
Relative Perturbation Theory for HyperbolicEigenvalue Problem �Ivan Slapni�cary and Ninoslav TruharzAbstractWe give relative perturbation bounds for eigenvalues and perturba-tion bounds for eigenspaces of a hyperbolic eigenvalue problem Hx =�Jx, where H is positive de�nite matrix and J is a diagonal matrixof signs. We consider two types of perturbations: when a graded ma-trix H = D�AD is perturbed in a graded sense to H + �H = D�(A +�A)D, and the multiplicative perturbations of the form H + �H =(I + E)�H(I + E). Our bounds are simple to compute, compare wellto the classical results, and can be used when analyzing numerical al-gorithms.1 IntroductionWe are considering the hyperbolic eigenvalue problemHxi = �iJxi; i = 1; 2; � � � ; n; (1)whereH is a n�n Hermitian positive de�nite matrix, and J = diag(�1). SinceH is positive de�nite, the pair (H; J) is regular by [19, De�nition VI.1.2]. From[19, Theorem VI.1.15] and [19, Corollary VI.1.19], it follows that there alwaysexists a non-singular matrix X such thatX�HX = j�j; X�JX = J; (2)where j�j is a diagonal positive de�nite matrix. The i-th eigenvalue of theproblem (1) is then given by �i � j�iijJii, and the i-th column of X is the�This work was supported by the grant 037012 from the Croatian Ministry of Scienceand Technology.yUniversity of Split, Faculty of Electrical Engineering, Mechanical, Engineering andNaval Architecture, R. Bo�skovi�ca b.b, 21000 Split, Croatia, ivan.slapnicar@fesb.hr.zUniversity Josip Juraj Strossmayer, Faculty of Civil Engineering, Drinska 16 a, 31000Osijek, Croatia, truhar@most.gfos.hr. 1



corresponding eigenvector. We call such eigenvectors hyperbolic, or J-unitary,contrary to the standard unitary eigenvectors. The matrix X is also calledJ-unitary1.The matrixX appears in some other linear algebra problems. For example,X is the eigenvector matrix of the matrix JH,X�1(JH)X = JX�J(JH)X = �:Also, X is the right singular vector matrix of a hyperbolic singular valuedecomposition (HSVD) of the pair (G; J). The HSVD for the full column-rank G is de�ned as G = U�X�; (3)where U�U = I; X�JX = J; � = diag(�i); �i > 0:Such an HSVD is used in the highly accurate algorithm for the Hermitianeigenvalue decomposition of a possibly inde�nite symmetric (Hermitian) ma-trix A [21, 15]. Further, the HSVD and its variant for the full row-rank G is asuitable way to compute the eigenvalue decomposition of the di�erence of twoouter products [24, 14]. The condition number of X appears in other relativeperturbation results [20, 22].Relative perturbation bounds for eigenvalue problem have been the topic ofmany articles in past years, such as [1, 3, 23, 10, 11, 4, 16, 12, 13, 5] (see also thereview article [8]). Some of the recent works include [9, 20, 22]. These workscovered positive de�nite, inde�nite, and diagonalizable matrices. In this paperwe give relative perturbation bounds for eigenvalues and perturbation boundsfor eigenvectors of the problem (1) under additive and multiplicative pertur-bations of H. The bounds for eigenvectors are given in terms of eigenspaces.An additive perturbation is de�ned as follows: H is given in a graded form,H = D�AD, and the perturbed matrix is de�ned byfH � H + �H = D�(A + �A)D:Here we assume that fH is positive de�nite, as well. As we shall see in Section3.3, some types of (relative) additive perturbations typically occur in numericalcomputations. The multiplicative perturbation is de�ned by a congruencefH = H + �H = (I + E)�H(I + E):For both types of perturbation, the perturbed problem shall be denoted byfX�fHfX = je�j; fX�JfX = J: (4)1In [14], the matrixX is also called a hyper-exchange matrix with respect to the signaturematrix J . 2



Our bounds are simpler and, in appropriate cases, better than the classicalnorm-wise estimates [19, Section VI.3] (see Section 3.3).Throughout the paper we assume that the unperturbed and the perturbedeigenvalues are in the same order. Also, k � k denotes the the spectral matrixnorm, k � kF denotes the Frobenius norm, and �(A) = kAk kA�1k denotes thespectral condition number.The rest of the paper is organized as follows. In Section 2 we describe someproperties of J-unitary matrices. We give bounds for additive perturbationsin Section 3, and for multiplicative perturbations in Section 4.2 Some properties of J-unitary matricesFirst, note that all matrices which perform the diagonalization (2) have thesame condition number [21]. Further, it can be easily veri�ed that �(X) =kXk2. Moreover, the singular values ofX come in pairs of reciprocals, f�; 1=�g.The following theorem was proved in [17].Theorem 1 (Slapni�car and Veseli�c) Let X perform the diagonalization (2).Then kXk2 = �(X) � qmin�(F �HF );where the minimum is taken over all non-singular matrices F which commutewith J.We shall also need the following lemma.Lemma 1 Let J be given byJ = � Il �In�l � : (5)Let X and fX be two J-unitary matrices which are partitioned accordingly inblock columns asX = [Xp Xn ] and fX = [ fXp fXn ] ;where X�pJXp = fX�pJfXp = Il; X�nJXn = fX�nJfXn = �In�l:We say that Xp (Xn) spans the positive (negative) subspace with respect to J.Then the matrix X�JfX is also J-unitary, and we havekX�JfXk = kX�nJfXpk+q1 + kX�nJfXpk2 ; (6)kfXk � �kX�nJfXpk+q1 + kX�nJfXpk2 � kXk: (7)3



Proof. The equality (6) follows from the CS decomposition of a J unitarymatrix X�JfX (the proof of such CS decomposition is very similar to the proofof [19, Theorem I.5.1]). The inequality (7) follows from (6) since kfXk �kX��k kX�JfXk = kXk kX�JfXk.3 Bounds for additive perturbationsIn this section we derive relative perturbation bounds for eigenvalues and per-turbation bound for eigenspaces. We also show that the bounds are applicablein numerical computations.3.1 Eigenvalue boundsLet us �rst analyze the perturbations of the eigenvalues. [23, Theorem 2.1]implies the following bound.Theorem 2 Let the perturbation �H satisfy jx��Hxj � � x�Hx for all x 2 Cnand some � < 1. Then the pairs (H; J) and (fH; J) have the same inertia, andje�i � �ijj�ij � �: (8)Note that log10(je�i � �ij=j�ij) can be used to measure the number of correctdecimal digits in numerical results. For relative additive perturbations we havethe following corollary.Corollary 1 Let H = D�AD and fH = D�(A + �A)D. Then (8) holds with� = k�Ak kA�1k, provided that � < 1.Proof. We havejx��Hxj = kx�D��ADxk � k�Ak kA�1k kx�D�ADxk:Now we shall establish Hofmann{Wielandt type bound. We need two aux-iliary lemmas on doubly stochastic matrices. We say that a real n�n matrix Yis doubly stochastic if Yij � 0 and Pnk=1 Yik = Pnk=1 Yki = 1 for k = 1; 2; � � � ; n.By Birkho�'s theorem [7, Theorem 8.7.1], a matrix is doubly stochastic if andonly if it lies in the convex hull of all permutation matrices. This result haslead to the following lemma [10, Lemma 5.1].Lemma 2 (Li) Let Y be a n � n doubly stochastic matrix, and let M be an� n complex matrix. Then there exists a permutation � of f1; 2; � � � ; ng suchthat nXi;j=1 jMijj2Yij � nXi=1 jMi�(i)j2:4



We also need the following lemma from [6].Lemma 3 (Elsner and Friedland) For any square matrix M there existsa doubly stochastic matrix Y of the same dimension such that �2min(M)Yij �jMijj2.Now we are ready to prove our theorem.Theorem 3 Let H = D�AD and fH = D�(A+ �A)D, and let the matrices Xand fX perform the diagonalizations (2) and (4), respectively. If kA�1�AkF <2=3, then vuuut nXi=10@�ii � e�iiq�ii e�ii 1A2 �  0@12 +s1 + 14 21A ; (9)where  = kA�1�AkFq1� kA�1�Ak : (10)Proof. The relation (4) implies(H + �H)fX = fHfX = JfX e�:Premultiply this equality by X�, use (2), and rearrange, to get�X�JfX �X�JfX e� = �X��HfX: (11)Now X��HfX = X�D��ADfX= X�D�A1=2A�1=2�AA�1=2��1=2�1=2A1=2DfX; (12)where � = I + A�1=2�AA�1=2. Set G = A1=2D such that H = G�G. Bycombining (2) with the de�nition of the HSVD from (3), we see that thereexists an unitary matrix U such that GX = U�j�j1=2. Similarly, there exists anunitary matrix eU such that eGfX = eU�je�j1=2, where eG = �1=2A1=2D. Therefore,we can rewrite (12) as X��HfX = j�j1=2	je�j1=2;where 	 = U�A�1=2�AA�1=2��1=2 eU:Thus, (11) becomes�X�JfX �X�JfX e� = �j�j1=2	je�j1=2: (13)5



By using this equality component-wise for all pairs of indices (i; j), squaringeach term, and adding them all together, we obtainnXi;j=10@�ii � e�jjqj�ii e�jjj1A2 j [X�JfX]ijj2 = k	k2F :By applying Lemma 3 to the matrix X�JfX, we havenXi;j=10@�ii � e�jjqj�ii e�jjj1A2 Yij � k	k2Fk(X�JfX)�1k2;for some doubly stochastic matrix Y . Note that, since the matrix X�JfX isJ-unitary, we have k(X�JfX)�1k = kX�JfXk. Lemma 2 further impliesnXi=10@�ii � e��(i)�(i)qj�ii e��(i)�(i)j1A2 � k	k2FkX�JfXk2; (14)for some permutation � of f1; 2; � � � ; ng.Let us bound the norms on the right hand side. First, the assumption ofthe theorem implies thatk	kF � kA�1=2�AA�1=2kFk��1=2k � kA�1=2�AA�1=2kFq1� kA�1=2�AA�1=2k �  ; (15)where  is de�ned by (10). The last inequality follows since all matricesinvolved are Hermitian. Further, assume J has the form (5), which can beachieved by permutation without loss of generality. By (6) it remains to boundkX�nJfXpk, where Xn and fXp are de�ned in Lemma 1. Use (13) component-wise for all pairs of indices (i; j), where i = l + 1; � � � ; n and j = 1; � � � ; l, toget [X�JfX]ij = �	ij j�iij1=2je�jjj1=2�ii � e�jj :For this particular choice of (i; j), the eigenvalues �ii and e�jj have oppositesigns, which implies j [X�JfX]ijj � 12 j	ijj:Here we have used the fact thatpab=(a+b) � 1=2 for any two positive numbersa and b. By squaring the above inequality and adding all terms together fori = l + 1; � � � ; n and j = 1; � � � ; l, we obtainkX�nJfXpkF � 12k	kF : (16)6



By using this, (6) and (15), we havekX�JfXk � 12 +s1 + 14 2: (17)Note that the assumption of the theorem, (17) and (15) imply that the righthand side of (14) is not larger than 4. This, in turn, implies that the permuta-tion � must be such that the quotients in (14) contain only eigenvalues of thesame sign (otherwise at lest two terms would be at least 4). By applying [10,Proposition 2.4] separately to quotients which contain only positive and onlynegative eigenvalues in (14), we conclude that the sum is minimal when � isidentity. Finally, (9) follows by inserting this, (15) and (17) into (14).3.2 Eigenvector boundLet us partition the eigenvalue problem (2) as�X�1X�2 �H [X1 X2 ] = � j�1j j�2j � ;�X�1X�2 � J [X1 X2 ] = �J1 J2 � : (18)By [19, Section VI.2.4], columns of X1 span a simple eigenspace of the pair(H; J) if �1 and �2 have no common eigenvalues. Let us partition the per-turbed problem (4) in the same manner,� fX�1fX�2 � fH [ fX1 fX2 ] = � je�1j je�2j � ;� fX�1fX�2 � J [ fX1 fX2 ] = �J1 J2 � : (19)Let V = X�1 = �V �1V �2 � ; (20)and let fX1 = eQ1 eR1; V2 = Q2R2; (21)be the economical QR factorizations of fX1 and V2, respectively. By R(W ) wedenote the subspace which is spanned by the columns of some matrix W , andby R(W )? we denote its orthogonal complement. The columns of eQ1 and Q2form the orthogonal bases for R(fX1) and R(X1)?, respectively. Let U�V �be a singular value decomposition of the matrix Q�2 eQ1. The diagonal entriesof the matrix sin�(X1; fX1) � � are the sines of canonical angles betweenthe subspaces R(X1) and R(fX1) [19, Corollary I.5.4]. Our theorem bounds7



k sin�(X1; fX1)kF , and is, therefore, a variant of the well-known sin� theorems[2, Section 2], [19, Section V.3] designed for relative perturbations.Let us de�ne the relative gap between the sets of eigenvalues from e�1 and�2 as rg(e�1;�2) = mini;j j [e�1]ii � [�2]jjjqj [e�1]ii � [�2]jjj : (22)This de�nition is based on a de�nition of a relative distance RelDist(�; e�) =j�� e�j=qj�e�j, which was used in [1], [3] and [10, 11]. In the positive de�nitecase (when J = I), all � and e� are positive and RelDist(�; e�) is a generalizedmetric [10, Proposition 2.4]. In the hyperbolic case, however, RelDist(�; e�)does not necessarily increase with the distance between � and e� if they havedi�erent signs. For example, if �1 = f1g and e�2 = f�1; 0:1g, then the mini-mum is attained between 1 and �1 and not between 1 and 0:1.Now we can state our theorem.Theorem 4 Let H = D�AD and fH = D�(A+ �A)D, and let the matrices Xand fX perform the diagonalizations (18) and (19), respectively. If kA�1�Ak <1, then k sin�(X1; fX1)kF � kXk20@12 +s1 + 14 21A  rg(e�1;�2) ; (23)where  is de�ned by (10).Proof. Let (20) and (21) hold. Then we havek sin�(X1; fX1)kF = kQ�2 eQ1kF = kR��2 V �2 fX1 eR�11 kF� kR�12 k kR�11 k kV �2 fX1kF� kR�12 k kR�11 k kX�2JfX1kF : (24)The last inequality follows from (20) and the J-unitarity of X. By interpretingthe relation (13) block-wise, we get�2X�2JfX1 �X�2JfX1 e�1 = �j�2j1=2	21je�1j1=2; (25)where 	 � �	11 	12	21 	22 �is partitioned according to (18). By interpreting (25) component-wise andusing (22), we get j [X�2JfX1]jij � j [	12]jijrg(e�1;�2) ;8



or kX�2JfX1kF � k	kFrg(e�1;�2) �  rg(e�1;�2) : (26)Here the last inequality follows from (15). Further,kR�12 k = 1�min(V2) � 1�min(V ) = kXk: (27)Similarly, k eR�11 k � kfX�1k = kfXk: (28)We can further bound kfXk by (7), which, together with (16) and (15), impliesk eR�11 k � kXk 0@12 +s1 + 14 21A :Finally, (23) follows by inserting this, (27) and (26) into (24).An inconvenience of Theorem 4 is that the bound (23) uses both origi-nal and perturbed eigenvalues in the de�nition of relative gap. To computerg(e�1;�2) one thus needs to know the exact perturbation �A. However, insome important cases, like the ones described in Section 3.3, only informa-tion about k�Ak is given. It is therefore desirable to have the bound whichuses only original eigenvalues. By using Corollary 1, one can easily boundrg(e�1;�2) from below byrg(e�1;�2) � mini;j j [�1]iif1 + � � sign([�2]jj � [�1]ii) � sign([�1]ii)g � [�2]jj jqj [�1]ii[�2]jj(1 + �) j :Another inconvenience of Theorem 4 is that the bound (23) contains theterm kXk2, which is computationally demanding. However, in the importantcase when the matrix D is diagonal (c.f. Section 3.3), we can use Theorem 1to bound kXk2, thus obtaining the following result.Corollary 2 Let H = DAD and fH = D(A + �A)D, where D is diagonalpositive de�nite matrix, and let the matrices X and fX perform the diagonal-izations (18) and (19), respectively. If kA�1�Ak < 1, thenk sin�(X1; fX1)kF � q�(A)0@12 +s1 + 14 21A  rg(e�1;�2) :
9



3.3 Applying the boundsThe results of Sections 3.1 and 3.2 enable us to handle two important classesof perturbations which occur in numerical computation. The �rst class are theperturbations of the form j�Hjij � "jHijj. Such perturbations occur when thematrix H is stored in a computer with machine precision ". Then, k�Ak �"k jAj k. If we chose D = diag(pHii), then further k�Ak � "n. Such choiceof D is nearly optimal in the sense that �(A) � nmin� �(�H�), where theminimum is over all non-singular diagonal matrices [18]. The second, moregeneral, class of perturbations has the form j�Hjij � "qHiiHjj. By choosingthe same D as above, we again have k�Ak � "n. Such perturbations occurduring various numerical algorithms. Also, for the above perturbations, if�(A)� �(H), then our eigenvalue bounds are better than the classical norm-wise bounds like [19, Corollary VI.3.3] which can be applied to the de�nitematrix pair (H; J). Even more, since the above choice of D is almost optimal,our eigenvalue bounds can never be much worse than the classical bounds. If�(A)� �(H), then our eigenvector bound can also be better than the classicalbounds like [19, Theorem VI.3.9], in particular when the relative gap is largeand the absolute gap is small. This typically occurs in the presence of severaltiny eigenvalues.The following numerical example illustrates some of the above facts.Example 1 Let H = DAD withA = 2666664 1 0:8 0:8 0:8 0:80:8 1 0:8 0:8 0:80:8 0:8 1 0:8 0:80:8 0:8 0:8 1 0:80:8 0:8 0:8 0:8 1
3777775 ; D = 2666664 1010 50 1 1 105

3777775 ;and let J = diag(1; 1; 1;�1;�1). The eigenvalues of the pair (H; J) are (prop-erly rounded)�1 = 1020; �2 = 722; �3 = 0:254; �4 = �0:254; �5 = �3:6 � 107:Note that �(H) = 5 � 1020 while �(A) = 21. Let the perturbed matrix fH begiven as in Theorem 3 with�A = 2666664 0:46 �0:26 �0:02 0:36 0:42�0:26 �0:96 �0:66 0:21 0:69�0:02 �0:66 �0:91 �0:15 0:140:36 0:21 �0:15 0:27 �0:330:42 0:69 0:14 �0:33 �0:35
3777775 :This is relative component-wise perturbation satisfying j�Aj � 10�6jAj. Also,k�Ak � 2 � 10�6, k�AkF � 2:3 � 10�6. When applying Theorem 3, the left hand10



side of (9) (the exact perturbation) is equal to 8:4 � 10�6 and the bound on theright hand side is 1:4 � 10�5 with � kA�1k k�AkFq1� kA�1k k�Ak � 1:4 � 10�5:Note that the right hand side of (9) remains the same for any diagonal gradingmatrix D, thus the bound of Theorem 3 is independent of grading. Also, notethat we do not need to know the perturbation �A exactly, since the boundremains approximately the same for any matrix �A which satis�es j�Aj �10�6jAj or k�Ak � 10�6. On the other hand, the bounds of [19, CorollaryVI.3.3] are completely useless, since there kEk = 0 but kFk = k�Hk = 4:6�1013and (A;B) = 0:97 according to [19, De�nition VI.1.17].Let us now consider invariant subspaces. The bound of Corollary 2 isobtained by simply multiplying the eigenvalue bound by q�(A) = 4:59 anddividing it by relative gap. Let sin�i = sin�(xi; exi), where xi is the eigenvec-tor of �i. Table 1 gives the corresponding relative gaps, the exact perturbationsand the bounds computed by Corollary 2.i 1 2 3 4 5rg(e�i;�2) 1:6 � 106 53 2 2 223k sin�ikF 5 � 10�14 5 � 10�8 10�7 10�7 2 � 10�8Corollary 2 3 � 10�11 9 � 10�7 3 � 10�5 3 � 10�5 2 � 10�7Table 1: Eigenvector perturbationsOur results can be readily used in the error analysis of some numerical algo-rithms, in particular the J-orthogonal Jacobi method for solving the problem(1) from [21] and [15, Section 3.1]. One step of this method in oating-pointarithmetic with machine precision " induces the backward error �A such thatk�Ak � const � " [15, Theorem 3.2.1]. Theorem 3 and Corollary 2 then givebounds for errors in eigenvalues and invariant subspaces after one step of themethod. By adding these errors together, similarly as in [15, Corollary 3.2.2],we obtain overall error bounds for the method.4 Bounds for multiplicative perturbationsIn this section we shall give a relative Hofmann{Wielandt type bound, similarto the one of Theorem 3, for the case of multiplicative perturbation of a matrixH. We shall also prove a sin� type bound, similar to the one of Theorem 4.Let us �rst prove our eigenvalue result.11



Theorem 5 Let H + �H = (I +E)�H(I +E), and let the matrices X and fXperform the diagonalizations (2) and (4), respectively. Let� = kEkF1� kEk ; � = 2�kXk2q1� 4�kXk2 : (29)If � < 1=(4kXk2), thenvuuut nXi=1  j�ii � e��(i)�(i)jmaxfj�iij; je��(i)�(i)jg!2 � � �� +q1 + �2 � ; (30)for some permutation � of f1; 2; � � � ; ng.Proof. As in the proof of Theorem 3, (2) and (4) imply (11). SetbE = E�(I + E)��;and note that k bEkF � �; kEkF � �:Insert �H � bEfH +HE into (11), and use (2) and (4) to get�X�JfX �X�JfX e� = �X� bEJfX e�� �X�JEfX:By interpreting this relation component-wise, for each pair (i; j) we getj�ii � e�jjjmaxfj�iij; je�jjjgjX�JfXjij � jX� bEJfXjij + jX�JEfXjij: (31)By squaring each inequality, adding them together, and using Lemma 3 andLemma 2 as in the proof of Theorem 3, we obtainvuuut nXi=1 j�ii � e��(i)�(i)jmaxfj�iij; je��(i)�(i)jg!2 � kX�JfXk (kX� bEJfXkF + kX�JEfXkF )� kX�JfXk kXk kfXk 2�: (32)It remains to bound kX�JfXk and kfXk by using (6) and (7), respectively. Todo so we need to bound kX�nJfXpk, where Xn and fXp are de�ned in Lemma1. For those indices (i; j) which correspond to Xn and fXp, �ii is negative ande�jj is positive, thus the fraction on the left hand side of (31) is always greaterthan or equal to one. Therefore, (31) implieskX�nJfXpkF � kX�n bEJfXpkF + kX�JEfXkF � 2� kXk kfXk: (33)12



This and (7) implykfXk � 2� kXk2 kfXk � kXkq1 + (2� kXk kfXk)2:The assumption of the theorem implies the positivity of the left hand side.After squaring and rearranging this inequality, we getkfXk2 � kXk21� 4� kXk2 : (34)By inserting (33) and (34) into (6) we getkX�JfXk � � +q1 + �2;where � is de�ned by (29). Finally, (30) follows by inserting this and (34) into(32).One di�erence between additive perturbations (Theorem 3) and this the-orem is that the bound (30) depends on the eigenvector matrix X. How-ever, if we set H = DAD where D = diag(pHii), then Theorem 1 implieskXk2 � q�(A), and (30) holds with� = 2�q�(A)r1� 4�q�(A) :Also note that if kEk, and then, in turn, �, are su�ciently small, then theright hand side of (30) is asymptotically equal to �.We end the paper by proving an eigenvector bound for multiplicative per-turbations.Theorem 6 Let H + �H = (I +E)�H(I +E), and let the matrices X and fXperform the diagonalizations (18) and (19), respectively. Let the relative gapbetween the sets of eigenvalues from e�1 and �2 be de�ned asrg(e�1;�2) = mini;j j [e�1]ii � [�2]jjjmaxfj [e�1]iij; j [�2]jjjg : (35)Let � be de�ned by (29). If � < 1=(4kXk2), thenk sin�(X1; fX1)kF � kXk41� 4� kXk2 � 2�rg(e�1;�2) : (36)Further, if we write H = DAD, where D = diag(pHii), thenk sin�(X1; fX1)kF � �(A)1� 4�q�(A) � 2�rg(e�1;�2) : (37)13



Proof. The proof is a combination of the proofs of Theorems 4 and 5. As inthe proof of Theorem 4, the relations (24), (27) and (28) implyk sin�(X1; fX1)kF � kXk kfXk kX�2JfX1kF : (38)By using the (2; 1) block of (31) and the de�nition (35), we getjX�2JfX1jij � (jX�2 bEJfX1jij + jX�2JEfX1jij) � 1rg(e�1;�2) :Therefore,kX�2JfX1kF � kX�2 bEJfX1kF + kX�2JEfX1kFrg(e�1;�2) � kXk kfXk � 2�rg(e�1;�2) :Now (36) follows by inserting this and (34) into (38). Finally, (37) followsfrom (36) and Theorem 1.We would like to thank the referee for carefully reading the manuscript andcorrecting some mistakes.References[1] J. Barlow and J. Demmel, Computing accurate eigensystems of scaleddiagonally dominant matrices, SIAM J. Numer. Anal., 27:762{791 (1990).[2] C. Davis and W. M. Kahan, The rotation of eigenvectors by a perturba-tion. III, SIAM J. Numer. Anal., 7:1{46 (1970).[3] J. Demmel and K. Veseli�c, Jacobi's method is more accurate than QR,SIAM J. Matrix Anal. Appl., 13:1204{1244 (1992).[4] S. C. Eisenstat and I. C. F. Ipsen, Relative perturbation techniques forsingular value problems, SIAM J. Numer. Anal., 32(6), (1995).[5] S. C. Eisenstat and I. C. F. Ipsen, Relative perturbation results foreigenvalues and eigenvectors of diagonalisable matrices, BIT, 38:502{509(1998).[6] L. Elsner and S. Friedland, Singular values, doubly stochastic matrices,and applications, Linear Algebra Appl., 220:161{169 (1995).[7] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge UniversityPress, Cambridge, 1990. 14
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