of these operators is the existence of a real polynomial psuch that Jp(H) is positive de�nite ([9], [10], [11]). Obviously, J-de�nite operators have de�nitespectrum and in this case we have �� < �+:Let H have de�nite spectrum and setK = Q+ �Q�: (2.4)Then K = f(H) where f(�) = � +1; around �+�1; around �� (2.5)We will call f the natural sign function of H . It is immediately seen that K is J-Hermitian andthat JK is positive de�nite.



2 OPERATORS WITH DEFINITE SPECTRUM 4Theorem 2.1 Let H be J-Hermitian with de�nite spectrum. Then there exists a unique U whichis simultaneously J-unitary and Hermitian positive de�nite and such thatH0 = U�1HU (2.6)is jointly Hermitian. Further, any J-unitary V for which H1 = V �1 HV is jointly Hermitian hasthe form V = UV0 ; V0;where V0 is jointly unitary. Also, �(V ) = �(U) = kKk;where K is given by (2.4).Proof. Set U = (JK)�1=2:Then it immediately followsU�JU = UJU = (JK)�1=2J(JK)�1=2 = (JK)�1=2J(KJ)1=2 = (JK)�1=2(JK)1=2J = J;that is, U is J-unitary. Thus, H0 is J-Hermitian, which means thatJKH = H�JK;(note that H and K commute) or, equivalentlyH0 = (JK)1=2H(JK)�1=2 = (JK)�1=2H�(KJ)1=2 = H�0 :Therefore, H0 is jointly Hermitian.Let now V be any J-unitary such thatH1 = V �1HVis jointly Hermitian. Then K1 = V �1KV is jointly Hermitian (note that K1 = f(H1)). Also,JK1 = JV �1KV = V �V ��JV �1KV = V �JKVis positive de�nite. This, together with(JK1)�1 = K1J = JK1implies K1 = J . Thus, V �1KV = J andU�1V J = U�1KV = U�1KUU�1V = JU�1V;hence V0 = U�1V is jointly unitary. The equalitieskV k = kUk = kKk1=2are then immediate.It remains to prove the uniqueness of U . This follows from a simple decomposition formula:any J-unitary U in the representation (1.3) can be decomposed asU = U0Y (W ) = Y (W 0)U0; (2.7)where � U+ 00 U� �



3 J-UNITARIES ARE THE BEST 5with U+ and U� unitary, Y (W ) = � pI +WW � WW � pI +W �W � :and W 0 = U+WU�� ;in particular, Y (W )�1 = Y (�W )). The proof is straightforward and uses just the block-wisewritten J-unitarity property (1.3) and the polar decomposition of U . Q.E.D.Remark 2.2 The theorem above remains valid, if H is merely J-Hermitian with an \abstractsign" operator K with the properties(i) JK is Hermitian and positive.(ii) K2 = I .(iii) K bicommutes with H .3 J-unitaries are the bestNow we would like to compare the conditions of all non-singular matrices Z that diagonalize orblock diagonalize a given J-Hermitian matrix H . Here, too, de�nite spectrum will be particularlysimple to handle. But even in the general case we show that as far as the condition is concerned,the J-unitaries are the best choice.Theorem 3.1 Let H be J-Hermitian with de�nite spectrum. Let Z be non-singular such thatH1 = Z�1HZ is Hermitian. Then �(Z) � �(U), where U is the J-unitary from (2.6).Proof. The operators H0 and H1 are selfadjoint and similar. Then, as it is well known, they areunitarily similar, that is, H1 = U�10 H0U0;where H0 is from (2.6) and U0 is unitary. NowH1 = U�10 H0U0 = Z�11 UH0U�1Z:By setting T = U�1ZU�10 we see that T (and also T �) commutes with H0 and also with J = f(H0),f from (2.5)3. Using this, the unitarity of U0 and the J-unitarity of U we obtain�(Z)2 = �(UT )2 = kT �U�UTk kT�1U�1U��T��k =k(TT �)1=2U�k2kT�1JU�JJUJT��k = kU(TT �)1=2k2k(TT �)�1=2U�k2� kU(TT �)1=2(TT �)�1=2U�k2 = kUU�k2= �(U)2: Q.E.D.We could pose the uniqueness question: if �(Z) = �(U) for some Z with Z�1HZ Hermitian andU from (2.6), what can be said about Z? This does not seem to have a simple answer. Anyhow,such Z need not be J-unitary as is shown by the following example. SetH = 0@ cosh 2x � sinh 2x 0sinh 2x � cosh 2x 00 0 �1 1A ;J = 0@ 1 �1 �1 1A :3This follows from the fact that H0 is jointly Hermitian with de�nite spectrum.



3 J-UNITARIES ARE THE BEST 6By H2 = I it follows that K = H and JH is positive de�nite. SetZ = 0@ 2 coshx 2 sinhx 02 sinhx 2 coshx 00 0 3 1A ;U = 0@ coshx sinhx 0sinhx coshx 00 0 1 1A :Then Z�1HZ = U�1HU = J;U is J-unitary, andkZk = max(3; 2e2jxj); kZ�1k = max(1=3; e2jxj=2); �(U) = kUk2 = e2jxj:Now, for 2e2jxj > 3 we have �(Z) = 2ejxj12ejxj = �(U)and Z is not J-unitary.The situation is better if we take the Hilbert-Schmidt normkZkHS = Tr(Z�Z)1=2:In this case, of course the dimension n of the space X has to be �nite. The corresponding condition�HS(Z) = kZkHSkZ�1kHS satis�es the inequality�HS(Z) � n;where the equality holds if and only if Z is proportional to a unitary.Theorem 3.2 Let H be J-Hermitian with de�nite spectrum. Let Z be non-singular such thatH1 = Z�1HZ is Hermitian. Then �HS(Z) � �HS(U), where U is the J-unitary from (2.6).Further, if the equality sign is attained, then Z is proportional to UV0, where U is from (2.6) andV0 is unitary.Proof. Taking Z1, T and U as in the proof of Theorem 3.1 we obtain4�HS(Z1)2 = kU(TT �)1=2k2HSk(TT �)�1=2Uk2HS :Let now V be a unitary matrix diagonalizing (TT �)1=2,V �1(TT �)1=2V = diag(�1; : : : ; �n): (3.1)Setting pi = [V �1U�UV ]ii and using the Cauchy-Schwartz inequality we obtain�HS(Z)2 =  Xi pi�i! Xi pi=�i! �Xi ppi�ippi=�i = (Xi pi)2= �Tr(V �1U�UV )�2 = [Tr(U�U)]2 = kUk4HS = �HS(U)2:Conversely, �HS(Z) = �HS(U) turns the inequality above into an equality. This means that thevectors [ppi�i] and [ppi=�i]are proportional, that is, �i = � for all i. Then (3.1) givesTT � = �2I;4Here, too, we could continue by � kUU�k2HS but this expression can be less than kUk4.



3 J-UNITARIES ARE THE BEST 7and Z1 = UT , Z = Z1U0 = UTU0 = �U T�U0;where V0 = T�U0 is unitary. Q.E.D.If we drop the condition of de�nite spectrum then a J-Hermitian need not be J-unitarilydiagonalizable or even reducible even in the �nite dimensional space. This is shown by the trivialexample H = � 1 1�1 �1 � ; J = � 1 00 �1 � :However, if a J-Hermitian H is reducible, that is, if Z�1HZ is, say, block-diagonal, then we canconsider all non-singular Z which do the same reduction and ask for their conditions. We give nowa precise de�nition of the reducibility which will be basic for our main theorem. We say that aJ-Hermitian H is reducible, if there exists a J-Hermitian decomposition of the identityQ1; : : : ; Qpsuch that all Qi commute with H . Note that Qi may or may not be Dunford spectral projections.In this case there exists a J-unitary U such thatPi = U�1QiU; i = 1; : : : ; p (3.2)commute with J (and are therefore jointly Hermitian)5. Obviously, if H is a �nite matrix, thenthe way from U�1HU to a really block diagonal matrix goes via another unitary similarity whichdoes not change the condition. This de�nition of the reducibility is obviously the most generalwhile still admitting J-unitary similarities. In the caseH = � 0 1�1 0 � ; J = � 1 00 �1 �there is no J-unitary reducibility, that is, H is not reducible according to our de�nition abovealthough H is normal and therefore unitarily diagonalizable. Our theory gives, of course, noresults on such cases.Theorem 3.3 Let Q1; : : : ; Qp be a J-Hermitian decomposition of the identity and let Z�1QiZ beHermitian for all i. Then there exists a J-unitary V such that V �1QiV is Hermitian for all i and�(V ) � �(Z):Proof. Take U and Pi from (3.2). Then there is a unitary U0 such that U�10 Z�1QiZU0 = Pi forall i. Setting Z1 = ZU0 we haveZ1PiZ�11 = UPiU�1; i = 1; : : : ; p;which means that T = U�1Z1 commutes with all Pi. We have�(Z) = �(Z1) = spr(U�UTT �) spr(J(TT �)�1JU�U);Until now the proof is quite similar to that of Theorem 3.1; the main di�erence is that here T neednot commute with J .Since JJTT � = TT � is positive de�nite the operator JTT � has de�nite spectrum. By Theorem2.1 there is a J-unitary V0 such that G0 = V �10 JTT �V05The proof of this fact for �nite matrices is straightforward, a proof in a general Hilbert space was provided byP. Jonas, Berlin (private communication).



4 J-POSITIVE CASE 8is jointly Hermitian and that V0 commutes with all Pi. The latter follows from the fact that JTT �commutes with all Pi. Then G = G0J = JG0 = V �0 TT �V0is jointly Hermitian and positive de�nite. Moreover,J(TT �)�1J = J(V �0 GV �10 )�1J = JV0G�1V �0 J = V ��0 GV �10 :Now �(Z) = spr(U�UV ��0 GV �10 ) spr(V �10 G�1V �10 U�U)= kUV ��0 G1=2k2kG�1=2V �10 U�k2� kUV ��0 V �10 U�k2 = kV k4 = �(V )2;where V = UV ��0 is J-unitary andV �1QiV = V �0 OiV ��0 ; i = 1; : : : ; p;since, as we know, V0 commutes with all Pi. Q.E.D.Theorem 3.4 Theorem 3.1 above remains true, if � is substituted by �HS (dimX = n <1).The proof just combines the ideas of the proofs of Theorems 3.1 and 3.3 and is omitted.4 J-positive caseIn this section we consider a very special case of de�nite spectrum namely that ofH = JGwith G positive de�nite. The eigenvalue problem for H is obviously equivalent to the one ofthe Hermitian matrix S = G1=2JG1=2. It is an amazing and non-trivial fact that the eigenvalueproblem for a given Hermitian matrix S has, in a sense, a more convenient perturbation and erroranalysis, if handled through H above with J from (1.3) (see [22, 13]).Theorem 4.1 Let H be such that G = JH is Hermitian and positive de�nite. Then any J-unitaryU with U�1HU jointly Hermitian satis�es�(U) � minp�(D�GD); (4.1)where the minimum is taken over all non-singular D which commute with J .Proof. We shall prove the bound (4.1) for �(U) in two stages: we shall �rst analyze the casewhen the bound is an equality, and then prove the bound itself. Our proof is modeled after theone for �nite matrices, given in [14]. The only di�erence are two steps, which are more technicalin an in�nite dimensional space. Represent J by (1.3); then any operator commuting with J isjust block diagonal.To prove our results we need the following lemma.Lemma 4.2 Let G = � I 		� I � (4.2)be positive de�nite, that is, k	k < 1. Then�(G) = min �(D�GD);where the minimum is taken over all non-singular D which commute with J .



4 J-POSITIVE CASE 9This lemma was proved in [4] (see also [3]) for �nite matrices. Our proof is modi�ed to accommodatein�nite dimensionality.Proof of Lemma 4.2. We �rst prove the identity�(G) = 1 + k	k1� k	k = spr(JG�1JG) = kJG�1JGk (4.3)Indeed, writing I +G0 we obviously haveJG0J = �G0 ; JGJ = I �G0;so �(G) lies symmetrically with respect to 1 with0 < min�(G) = 1� k	k < max�(G) = 1 + k	k < 2:Thus, �(G) = 1 + k	k1� k	k :Set � = �(	) = � I �		� 00 I �	�	 � :The following properties are immediately seen� � is Hermitian and non-singular;� � commutes with G and J ;� G�1 is given by G�1 = ��1JGJ = JGJ��1:Thus, JG�1JG = J��1JGJ2G = G��1Ghence JG�1JG is Hermitian and positive de�nite.As it is known (see e.g. [23]) a point � belongs to the spectrum of a Hermitian operator A, ifand only if there is a sequence of vectors zk not converging to zero, such thatAzk � �zk ! 0:Such zk is called a singular sequence. So take any singular sequence zk withGzk � �zk ! 0: (4.4)This is equivalent to JGJJzk � �Jzk ! 0:or, by JGJ = I �G0 = 2I �G, to G�1Jzk � Jzk2� � ! 0: (4.5)Using (4.4) and (4.5) for � = 1 + k	k we obtainJG�1JGzk � 1 + k	k1� k	kzk ! 0;that is, �(G) belongs to the spectrum of JG�1G. HencekJG�1JGk = spr(JG�1JG) � �(G):



4 J-POSITIVE CASE 10Conversely, since J is unitary we have kJG�1JGk � �(G)and (4.3) follows. Now, as in [4], for any non-singular D which commutes with J we have�(G) = spr(JG�1JG) = spr(D�1JG�1JGD) � kD�1JG�1JGDk= kJD�1JG�1D��JD�GDk � k(D�GD)�1k kD�GDk= �(D�GD): Q.E.D.The following lemma shows that the bound (4.1) becomes an equality for matrices of the form(4.2).Lemma 4.3 Let J and G be given by (1.3) and (4.2), respectively. Let U be J-unitary such thatU�GU is jointly Hermitian. Then�(U) =p�(G) =pmin�(D�GD); (4.6)where the minimum is taken over all non-singular D which commute with J .Proof of Lemma 4.3. The second equality in (4.6) follows from Lemma 4.2. We take V in theform V = V (T ) =MW =WM; (4.7)with M = � (I � TT �)�1=2 00 (I � T �T )�1=2 � and W = � I TT � I � ;where kTk < 1.6 The commutativity of the product in (4.7) follows from the identityT (I � T �T )�1=2 = (I � TT �)�1=2T;which, in turn, follows from a more general identityAf(BA) = f(AB)Afor any operator function f . This identity is often used in our proofs. The operator V is obviouslyJ-unitary, Hermitian and positive de�nite. The same is obviously the case for V 1=2, its positivede�nite square root. Also obvious is the relationV (T )�1 = V (�T ) = JV (T )J:Now take U =pV (�	)with 	 as in Lemma 4.2. Then U obviously commutes with G andS = U�GU = UGU = V G = � pI �		� 00 pI �	�	 � : (4.8)We have to determine the norm of U or, equivalently, that of V . First,kV k � kMkkWk = (1 + kTk) � 1p1� kTk2 =s1 + kTk1� kTk :6Obviously, Y (W ) may be identi�ed with V (T ) from (2.7) with W = T (I + T �T )�1=2.



4 J-POSITIVE CASE 11Further, V �1M =W�1 so11� kTk = kW�1k � kV �1kkMk = kV kkMk � kUk 1p1� kTk2 :Thus, kV k =s1 + kTk1� kTk ;and the statement follows from (4.3). Q.E.D.We now turn back to the proof of Theorem 4.1. For G positive de�nite and J as in (1.3) wemay write G = � G11 G12G�12 G22 � :By taking D0 =  G�1=211 00 G�1=222 ! :we have JD = DJ and Ĝ = D0GD0is of the form (4.2). Let Û be the J-unitary from Lemma 4.3, that is, Û is also Hermitian andpositive de�nite and Ŝ = ÛĜÛ = ĜÛ2is as in (4.8). Now, according to Theorem 2.1 there is a J-unitary U such thatU�GU = �is jointly Hermitian, that is, block-diagonal. SetZ = D�10 Û Ŝ�1=2:Obviously, Z�GZ = I and, thus, Z = U��1=2Q�;with Q unitary and Z�JZ = QJ��1Q�: (4.9)By �(U) = kUU�k we have �(U) = spr(ZQ�Q�Z�): (4.10)Inverting (4.9) gives Z�1JZ�� = QJ�Q� = Q�Q�QJQ�;which, inserted in (4.10), gives�(U) = spr(ZZ�1JZ��QJQ�Z�) = spr(QJQ�Z�JZ��):Furthermore, Z�JZ�� = Ŝ�1=2ÛD�10 JD0Û�1Ŝ1=2 = Û2J:Here we have used the following facts:� Û is J-unitary and Hermitian;� D0 and Ŝ commute with J ;� Ŝ and Û commute.The last fact is an immediate consequence of the construction of Ŝ and Û in Lemma 4.3. Altogetherwe have �(U) = spr(QJQ�Û2J) � kQJQ�Û2Jk � kÛ2k = kÛk2 = �(Û) =q�(Ĝ);where we have used Lemma 4.3 as well as the fact that both QJQ� and J are unitary. Q.E.D.



5 TRACE ESTIMATES 125 Trace estimatesIn the �nite dimensional case it is known ([20]) that the transformation (2.6) is trace reducing inthe sense that Tr(JH)�Tr(JH0) � 0, the equality taking place, if and only if H itself is alreadyHermitian. Moreover, this trace di�erence controls the corresponding transformation U . We provehere a corresponding result under milder conditions on H , namely, that H � H0 or, better still,only some parts of JH � JH0, be trace class.Theorem 5.1 Let H be J-de�nite, let U and H0 be as in Theorem 2.1 and f be the natural signfunction from (2.5). Then(i) P+(f(H)� J)P+ � 0 ; P�(f(H)� J)P� � 0;and the following are equivalent� any of the inequalities above becomes an equality� H is jointly Hermitian7;(ii) furthermore, the properties� U � I is Hilbert-Schmidt,� any of the four operators P�(H �H0)P�, P�(f(H)� J)P� is trace classare equivalent;(iii) in the latter case we havekU � Ik2HS � TrP+(H �H0)P+ �TrP�(H �H0)P�d ; (5.1)where d is the distance between �� and �+.Before starting the proof we note that (5.1) simpli�es, if H �H0 is of trace class (this is alwaystrue for �nite matrices); in this case we havekU � Ik2HS � Tr(JH � JH0)d ; (5.2)Proof. We use again the representation (1.3) withP+ = � I 00 0 � ; P� = � 0 00 I � :Since U is Hermitian and positive de�nite, in its representation (2.7) we have U0 = I andH = UH0U�1 = Y (W )H�10 Y (�W )with H0 = � �+ 00 �� � ;where �� is Hermitian with the spectrum ��. Now,H = Y (W )� �+ 00 �� �Y (�W ) (5.3)= � pI +WW ��+pI +WW � �W��W � �pI +WW ��+W +W��pI +W �WW �pI +WW ��+ � ��pI +W �WW � pI +W �W��pI +W �W �W ��+W � :7Here and in the following \�" is the standard sesquilinear form ordering of Hermitian operators. Note that theinvolved operators are, in fact, jointly Hermitian).



5 TRACE ESTIMATES 13Also, f(H0) = U�1f(H)U = Jand f(H) = Y (W )JY (�W ) = � I + 2WW � �� �I � 2W �W � :Here the diagonal blocks of f(H) � J are positive and negative, respectively, and they vanish, ifand only if W = 0. This proves (i). Furthermore, these blocks are of trace class if and only ifWW � (and then also W �W ) is trace class, that is, if W is a Hilbert-Schmidt operator. Moreover,this operator is positive and it vanishes if and only if H itself is jointly Hermitian. If W is HilbertSchmidt by writing p1 + a = 1+ a(p1 + a+ 1)�1 we havepI +WW ��+pI +WW � � �+ = WW �(pI +WW � + I)�1�+pI +WW � ++ �+WW �(pI +WW � + I)�1;which is certainly of trace class, and its trace equalsTr(�+WW �(pI +WW � + I)�1(pI +WW � + I)) = Tr(W ��+W ):Altogether TrP+(H �H0)P+ = Tr(W ��+W )�Tr(W�W �) �min�+Tr(W �W )�max�� Tr(WW �) = dkWk2HS(and similarly with P�). The estimate (5.1) now follows fromkY (W )� Ik2HS � 2kWk2HS;which is directly veri�ed. The only thing which remains to be proved is that the trace-class propertyof P�(H �H0)P� implies the same for WW � (or W �W ). We haveP+(H �H0)P+ = � S 00 0 � ;S = pI +WW ��+pI +WW � �W��W � � �+;and thus the trace class property of P+(H �H0)P+ is equivalent to the same for S. Without lossof generality we assume that ��� is positive de�nite. To get rid of matrix square roots we use atransformation introduced in [21]. We set� = (I +pI +WW �)�1W :Then W = 2(I � ���)�1�; k�k < 1;pI +WW � = (I + ���)(I � ���)�1;and hence 2����+ + 2�+��� � 4�������� = (I + ���)S(I + ���); (5.4)where the right hand side is again of trace class. We need the followingLemma 5.2 Let Z = BA+AB + C;be of trace class, A,B,C Hermitian, A,C positive and B positive de�nite. Then A and C are oftrace class also.



6 KLEIN-GORDON OPERATORS 14Proof. The equation BA+AB = Z � Cwith the unknown A has the unique solutionA = Z 10 e�Bt(Z � C)e�Btdt ;where the integral is absolutely convergent in the operator norm due to the positive de�nitenessof B. This may be written asA+ Z 10 e�BtCe�Btdt+ Z 10 e�BtZ+e�Btdt = Z 10 e�BtZ�e�Btdt ; (5.5)where Z� is the positive and negative part of Z, respectively. Both Z+ and Z� are again Hermitian,positive and of trace class. Here the right hand side is positive and of trace class since the functionunder the integral sign is obviously continuous and exponentially bounded in the trace norm. Sinceall terms on the left hand side of (5.5) are positive, we conclude that all of them and, in particular,A, must be of trace class. The same property for C is now obvious. Q.E.D.We apply the above lemma to the formula (5.4) and obtain the trace class property of ��� or,equivalently, of WW �. The case with P� is analogous. Q.E.D.This result is applicable to operators with discrete spectrum. In this case U�1HU has anorthonormal eigenbasis ek and fk = ek + (U � I)ek is an eigenbasis of H . Now, fk is more thanjust Riesz basis, it is 'quadratically close to orthogonal' in the sense that Pk kfk � ekk2 is �niteand bounded by (5.1) (such bases are considered in [5], Ch. VI).6 Klein-Gordon operatorsA Klein-Gordon operator is given formally asH = � �1=2V ��1=2 �� ��1=2V �1=2 � ;where V is symmetric and � is selfadjoint and positive de�nite (both V and � may be unbounded).We assume that D(V ) � D(�) and A = V ��1; kAk < 1: (6.1)Typically, the underlying space will be L2(Rn)2, �2 will be the selfadjoint realisation of 1�� andV will be a potential ([17]). The formal expression above is given a rigorous meaning as a productH = � �1=2 00 �1=2 �� A II A� �� �1=2 00 �1=2 �(this de�nition is equivalent with the pseudo-Friedrichs construction from [16]). Here every factorhas a bounded inverse and thusH�1 = � ��1=2 00 ��1=2 �� �A� II �A �� (I �AA�)�1 00 (I �A�A)�1 �� ��1=2 00 ��1=2 � :Setting J = � 0 II 0 � ; G = JH; (6.2)



6 KLEIN-GORDON OPERATORS 15the operator G, given formally asG = � � ��1=2V �1=2�1=2V ��1=2 � � ;is obviously selfadjoint and positive de�nite.8 Ignoring the unboundedness of the operators in-volved, according to Theorem 4.1 we would takeD = � ��1=2 00 ��1=2 � ;thus obtaining Ĝ = DGD = � I A�A I �with the condition number 1+kAk1�kAk . Thus, the condition number of a J-unitary U , with U�1HUjointly selfadjoint9 would be bounded as�(U) �s1 + kAk1� kAk =s1 + kV ��1k1� kV ��1k ; (6.3)thus improving the estimate �(U) � 11� kV ��1kfrom [16]. The improvement is particularly strong when the denominators above approach zero.10The plausibility of our argument comes from the fact that the key estimate (4.1) allows D'swith arbitrary norms. This suggests a rigorous proof via a regularization step. For any d > 0 weapproximate H byHd =  �1=2d Vd��1=2 �d�d ��1=2d V �d �1=2d ! =  �1=2d 00 �1=2d !� A II A� � �1=2d 00 �1=2d ! ;�d = fd(�) ; fd(t) = � t; t � d;d; t > d;Vd = V ��1�d:Now everything is bounded, our theory applies and the estimates above become rigorous (the factthat Vd is not symmetric makes no di�culty). The following facts are obvious� Hd, H�1d , Gd = JHd, G�1d are bounded and Gd is Hermitian and positive de�nite.� Vd��1d = V ��1.� H�1d ! H�1 ; d!1.� The J-unitary Ud making Hd jointly Hermitian, is bounded as�(Ud) = k signHdk �s1 + kAk1� kAk :8A formulation of the Klein-Gordon operator using J of the form (1.3) leads to more complicated expressions([15]). The underlying Hilbert space topology is not uniquely de�ned by the formal Klein-Gordon di�erentialequation and this may lead to di�erent predictions. Our present de�nition is based on the so-called number norm,which is natural for quantum mechanical interpretation ([17]).9In accordance with our current terminology jointly selfadjoint means selfadjoint and commuting with J.10The fact that the condition number may grow as the reciprocal of the square root of the distance to the'non-de�nite' operators was observed in [20].
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