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Abstract

We give relative perturbation bounds for eigenvalues and perturba-
tion bounds for eigenspaces of a hyperbolic eigenvalue problem Hx =
AJx, where H is positive definite matrix and J is a diagonal matrix
of signs. We consider two types of perturbations: when a graded ma-
trix H = D*AD is perturbed in a graded sense to H + 0H = D*(A +
dA)D, and the multiplicative perturbations of the form H + 0H =
(I + E)*H(I + E). Our bounds are simple to compute, compare well
to the classical results, and can be used when analyzing numerical al-
gorithms.

1 Introduction
We are considering the hyperbolic eigenvalue problem

HXi:)\iJXi, i:1,2,---,n, (1)

where H is a nxn Hermitian positive definite matrix, and J = diag(+1). Since
H is positive definite, the pair (H, J) is regular by [19, Definition VI.1.2]. From
[19, Theorem VI.1.15] and [19, Corollary VI.1.19], it follows that there always
exists a non-singular matrix X such that

X*HX =|A|, X*JX =], (2)

where |A| is a diagonal positive definite matrix. The i-th eigenvalue of the
problem (1) is then given by \; = |A;|Ji;, and the i-th column of X is the
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corresponding eigenvector. We call such eigenvectors hyperbolic, or J-unitary,
contrary to the standard unitary eigenvectors. The matrix X is also called
J-unitary!.

The matrix X appears in some other linear algebra problems. For example,
X is the eigenvector matrix of the matrix JH,

XY JH)X = JX*J(JH)X = A.

Also, X is the right singular vector matrix of a hyperbolic singular value
decomposition (HSVD) of the pair (G,.JJ). The HSVD for the full column-
rank G is defined as

G=UXX", (3)

where

UU=1, X*JX=1J ¥ =diaglo;), o;>0.

Such an HSVD is used in the highly accurate algorithm for the Hermitian
eigenvalue decomposition of a possibly indefinite symmetric (Hermitian) ma-
trix A [21, 15]. Further, the HSVD and its variant for the full row-rank G is a
suitable way to compute the eigenvalue decomposition of the difference of two
outer products [24, 14]. The condition number of X appears in other relative
perturbation results [20, 22].

Relative perturbation bounds for eigenvalue problem have been the topic of
many articles in past years, such as [1, 3, 23, 10, 11, 4, 16, 12, 13, 5] (see also the
review article [8]). Some of the recent works include [9, 20, 22]. These works
covered positive definite, indefinite, and diagonalizable matrices. In this paper
we give relative perturbation bounds for eigenvalues and perturbation bounds
for eigenvectors of the problem (1) under additive and multiplicative pertur-
bations of H. The bounds for eigenvectors are given in terms of eigenspaces.
An additive perturbation is defined as follows: H is given in a graded form,
H = D*AD, and the perturbed matrix is defined by

H=H+6H=D*(A+6A)D.

Here we assume that H is positive definite, as well. As we shall see in Section
3.3, some types of (relative) additive perturbations typically occur in numerical
computations. The multiplicative perturbation is defined by a congruence

H=H+6H=(1+E)H(I +E).
For both types of perturbation, the perturbed problem shall be denoted by

X*HX = |\, X*JX =1 (4)

'In [14], the matrix X is also called a hyper-exchange matrix with respect to the signature
matrix J.



Our bounds are simpler and, in appropriate cases, better than the classical
norm-wise estimates [19, Section VI.3] (see Section 3.3).

Throughout the paper we assume that the unperturbed and the perturbed
eigenvalues are in the same order. Also, || - || denotes the the spectral matrix
norm, || - || denotes the Frobenius norm, and x(A) = ||A]| ||A™}|| denotes the
spectral condition number.

The rest of the paper is organized as follows. In Section 2 we describe some
properties of J-unitary matrices. We give bounds for additive perturbations
in Section 3, and for multiplicative perturbations in Section 4.

2 Some properties of J-unitary matrices

First, note that all matrices which perform the diagonalization (2) have the
same condition number [21]. Further, it can be easily verified that x(X) =
|| X||?. Moreover, the singular values of X come in pairs of reciprocals, {5, 1/0}.
The following theorem was proved in [17].

Theorem 1 (Slapni¢ar and Veselié¢) Let X perform the diagonalization (2).

Then
1X||? = k(X) < \/mink(F*HF),

where the minimum is taken over all non-singular matrices F' which commute
with J.

We shall also need the following lemma.

Lemma 1 Let J be given by
J= [Il } . (5)
“in-|
Let X and X be two J-unitary matrices which are partitioned accordingly in
block columns as
X=[X, X,] and X=[X, X,],

where o .
X, JX, =X JX, =1, XpJ Xn = XpJ Xy = — 1.

We say that X, (X,) spans the positive (negative) subspace with respect to .J.
Then the matriz X*JX is also J-unitary, and we have

|XPIX|| = | X5IX) + 1+ XX )12 (6)

X0 < (X% + Y1+ XX, 12 ) 1] ©



Proof. The equality (6) follows from the CS decomposition of a .J unitary
matrix X*JX (the proof of such CS decomposition is very similar to the proof
of [19, Theorem 1.5.1]). The inequality (7) follows from (6) since [|X|| <
[ X X TX = (L XX u

3 Bounds for additive perturbations

In this section we derive relative perturbation bounds for eigenvalues and per-
turbation bound for eigenspaces. We also show that the bounds are applicable
in numerical computations.

3.1 Eigenvalue bounds

Let us first analyze the perturbations of the eigenvalues. [23, Theorem 2.1]
implies the following bound.

Theorem 2 Let the perturbation §H satisfy |x*6 Hx| < nx*Hx for allx € C"
and some n < 1. Then the pairs (H,J) and (H,J) have the same inertia, and

A — il
- <.
RS - 7 (8)

Note that log,,(|X; — As|/|\s]) can be used to measure the number of correct
decimal digits in numerical results. For relative additive perturbations we have
the following corollary.

Corollary 1 Let H = D*AD and H = D*(A + §A)D. Then (8) holds with
n=||6A| ||A7"|, provided that n < 1.

Proof. We have
Ix*0Hx| = ||[x*D*6 ADx|| < ||6A| ||[A Y| ||x*D* ADx]|. ]

Now we shall establish Hofmann—Wielandt type bound. We need two aux-
iliary lemmas on doubly stochastic matrices. We say that a real n xn matrix Y
is doubly stochastic if Y;; > O and ) Vi = >3 Yy =1fork=1,2,--+ n.
By Birkhoff’s theorem [7, Theorem 8.7.1], a matrix is doubly stochastic if and
only if it lies in the convex hull of all permutation matrices. This result has
lead to the following lemma [10, Lemma 5.1].

Lemma 2 (Li) Let Y be a n x n doubly stochastic matriz, and let M be a

n x n complex matriz. Then there exists a permutation T of {1,2,---,n} such
that
n n
2 2
D MY 2 Y | Mz .
ij=1 i=1



We also need the following lemma from [6].

Lemma 3 (Elsner and Friedland) For any square matriz M there exists

a doubly stochastic matriz Y of the same dimension such that o2, (M)Y;; <
| M5 °.

Now we are ready to prove our theorem.

Theorem 3 Let H = D*AD and H = D*(A+6A)D, and let the matrices X
and X perform the diagonalizations (2) and (4), respectively. If ||A"10A|r <

2/3, then
~ 2

J1— | A-16A|

where

Proof. The relation (4) implies
(H +6H)X = HX = JXA.
Premultiply this equality by X*, use (2), and rearrange, to get
AX*JX — X*JXA = —X*6HX. (11)
Now
X*HX = X'D'SADX
X*D AV A2 AAT 212912 A DY, (12)

where & = I + A7'/26AA7'2. Set G = A'Y2D such that H = G*G. By
combining (2) with the definition of the HSVD from (3), we see that there
exists an unitary matrix U such that GX = U*|A|'/2. Similarly, there exists an
unitary matrix U such that GX = U*|A|'/2, where G = ®/2AY2D. Therefore,
we can rewrite (12) as

X*0HX = |A|'Y?T|A|'2,

where

U =U"A26AA 2o 12T
Thus, (11) becomes

AX*JX — X*JXA = —|A|V20|A]V/2. (13)



By using this equality component-wise for all pairs of indices (i, j), squaring
each term, and adding them all together, we obtain

~ N2
e VA R
> ( ~”) |[XTX " = (1917
iq=1 \\/| A\
By applying Lemma 3 to the matrix X*J)?, we have

N PR

> <7~“) Yij < OIENXTX) P,

ig=1 \ /| Aiid\j

for some doubly stochastic matrix Y. Note that, since the matrix X*JX is
J-unitary, we have ||(X*JX)™!|| = || X*JX||. Lemma 2 further implies

~ 2
> Ai = Aort) ) g2 I X, (14)
=1 |A“A () ()‘

for some permutation 7 of {1,2,---,n}.
Let us bound the norms on the right hand side. First, the assumption of
the theorem implies that

~1/2 ~1/2
19]F < A V25442 o2 < A4 Tlle g5
V1 - 1lA-126 44172

where 1 is defined by (10). The last inequality follows since all matrices
involved are Hermitian. Further, assume J has the form (5), which can be
achieved by permutation without loss of generality. By (6) it remains to bound
| X*JX,|, where X, and X, are defined in Lemma 1. Use (13) component-
wise for all pairs of indices (i,7), where i = [+ 1,---,nand j =1,---,1, to
get

|A“|1/2|A |1/2

X*JX];,; = -0,

For this particular choice of (i,7), the eigenvalues A;; and /~\jj have opposite
signs, which implies

1
| [X*TX]; < §|‘I’z‘j|-

Here we have used the fact that Vab/(a+b) < 1/2 for any two positive numbers
a and b. By squaring the above inequality and adding all terms together for
t=1+1,---,nand 7 =1, ---,[, we obtain

— 1
X% < 1] (16)



By using this, (6) and (15), we have

~ 1 1
IXTTX] < S0 441+ 9% (17)

Note that the assumption of the theorem, (17) and (15) imply that the right
hand side of (14) is not larger than 4. This, in turn, implies that the permuta-
tion 7 must be such that the quotients in (14) contain only eigenvalues of the
same sign (otherwise at lest two terms would be at least 4). By applying [10,
Proposition 2.4] separately to quotients which contain only positive and only
negative eigenvalues in (14), we conclude that the sum is minimal when 7 is
identity. Finally, (9) follows by inserting this, (15) and (17) into (14). n

3.2 Eigenvector bound

Let us partition the eigenvalue problem (2) as

X Al
{X; H[Xl XQ] AQJ’
X; A
{X;}J[Xl X,] = Ll (18)

By [19, Section VI.2.4], columns of X; span a simple eigenspace of the pair
(H,J) if A; and Ay have no common eigenvalues. Let us partition the per-
turbed problem (4) in the same manner,

X w w1 _ [IM
{X;}H[Xl XQ] - [ A2|:|,
X% w0 - [
{X;}J[Xl %] = [ JJ. (19)
Let
V:X1:|:“;1*:|, (20)
2
and let N .
Xl = QlRla ‘/2 = Q2R27 (2]‘)

be the economical QR factorizations of X, and Vs, respectively. By R(W) we
denote the subspace which is spanned by the columns of some matrix W, and
by R(W)~ we denote its orthogonal complement. The columns of Q; and Q,
form the orthogonal bases for R(X;) and R(X;)~, respectively. Let UXV*
be a singular value decomposition of the matrix Q;Ql. The diagonal entries
of the matrix sin ©(X;, X)) = X are the sines of canonical angles between
the subspaces R(X;) and R(X;) [19, Corollary 1.5.4]. Our theorem bounds



| sin ©(X1, X)||r, and is, therefore, a variant of the well-known sin © theorems
2, Section 2], [19, Section V.3] designed for relative perturbations.

Let us define the relative gap between the sets of eigenvalues from A; and
Ay as

rg(‘/’ila AZ) = mi.n ‘ [Ag“ _ [AQ]jj‘ :

M A - [As]g]
This definition is based on a definition of a relative distance RelDist(\,\) =
IA = Al/\V/|AA], which was used in [1], [3] and [10, 11]. In the positive definite
case (when J = I), all X and )\ are positive and RelDist(), )) is a generalized
metric [10, Proposition 2.4]. In the hyperbolic case, however, RelDist(A,))
does not necessarily increase with the distance between A and A if they have
different signs. For example, if Ay = {1} and Ay = {—1,0.1}, then the mini-
mum is attained between 1 and —1 and not between 1 and 0.1.
Now we can state our theorem.

(22)

Theorem 4 Let H = D*AD and H = D*(A+6A)D, and let the matrices X
and X perform the diagonalizations (18) and (19), respectively. If || A7'5 Al <

1, then
Isin©(X:, X)llr < X2 (204414292 ) —2— (23)
, N 2 4 rg(AlaAQ)’

where 1 is defined by (10).
Proof. Let (20) and (21) hold. Then we have

[sin®(X1, Xi)|r = [Q5Qilr = ||R2_*‘A/g*y1é1_l||F
< |RIIR Ve Xalle
< RSB XS TX |5 (24)

The last inequality follows from (20) and the J-unitarity of X. By interpreting
the relation (13) block-wise, we get

Ao X3IX) — X3TX Ay = —|Ag|Y2 Wy A ]1/2, (25)
where T o
U= { 11 12}
Wy Wy

is partitioned according to (18). By interpreting (25) component-wise and
using (22), we get
| [Wa]jil

‘[X*Jyl]'i| < = ;
? ’ I‘g(Al,Ag)



or

X< e o ¥ (26)
rg(Ar, Aa) — rg(Ar, Ag)

Here the last inequality follows from (15). Further,

1 1
R = < = [|X||. 27
|| 2 || O'min(‘/Q) = Omin(v) || || ( )

Similarly, B N N
Ry < (JX ] = [1X])- (28)

We can further bound || X|| by (7), which, together with (16) and (15), implies

i 1 1
12 < IX) (;» + m) |

Finally, (23) follows by inserting this, (27) and (26) into (24). n

An inconvenience of Theorem 4 is that the bound (23) uses both origi-
nal and perturbed eigenvalues in the definition of relative gap. To compute
rg(/~\1,A2) one thus needs to know the exact perturbation dA. However, in
some important cases, like the ones described in Section 3.3, only informa-
tion about ||0Al| is given. It is therefore desirable to have the bound which
uses only original eigenvalues. By using Corollary 1, one can easily bound
rg(Aq, Ay) from below by

(A1, A2) > min [[As)iitd +n- Sign([AZ]m [Ad]ii) - sign([Ad]a) } — [Aa]yy |
| Y \/| zz AQH 1+77)|

Another inconvenience of Theorem 4 is that the bound (23) contains the
term || X ||?, which is computationally demanding. However, in the important
case when the matrix D is diagonal (c.f. Section 3.3), we can use Theorem 1
to bound || X||?, thus obtaining the following result.

Corollary 2 Let H = DAD and H = D(A + 6A)D, where D is diagonal
positive definite matriz, and let the matrices X and X perform the diagonal-
izations (18) and (19), respectively. If ||A7'0A|| < 1, then

‘ N 1 1 Y
Isin©(X1, X1)||r < /r(A) (51” + W) )



3.3 Applying the bounds

The results of Sections 3.1 and 3.2 enable us to handle two important classes
of perturbations which occur in numerical computation. The first class are the
perturbations of the form |§H|;; < ¢|H;;|. Such perturbations occur when the
matrix H is stored in a computer with machine precision €. Then, ||[0A] <
ell |A|]]. If we chose D = diag(v/Hj;), then further ||[§A| < en. Such choice
of D is nearly optimal in the sense that k(A) < nmina K(AHA), where the
minimum is over all non-singular diagonal matrices [18]. The second, more

general, class of perturbations has the form |§H|;; < e\/H;;H;;. By choosing

the same D as above, we again have ||§A|| < en. Such perturbations occur
during various numerical algorithms. Also, for the above perturbations, if
k(A) < k(H), then our eigenvalue bounds are better than the classical norm-
wise bounds like [19, Corollary VI.3.3] which can be applied to the definite
matrix pair (H, J). Even more, since the above choice of D is almost optimal,
our eigenvalue bounds can never be much worse than the classical bounds. If
k(A) < k(H), then our eigenvector bound can also be better than the classical
bounds like [19, Theorem VI1.3.9], in particular when the relative gap is large
and the absolute gap is small. This typically occurs in the presence of several
tiny eigenvalues.
The following numerical example illustrates some of the above facts.

Example 1 Let H = DAD with

1 08 08 08 0.8 1010
08 1 08 08 0.8 50
A=108 08 1 08 08|, D= 1 :
08 08 08 1 08 1
08 08 08 08 1 10°

and let J = diag(1,1,1, —1, —1). The eigenvalues of the pair (H, .J) are (prop-
erly rounded)

A =10%, Ny =722, A3 =0.254, A\, = —0.254, \y = —3.6-10".

Note that k(H) = 5 - 102 while x(A) = 21. Let the perturbed matrix H be
given as in Theorem 3 with

0.46 —-0.26 —-0.02 0.36 0.42
-0.26 —-096 —0.66 0.21 0.69
0A=1]-0.02 -066 —-0.91 —-0.15 0.14
0.36 021 -0.15 0.27 —-0.33
0.42 0.69 0.14 —-0.33 —0.35

This is relative component-wise perturbation satisfying [§A| < 107¢|A|. Also,
|6A] <2-1075, [|[6A||r < 2.3-107%. When applying Theorem 3, the left hand

10



side of (9) (the exact perturbation) is equal to 8.4-107% and the bound on the
right hand side is 1.4 - 107° with

-1
V1= TA]64]

Note that the right hand side of (9) remains the same for any diagonal grading
matrix D, thus the bound of Theorem 3 is independent of grading. Also, note
that we do not need to know the perturbation dA exactly, since the bound
remains approximately the same for any matrix §A which satisfies |§A| <
1075|A| or |[6A|| < 1075 On the other hand, the bounds of [19, Corollary
VI1.3.3] are completely useless, since there ||E|| = 0 but ||F|| = ||6H|| = 4.6-10"3
and v(A, B) = 0.97 according to [19, Definition VI.1.17].

Let us now consider invariant subspaces. The bound of Corollary 2 is
obtained by simply multiplying the eigenvalue bound by \/k(A4) = 4.59 and
dividing it by relative gap. Let sin ©; = sin O(x;,X;), where x; is the eigenvec-
tor of \;. Table 1 gives the corresponding relative gaps, the exact perturbations
and the bounds computed by Corollary 2.

i | 2 | 3 | 4 | 5
rg(hi, As) [ 1.6-106 ] 53 2 2 223
[sin®;r |[5-10-7|5-10°| 107 | 10 |2-10°°¢
Corollary 2 [ 3-10"1 [ 9-10~7 | 3-10° | 3-10° | 2-10~7

—_

Table 1: Eigenvector perturbations

Our results can be readily used in the error analysis of some numerical algo-
rithms, in particular the J-orthogonal Jacobi method for solving the problem
(1) from [21] and [15, Section 3.1]. One step of this method in floating-point
arithmetic with machine precision ¢ induces the backward error § A such that
|0A|| < const - ¢ [15, Theorem 3.2.1]. Theorem 3 and Corollary 2 then give
bounds for errors in eigenvalues and invariant subspaces after one step of the
method. By adding these errors together, similarly as in [15, Corollary 3.2.2],
we obtain overall error bounds for the method.

4 Bounds for multiplicative perturbations

In this section we shall give a relative Hofmann-Wielandt type bound, similar

to the one of Theorem 3, for the case of multiplicative perturbation of a matrix

H. We shall also prove a sin © type bound, similar to the one of Theorem 4.
Let us first prove our eigenvalue result.

11



Theorem 5 Let H+6H = (I + E)*H(I + E), and let the matrices X and X
perform the diagonalizations (2) and (4), respectively. Let

E 20|| X ||?
oo Bl 20)X] 2

1Bl J1— da|| X2

If a < 1/(4]|X]?), then

- [T — >2 - Y .
\lz <maX{Aii7 ‘AT(Z)T(’L)‘} - ﬂ <ﬂ m) ! ( )

i=1

for some permutation T of {1,2,---,n}.
Proof. As in the proof of Theorem 3, (2) and (4) imply (11). Set
E=E*(+E)™,

and note that ~
1E]r < a, |E]r < a.

Insert 0H = EH + HE into (11), and use (2) and (4) to get
AX*JX — X*JXA = -X*EJXA — AX*JEX.
By interpreting this relation component-wise, for each pair (i, j) we get

A — Ayl

T IX*IX | < |IX*EJX |+ | X*TEX];;. 31

By squaring each inequality, adding them together, and using Lemma 3 and
Lemma 2 as in the proof of Theorem 3, we obtain

N 2
n Aii_ATiTi X EJX X
3o (B bl )X B+ 18X )
max{|Ay|, [Aryr@|}

=1

< | XTIXIX X 20 (32)

Tt remains to bound | X*JX]|| and | X|| by using (6) and (7), respectively. To
do so we need to bound || X}JX,|, where X,, and X, are defined in Lemma
1. For those indices (7, j) which correspond to X,, and X, A;; is negative and

A;; is positive, thus the fraction on the left hand side of (31) is always greater
than or equal to one. Therefore, (31) implies

XTI X e < (IXGETX|lr + | X" TEX || p < 22| X[ IX]. (33)

12



This and (7) imply

IX1 = 20 [ XI2 X < IX]V1+ 20 X1 X]])2

The assumption of the theorem implies the positivity of the left hand side.
After squaring and rearranging this inequality, we get

Ryl
1—da||X|?
By inserting (33) and (34) into (6) we get

IX*TX| < B+ 1+ 32

where (3 is defined by (29). Finally, (30) follows by inserting this and (34) into
(32). u

IX)” < (34)

One difference between additive perturbations (Theorem 3) and this the-
orem is that the bound (30) depends on the eigenvector matrix X. How-
ever, if we set H = DAD where D = diag(y/H;;), then Theorem 1 implies

| X|? < 4/k(A), and (30) holds with
2c01/K(A)

1- 404\//{(14)‘

Also note that if ||F]|, and then, in turn, 3, are sufficiently small, then the
right hand side of (30) is asymptotically equal to 3.

We end the paper by proving an eigenvector bound for multiplicative per-
turbations.

b=

Theorem 6 Let H+0H = (I+ E)*H(I + E), and let the matrices X and X
perform the diagonalizations (18) and (19), respectively. Let the relative gap
between the sets of eigenvalues from Ay and Ay be defined as

[ [Adii — [Aay]

tg(A1, Ag) = min = : (35)
w1 max{]| [Ad]il, [ [Ae]j;/}
Let a be defined by (29). If o < 1/(4]| X||?), then
: - X7 2a
|| Sin ®(X1;X1)||F S . =~ . (36)
T~ 4a X gk,
Further, if we write H = DAD, where D = diag(v/Hy;), then
) —~ k(A 200
|| Sin @(XlaXl)HF S ( ) (37)

1 —4a/k(A) - Tg(Ay, Ay)

13



Proof. The proof is a combination of the proofs of Theorems 4 and 5. As in
the proof of Theorem 4, the relations (24), (27) and (28) imply

Isin©(X1, X1) |7 < [ XX [1X5TX1 |- (38)

By using the (2,1) block of (31) and the definition (35), we get
X3 Xy < (XSEIX |y + (X5 TEX ) - — =
I‘g(Al, AQ)

Therefore,

IX;EJX,||p + | X3 JEX, | p - 20
2 e S <X X =
g(A1, Ag) g(A1, Ag)

Now (36) follows by inserting this and (34) into (38). Finally, (37) follows
from (36) and Theorem 1. n

157X || <

We would like to thank the referee for carefully reading the manuscript and
correcting some mistakes.
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