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Abstract

The hyperbolic eigenvector matrix 1s a matrix X which simultaneously diagonalizes
the pair (H,J), where H is Hermitian positive definite and J = diag(+1) such that
X*HX = A and X*JX = J. We prove that the spectral condition of X, x(X),

is bounded by «(X) < y/minx(D*HD), where the minimum is taken over all non-
singular matrices 1) which commute with .J. This bound is attainable and it can
be simply computed. Similar results hold for other signature matrices .J, like in the
discretized Klein-Gordon equation.

1 Introduction
We are considering the hyperbolic eigenvalue problem
Hx = AJx, (1)

where H is a n x n Hermitian positive definite matrix, and .J = diag(+1). There always
exists a matrix X such that

X*HX =A,  X*JX =], (2)

where A is diagonal positive definite matrix. Since H is positive definite, the pair (H,.J) is
regular by definition from [9, Definition VI.1.2], so the existence of X follows from [9, The-
orem VI.1.15] and [9, Corollary VI.1.19]. The matrix X is also called J-unitary. Obviously,
the i-th eigenvalue of the problem (1) is given by

A = Agidi,

and the 2-th column of X 1s the corresponding eigenvector. We call such eigenvectors
hyperbolic, or J-unitary, contrary to the standard unitary eigenvectors of the problem Hx =
Ax. The matrix X is also called a hyper-exchange matrix with respect to the signature
matrix J [5].

The matrix X also appears in other linear algebra problems. For example, X is the
eigenvector matrix of the matrix JH,

X NWIHX = JX*J(JH)X = JA.
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Also, X isright singular vector matrix of the hyperbolic singular value decomposition (HSVD)
of the pair ((G,.J). The HSVD for the full column-rank (7 is defined as

G=UYX",

where
Uvrv=1, X*JX =1 X=dag(s;), o >0.

Such HSVD 1s used in the highly accurate algorithm for the eigenvalue decomposition of
a possibly indefinite symmetric (Hermitian) matrix A [11, 7]: the idea is to factorize A as
A = GJG" [8] and then compute the HSVD of the pair (G, J). Further, HSVD and its
variant for the full row-rank (7 is a suitable way to compute the eigenvalue decomposition
of the difference of two outer products [15, 5], and the condition of X appears in the
perturbation bounds for the eigenvalues of the non-singular matrix G.JG™ [13]. Also, note
that hyperbolic eigenvalue problems with other signature matrices (c.f. section 3) arise
within some Lanczos-type algorithms for non-symmetric matrices [4].

Tn the paper || || denotes the the spectral matrix norm, and k(A) denotes the condition
of a non-singular matrix A,

w(A) = [[AIAI-

The hyperbolic eigenvector matrix has two important properties:

1. All matrices which perform the simultaneous diagonalization (2) have the same con-
dition [11].

2. k(X) = ||X]||?. Moreover, the singular values of X come in pairs of reciprocals,
{o,1/c}.
The condition x(X) can be expressed in terms of a Hermitian matrix which is associated to
the problem (1). Tet us define the spectral absolute value |A|g of the Hermitian matrix A
as 1ts positive definite polar factor. That 1s, if A = QAQ* 1s the eigenvalue decomposition
of A, then
|Als = QIAIQ™ = VA%

Theorem 1 et H = 7*7 be some factorization of H. Then
XA 7*x xX*|Z T 7*|sx

k(X) = max —————— = max
x£0 xX*|ZJ7*|sx  x#0  xXA7*x

Proof. The first equality was proved in [13], and the second equality follows because the
eigenvalues of X X* come in the pairs of reciprocals. [ |

Note that the spectral absolute value appears naturally in the relative perturbation bounds
for Hermitian and normal matrices [14, 1].

Since the maxima in Theorem 1 are not easy to compute, 1t is of interest to obtain a
simpler bound for k(X). Veselié¢ [12] recently proved that

(X in w(D*HD
#(X) < min s ),

where D is the set of all non-singular matrices which commute with J. Tn this paper we
shall prove a better bound, namely

/(X)) <, /ming(D*HD). 3

(X) < \[pin (D D) 3)

We shall also show for which matrices 7 the minimum is attained, and for which matrices

H the bound itself is attained.

The rest of the paper is organized as follows: in section 2 we prove the above results,

and in section 3 we apply our results to eigenvalue problems with other signature matrices,

and in particular to the discretized Klein-Gordon equation and some Hamiltonian systems.



2 Bound for x(X)

We shall prove the bound (3) for £(X) in two stages: we shall first analyze the case when
the bound is an equality, and then prove the bound itself. From now on we assume without,
loss of generality that .J has the form

=) (1

which 18 easily achieved by permutation. Since all results of this section are trivial if in
m =0 or m = n, we assume that 0 < m < n. Also,

D={D =D& Dy: D €C™™ Dy € C”""" ™ mnonsingular}.

will denote the set of all non-singular matrices which commute with J from (4). To prove
our results we need the following theorem which appeared in [3] (see also [2]).

Theorem 2 [3, Theorem 2] Let
I v
be positive definite. Then
k(H) = min &(D*H D).
DeD

The following theorem shows that the bound (3) becomes an equality for matrices of the

form (5).

Theorem 3 Let J and H be given by (4) and (5), respectively. Let X be some mairiz which
diagonalizes the pair (H,.J) according to (2). Then

w(X) = /k(H) = ’r)neng(D*HD)

Proof. The second equality follows from Theorem 2. T.et us construct one particular X. Let
U*¥V =X = diag(o;) be the singular value decomposition of W. Sef,

U o
v=[0 )

and Hy = W*HW. Then W*JW =.J and

Im %
= [ET inm]

Since H is positive definite we have o; < ||¥|| < 1, and

_ 1 + Omax

1 — Omax

k(Hy) = x(H)



Tet R be the matrix which diagonalizes the pair (Hy,J) according to (2), and let k =
min{m,n — m}. Then

(2] 51
9 S9

Ck Sk

51 (2]
S9 9

Sk CL
L 0 [nfm,fk-

Here, ¢; and s; are hyperbolic sines and cosines computed as follows: if o; = 0, then ¢; = 1,
s; = 0; otherwise

a;
o= ———,
14 4/1 —0'7?
1
Cs — /—177227
S5 = Ci-fi.

Now we have X = WR, and, since W is unitary, x(X) = x(R). A straightforward compu-

tation shows that
1+ max [#;] 1+ Trmax
k(R) = = =/k(H).

T—minlt;] V1 —6omax

The theorem now follows from the fact that all X which perform the required diagonalization
have the same condition. [ |

The aim of our main theorem is twofold: to prove the bound (3) and to define the matrix
D for which the minimum is attained.

Theorem 4 Let J be given by (4) and let

Hiy His
H=1 7
[Hm H22] (7)

be partitioned accordingly. Let

G7looo
D= !
KL
where Hy; = GEG; is some factorization of Hy; fori € {1,2}, respectively. Let H=DHD
and let X be the matriz which diagonalizes the pair (H,.J) according to (2). Then

(X) < A/w(H) = [min x(D*HD). 8
K(X) < \[w(i) = | [pin (DT D) (3
Proof. The equality in (8) follows from Theorem 3 since H has the form (5) with ¥ =
G?*H]2G271. Since all X which perform the diagonalization (2) have the same condition,
it remains to prove the inequality in (8) for one particular X which we shall now construct.



Let X = WR be the matrix which diagonalizes the pair (H,.J) as in the proof of Theorem
3, and let & = min{m,n — m}. Then

X*HX =diag=S>=T"® Iy, & T & Iy s,

where T? = diag(1 + o - ;). Special forms of R from (6) and S imply that they commute.
Set

7 = DWRS™'. (9)

Since Z*H7Z = T we conclude that the eigenvalue decomposition of the matrix Z7*.J7 is
given by

7T =QJATQF, (10)

where @ is unitary, and A is given by (2). Therefore, the matrix
X = ZQA'?
performs the required diagonalization of the pair (H,J). Since x(X) = || X]|*> we have
£(X) = Amax(Z7QAQ™ 7). (11)

Tnverting (10) gives
777 = QAIQT = QAQTQJQ",
and inserting this expression for QAQ* into (11) gives

K(X) = Anax (27T Z72QUIQ*7%) = Anax (QIQ* 77T 77%). (12)

In the last equality we have used the fact that for any square matrices A and B, the matrices
AB and BA have the same eigenvalues. jFrom (9), by using J-orthogonality of R, the fact
that R and S commute, and the fact that 1D, W and S commute with .J, we have

ZIZT =S 'R*Wr*D*JDT*W*R™*S = R*JR™* = R%J.

By inserting this into (12), by using the fact that A;(A) < ||A]| for any matrix A, and by
using unitarity of Q and J, Theorem 3 finally gives

K(X) = Amax (QIQ*R™T) < [|QIQ*R*J|| = ||R?|| = 8(R) = 5(X) = /()

as desired. [ |

3 Other signature matrices

Theorem 4 yields as a corollary similar results for the eigenvalue problems with other Her-
mitian and skew-Hermitian signature matrices. Let us consider the simultaneous diagonal-
ization of the pair (H,.Js) where H is positive definite matrix and the signature matrix is

0o I 0 T
Jg[[ 0] or Jg[[ 0].

In both cases we seek X such that X*.J¢ X = .Jg and

given by

X*HX—[A A1]

A A or X*HX—[A 0],
1

0 A



respectively, where A and Ay are diagonal matrices. These forms readily contain the eigen-
values of the problem

Hx = AJsx, (14)

and keep real arithmetic whenever possible. Tet us set

|7 =T 1 Il
1 Ul I P

respectively, where 7 1s the imaginary unit. Then we have
U*JstU =0 or U*JsU =iJ,

respectively, where J = T @ (—7). Now sef, H=1U* HU, and let X be the matrix which
diagonalizes the pair (H,.J) as in (2) such that X*JX = .J and
S N

Semo _|A 0
0 A A, or XHX[ ],

0 A

respectively. Then X = UXU~ performs the diagonalization (13), and, by applying Theorem
4 to the above reduction, we have

K(X) = w(X) < [minw(D*HD), (15)

where D is the set of all non-singular matrices which commute with the respective Jg.
The reduction (13) for the first choice of Jg appears in the case of the discretized Klein-
Gordon equation (c.f. [10]) which consists of the quadratic eigenvalue problem

(A2 =20V + V2 - 7% =0,

where 7 and V are real symmetric matrices, 7 is positive definite, and ||[V7 || < 1. This
eigenvalue problem is equivalent to the problem (14) with

L*L L=V 0 7

where 7 = ILI.* is some factorization of 7. By taking

L' 0
D”_[ 0 rﬂ]

which commutes with Jg, the relation (15) implies that the condition of the matrix X which
performs the required diagonalization of the pair (H, Js) is bounded by

Y ey S (RS Lol
vz
The reduction (13) for the second choice of Jg comes in solution of certain Hamiltonian
systems. Tt is also part of the highly accurate eigenvalue decomposition algorithm for skew-
symmetric matrices [6]. Tf H is partitioned according to this Jg as in (7), then the minimum
n (15) is attained for

Ho| GG (G -Gy
7(G1 — GQ) G1 + GQ '



where

GGy = x [Hii + Hog +i(Hia — H5),

N = N =

G5Gy = X [Hiy+ Hoo 4+ i(Hiy — Hia)l,
and (15) is an equality if Hyy + Has = 2T and Hio = H7,.

Similar bounds can be easily derived for a matrix X which diagonalizes any pair (H, J),
where H 1s positive definite and J satisfies merely the condition

J=J =] or J=—J =_J "
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