
A Bound for the Condition of a Hyperbolic EigenvectorMatrixIvan Slapni�car� and Kre�simir Veseli�cyAbstractThe hyperbolic eigenvector matrix is a matrix X which simultaneously diagonalizesthe pair (H;J), where H is Hermitian positive de�nite and J = diag(�1) such thatX�HX = � and X�JX = J . We prove that the spectral condition of X, �(X),is bounded by �(X) � pmin �(D�HD), where the minimum is taken over all non-singular matrices D which commute with J . This bound is attainable and it canbe simply computed. Similar results hold for other signature matrices J , like in thediscretized Klein-Gordon equation.1 IntroductionWe are considering the hyperbolic eigenvalue problemHx = �Jx; (1)where H is a n � n Hermitian positive de�nite matrix, and J = diag(�1). There alwaysexists a matrix X such that X�HX = �; X�JX = J; (2)where � is diagonal positive de�nite matrix. Since H is positive de�nite, the pair (H; J) isregular by de�nition from [9, De�nition VI.1.2], so the existence of X follows from [9, The-orem VI.1.15] and [9, Corollary VI.1.19]. The matrix X is also called J-unitary. Obviously,the i-th eigenvalue of the problem (1) is given by�i = �iiJii;and the i-th column of X is the corresponding eigenvector. We call such eigenvectorshyperbolic, or J-unitary, contrary to the standard unitary eigenvectors of the problemHx =�x. The matrix X is also called a hyper-exchange matrix with respect to the signaturematrix J [5].The matrix X also appears in other linear algebra problems. For example, X is theeigenvector matrix of the matrix JH,X�1(JH)X = JX�J(JH)X = J�:�University of Split, Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture,R. Bo�skovi�ca b.b, 21000 Split, Croatia, e-mail: Ivan.Slapnicar@fesb.hr. Part of this work was done whilethe author was visiting Fernuniversit�at Hagen. The author was also supported by the grant 037012 fromthe Croatian Ministry of Science and Technology.yFernuniversit�at Hagen, Lehrgebiet Mathematische Physik, Postfach 940, D-58084 Hagen, Germany, e-mail: Kresimir.Veselic@FernUni-Hagen.de. 1



Also,X is right singular vector matrix of the hyperbolic singular value decomposition (HSVD)of the pair (G; J). The HSVD for the full column-rank G is de�ned asG = U�X�;where U�U = I; X�JX = J; � = diag(�i); �i > 0:Such HSVD is used in the highly accurate algorithm for the eigenvalue decomposition ofa possibly inde�nite symmetric (Hermitian) matrix A [11, 7]: the idea is to factorize A asA = GJG� [8] and then compute the HSVD of the pair (G; J). Further, HSVD and itsvariant for the full row-rank G is a suitable way to compute the eigenvalue decompositionof the di�erence of two outer products [15, 5], and the condition of X appears in theperturbation bounds for the eigenvalues of the non-singular matrix GJG� [13]. Also, notethat hyperbolic eigenvalue problems with other signature matrices (c.f. section 3) arisewithin some Lanczos-type algorithms for non-symmetric matrices [4].In the paper k � k denotes the the spectral matrix norm, and �(A) denotes the conditionof a non-singular matrix A, �(A) = kAk kA�1k:The hyperbolic eigenvector matrix has two important properties:1. All matrices which perform the simultaneous diagonalization (2) have the same con-dition [11].2. �(X) = kXk2. Moreover, the singular values of X come in pairs of reciprocals,f�; 1=�g.The condition �(X) can be expressed in terms of a Hermitian matrix which is associated tothe problem (1). Let us de�ne the spectral absolute value jAjS of the Hermitian matrix Aas its positive de�nite polar factor. That is, if A = Q�Q� is the eigenvalue decompositionof A, then jAjS = Qj�jQ� = pA2:Theorem 1 Let H = Z�Z be some factorization of H. Then�(X) = maxx6=0 xZZ�xx�jZJZ�jSx = maxx6=0 x�jZJZ�jSxxZZ�x :Proof. The �rst equality was proved in [13], and the second equality follows because theeigenvalues of XX� come in the pairs of reciprocals.Note that the spectral absolute value appears naturally in the relative perturbation boundsfor Hermitian and normal matrices [14, 1].Since the maxima in Theorem 1 are not easy to compute, it is of interest to obtain asimpler bound for �(X). Veseli�c [12] recently proved that�(X) � minD2D �(D�HD);where D is the set of all non-singular matrices which commute with J . In this paper weshall prove a better bound, namely�(X) �qminD2D �(D�HD): (3)We shall also show for which matrices D the minimum is attained, and for which matricesH the bound itself is attained.The rest of the paper is organized as follows: in section 2 we prove the above results,and in section 3 we apply our results to eigenvalue problems with other signature matrices,and in particular to the discretized Klein-Gordon equation and some Hamiltonian systems.2



2 Bound for �(X)We shall prove the bound (3) for �(X) in two stages: we shall �rst analyze the case whenthe bound is an equality, and then prove the bound itself. From now on we assume withoutloss of generality that J has the formJ = � Im 00 �In�m � ; (4)which is easily achieved by permutation. Since all results of this section are trivial if inm = 0 or m = n, we assume that 0 < m < n. Also,D = fD = D1 �D2 : D1 2 Cm;m; D2 2 Cn�m;n�m; nonsingularg:will denote the set of all non-singular matrices which commute with J from (4). To proveour results we need the following theorem which appeared in [3] (see also [2]).Theorem 2 [3, Theorem 2] Let H = � Im 		� In�m � (5)be positive de�nite. Then �(H) = minD2D �(D�HD):The following theorem shows that the bound (3) becomes an equality for matrices of theform (5).Theorem 3 Let J and H be given by (4) and (5), respectively. Let X be some matrix whichdiagonalizes the pair (H; J) according to (2). Then�(X) =p�(H) =qminD2D �(D�HD):Proof. The second equality follows from Theorem 2. Let us construct one particular X. LetU�	V = � = diag(�i) be the singular value decomposition of 	. SetW = �U 00 V � ;and H1 = W �HW . Then W �JW = J andH1 = � Im ��T In�m � :Since H is positive de�nite we have �i � k	k < 1, and�(H1) = �(H) = 1 + �max1� �max :3



Let R be the matrix which diagonalizes the pair (H1; J) according to (2), and let k =minfm;n�mg. ThenR = 26666666666666664 c1 s1c2 s2. . . . . .ck skIm�k 0s1 c1s2 c2. . . . . .sk ck0 In�m�k
37777777777777775 (6)Here, ci and si are hyperbolic sines and cosines computed as follows: if �i = 0, then ci = 1,si = 0; otherwise ti = � �i1 +p1� �2i ;ci = 1p1� t2i ;si = ci � ti:Now we have X = WR, and, since W is unitary, �(X) = �(R). A straightforward compu-tation shows that �(R) = 1 +max jtij1�min jtij =r1 + �max1� �max =p�(H):The theorem now follows from the fact that allX which perform the required diagonalizationhave the same condition.The aim of our main theorem is twofold: to prove the bound (3) and to de�ne the matrixD for which the minimum is attained.Theorem 4 Let J be given by (4) and letH = �H11 H12H�12 H22 � (7)be partitioned accordingly. Let D = �G�11 00 G�12 � ;where Hii = G�iGi is some factorization of Hii for i 2 f1; 2g, respectively. Let bH = D�HDand let X be the matrix which diagonalizes the pair (H; J) according to (2). Then�(X) �q�( bH) =qminD2D �(D�HD): (8)Proof. The equality in (8) follows from Theorem 3 since bH has the form (5) with 	 =G��1 H12G�12 . Since all X which perform the diagonalization (2) have the same condition,it remains to prove the inequality in (8) for one particular X which we shall now construct.4



Let bX = WR be the matrix which diagonalizes the pair ( bH; J) as in the proof of Theorem3, and let k = minfm;n�mg. ThenbX� bH bX = diag = S2 = T 2 � Im�k � T 2 � In�m�k;where T 2 = diag(1 + �i � ti). Special forms of R from (6) and S imply that they commute.Set Z = DWRS�1: (9)Since Z�HZ = I we conclude that the eigenvalue decomposition of the matrix Z�JZ isgiven by Z�JZ = QJ��1Q�; (10)where Q is unitary, and � is given by (2). Therefore, the matrixX = ZQ�1=2performs the required diagonalization of the pair (H; J). Since �(X) = kXk2 we have�(X) = �max(ZQ�Q�Z�): (11)Inverting (10) gives Z�1JZ�� = Q�JQ� = Q�Q�QJQ�;and inserting this expression for Q�Q� into (11) gives�(X) = �max(ZZ�1JZ��QJQ�Z�) = �max(QJQ�Z�JZ��): (12)In the last equality we have used the fact that for any square matrices A and B, the matricesAB and BA have the same eigenvalues. >From (9), by using J-orthogonality of R, the factthat R and S commute, and the fact that D, W and S commute with J , we haveZ�JZ�� = S�1R�W �D�JD��W��R��S = R�JR�� = R2J:By inserting this into (12), by using the fact that �i(A) � kAk for any matrix A, and byusing unitarity of Q and J , Theorem 3 �nally gives�(X) = �max(QJQ�R2J) � kQJQ�R2Jk = kR2k = �(R) = �( bX) =q�( bH);as desired.3 Other signature matricesTheorem 4 yields as a corollary similar results for the eigenvalue problems with other Her-mitian and skew-Hermitian signature matrices. Let us consider the simultaneous diagonal-ization of the pair (H; JS) where H is positive de�nite matrix and the signature matrix isgiven by JS = � 0 II 0 � or JS = � 0 I�I 0 � :In both cases we seek X such that X�JSX = JS andX�HX = � � �1�1 � � or X�HX = �� 00 � � ; (13)5



respectively, where � and �1 are diagonal matrices. These forms readily contain the eigen-values of the problem Hx = �JSx; (14)and keep real arithmetic whenever possible. Let us setU = 1p2 � I �II I � or U = 1p2 � I iIiI I � ;respectively, where i is the imaginary unit. Then we haveU�JSU = J or U�JSU = iJ;respectively, where J = I � (�I). Now set eH = U�HU , and let eX be the matrix whichdiagonalizes the pair ( eH; J) as in (2) such that eX�J eX = J andeX� eH eX = ��+�1 00 ���1 � or eX� eH eX = �� 00 �� ;respectively. ThenX = U eXU� performs the diagonalization (13), and, by applying Theorem4 to the above reduction, we have�(X) = �( eX) �rminD2eD �(D�HD); (15)where eD is the set of all non-singular matrices which commute with the respective JS .The reduction (13) for the �rst choice of JS appears in the case of the discretized Klein-Gordon equation (c.f. [10]) which consists of the quadratic eigenvalue problem(�2 � 2�V + V 2 � Z2) = 0;where Z and V are real symmetric matrices, Z is positive de�nite, and kV Z�1k < 1. Thiseigenvalue problem is equivalent to the problem (14) withH = � L�L L�1V LL�V L�� L�L � ; JS = � 0 II 0 � ;where Z = LL� is some factorization of Z. By takingD0 = �L�1 00 L�1 �which commutes with JS , the relation (15) implies that the condition of the matrixX whichperforms the required diagonalization of the pair (H; JS) is bounded by�(X) �q�(D�0HD0) =s1 + kV Z�1k1� kV Z�1k :The reduction (13) for the second choice of JS comes in solution of certain Hamiltoniansystems. It is also part of the highly accurate eigenvalue decomposition algorithm for skew-symmetric matrices [6]. If H is partitioned according to this JS as in (7), then the minimumin (15) is attained for D = � G1 +G2 �i(G1 �G2)i(G1 �G2) G1 + G2 � ;6
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