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Subspace X is an invariant subspace of a general matrix H if HX � X .We consider invariant subspaces which correspond to the set of k neighboringeigenvalues T = f�i; �i+1; � � � ; �i+k�1g; (1)such that the intersection of T with the rest of the spectrum of H is empty.That is, if i > 1, then �i�1 < �i, and if i+k�1 < n then �i+k�1 < �i+k. Thenthe corresponding invariant subspace is spanned by the columns of the matrixQT = [ qi qi+1 � � � qi+k�1 ] ;and the spectral projection onto that subspace is de�ned by P = QTQ�T .Furthermore, let fH = H + �H be a perturbed matrix for some Hermitianperturbation �H. Let �(fH) = fe�1; � � � ; e�ng, and let e�1 � e�2 � � � � � e�n. IfeT = fe�i; e�i+1; � � � ; e�i+k�1gis separated from the rest of �(fH), then eP � P + �P is the spectral projectiononto the invariant subspace which is spanned by the columns of the matrixeQT = [ eqi � � � eqi+k�1 ]. Also, eP = eQT eQ�T .Aim of this paper is to bound k�Pk for certain types of relative matrixperturbations, where kAk = maxx6=0px�A�Ax=px�x. k�Pk is also the sineof the largest canonical angle between subspaces spanned by the columns ofQT and eQT . More precisely, the sines of the canonical angles between thesesubspaces are diagonal entries of the matrix sin� � �, where U�V � is asingular value decomposition of the matrix (Q?T )� eQT [18, De�nition I.5.3].Since k�Pk = k sin�k [18, Theorem I.5.5], the classical bound for k�Pk isgiven by the well-known sin� theorem [2, Section 2], [18, Theorem V.3.6],k�Pk � kRkminf�i � e�i�1; e�i+k � �i+k�1g (2)� k�Hkminf�i � e�i�1; e�i+k � �i+k�1g ; (3)provided that both terms in the denominators are positive. Here, R = fHQT �QT diag(�i; � � � ; �i+k�1). The upper bound (3) is applicable to cases where theperturbation �H is not known exactly, but just the upper bound for k�Hk. Theabove bounds are, like other classical norm-based perturbation bounds suchas those from [12, Sections 11.5 and 11.7] and [18, Section V.3.3], proportionalto the norm of the perturbation or residual, and are inversely proportional tosome sort of the absolute distance between the eigenvalues which de�ne theobserved subspace and the rest of the spectrum. In this paper we derive arelative bound for k�Pk. Our bound is proportional to parameter � whichdetermines the size of relative perturbation of H as described below, and2



inversely proportional to a relative distance between the eigenvalues from Tand the rest of the spectrum of H.Relative perturbation bounds for eigenvalue and singular value problemshave been actively researched in the past years [3, 1, 4, 21, 16, 6, 5, 10, 11, 7, 8].We consider perturbations �H which satisfyjx��Hxj � �x� H x; (4)for all x and some � 2 [0; 1). HereH = pH2 = Qj�jQ�; (5)is a spectral absolute value of H, that is, a positive de�nite polar factor ofH. This inequality implies that the perturbations which satisfy (4) are inertiapreserving. Such perturbations are very general. If H is a graded matrix ofthe form H = D�AD; (6)then we can write fH = D�(A + �A)D, and (4) holds with� = k�Ak k bA�1k; (7)where bA = D�� H D�1: (8)Indeed,jx��Hxj � jx�D��ADxj = kx�D��ADxk � kx�D�k k�Ak kDxk� k�Ak k bA�1k x� H x:Note that any perturbation H + �H can clearly be interpreted as the per-turbation of a graded matrix, and vice versa. Another important class ofperturbations is when H is perturbed element-wise in the relative sense,j�Hijj � "jHijj: (9)By setting D = diag(q H ii) (10)and using j�Aijj � "jAijj, the relation (7) implies that (4) holds with� = "k jAj k k bA�1k: (11)Since bAii = 1, we have k bA�1k � �( bA) � nk bA�1k, where �(A) � kAk kA�1kdenotes the spectral condition number. Also, k jAj k � n [14]. The diagonal3



grading matrix D from (10), which is also called the scaling matrix, is almostoptimal in the sense that [17]�( bA) � nmin�D �( �D H �D) � n�( H ) = n�(H);where the minimum is taken over all non-singular diagonal matrices. Similarly,for more general perturbations of the typej�Hijj � "DiiDjj; (12)(4) holds with � = "nk bA�1k � "n�( bA): (13)Perturbations of the form (9) typically occur when the matrix is stored intocomputer with machine precision ". Such perturbations are also caused bymeasurements since data are often determined to some relative accuracy. Per-turbations of the form (12) occur during various numerical algorithms (matrixfactorizations, eigenvalue or singular value computations).Another important class of matrices are scaled diagonally dominant ma-trices. Such matrix has the form H = D(J + N)D, where D is a diagonalpositive de�nite, J = J� = J�1, and kNk < 1 [1, 21]. Under perturbations oftype (9) we have � = n(1 + k jN j k)=(1� kNk) [21, Theorem 2.29].Note that � also bounds relative changes in eigenvalues [21], that is,1� � � e�j�j � 1 + �: (14)Perturbation bounds for eigenvectors of simple eigenvalues were given forscaled diagonally dominant matrices in [1], and for positive de�nite matrices in[4]1. The bound for perturbation of the spectral projection onto invariant sub-space which corresponds to single, possibly multiple, eigenvalue of an inde�niteHermitian matrix was given in [21, Theorem 2.48]. We generalize this boundto spectral projections onto invariant subspaces which correspond to a set ofneighboring eigenvalues. Our result and the related results from [1, 4, 21, 16]and other works, are also useful in estimating the accuracy of highly accuratealgorithms for computing eigenvalue decompositions [1, 4, 20, 14].The rest of the paper is organized as follows. In Section 2 we prove ourbound. In Section 3 we show how to e�ectively compute our bound in thecase of graded matrices, and give an example which illustrates our bound andcompares it with the classical bounds (2) and (3).We would like to thank the referee for carefully reading the manuscript, andcomments which improved the presentation of the paper.1If H is positive de�nite, then H = H . 4



2 The boundIn this section we use the notation of Section 1. To simplify the notation seta = �i�1; � = �i; � = �i+k�1; b = �i+k;ea = e�i�1; e� = e�i; e� = e�i+k�1; eb = e�i+k: (15)Without loss of generality we assume that � > 0; otherwise one should considerthe matrix �H. The relative gap (or relative distance) between the set T andthe rest of the spectrum of H is de�ned byrgT = minfrg�; rg�g; (16)where rg� = b� �b+ � ; rg� = 8>>><>>>: �� a� +q�jaj ; if � > 0;�� aj�j+ jaj ; if � < 0:Here the quotients are de�ned if all the values they contain are de�ned aswell. More precisely, if b does not exist, then rg� is not de�ned and rgT = rg�.Thus, relative gap is always de�ned, except when neither a nor b exist, inwhich case trivially k�Pk = 0. This relative gap is similar to relative gapsused in [21, 13, 1, 4].We now state our theorem.Theorem 1 Let H be a non-singular Hermitian matrix of order n. Let T =f�i; : : : ; �i+k�1g, where � � �i+k�1 > 0, and let P be the spectral projectiononto the invariant subspace which corresponds to the eigenvalues from the setT . Let the relative gap between T and the rest of the spectrum of H, rgT , bede�ned by (16) and (15). Let fH = H + �H be the perturbed matrix, where�H is Hermitian perturbation such that jx��Hxj � �x� H x, for all x andsome � 2 [0; 1). Let eT = fe�i; : : : ; e�i+k�1g, and let eP = P + �P be the spectralprojection onto invariant subspace which corresponds to the eigenvalues fromthe set eT . If � < rgT , thenk�Pk � 12  � � �minfj�j; �g � 1rgT + j�j+ �minfj�j; �g! �rgT � 11� �rgT :Proof. The proof is similar to the proof of [21, Theorem 2.48]. The projectionP is de�ned by the Dunford integral [9, Section II.1.4],P = 12�i Z� (�I �H)�1d�: (17)5



Here � is a curve around T which separates T from the rest of the spectrumof H. We choose � as the circle with the center C and the radius r de�ned byC = �12(� + � + r� � r�); 0� ; r = 12(� � � + r� + r�); (18)where r� = j�jrgT and r� = �rgT . Therefore, � passes through the points(�� r�; 0) and (�+ r�; 0). Let us show that eT is also in the interior of � whilethe rest of the spectrum of fH remains outside �. By using (14), the de�nitionof rgT , and the assumption of the theorem � < rgT , we havee� � � + �� < � + rgT � = � + r� � � + rg��= b� rg�b � b� rgT b < b� �b � eb:Similarly, ea � a+ � sign(a)a < �� r� < �� � sign(�)� � e�:In the last relation the three cases (i) a > 0, (ii) a < 0 and � > 0, and (iii)� < 0, have to be veri�ed separately. We conclude that the same � can beused to de�ne eP , as well. Therefore,eP = 12�i Z� (�I � (H + �H))�1d �: (19)Set R� = (�I �H)�1. From (17) and (19) it follows that�P = 12�i Z� R��H " 1Xk=0(R��H)k#R�d �;provided that �(R��H) < 1, where � denotes the spectral radius. This condi-tion is veri�ed later. Set� = H �1=2�H H �1=2; z� = R� H 1=2; !� = H 1=2R� H 1=2:Note that (4) implies k�k2 � �. Since R� and H 1=2 commute, we have�P = 12�i Z� z�� 1Xk=0(!��)kz�d� :Also, since R��H and !�� are similar, we have�(R��H) = �(!��) < k!�k�: (20)Our choice of � implies that k�Pk � r�� 11� !� ; (21)6



where � = max�2� kz�k2 = max�2� max�2�(H) j�jj�� �j2 ;! = max�2� k!�k = max�2� max�2�(H) j�jj�� �j :Minimal distance between a variable point which lies on the circle with thecenter on the real axis and some �xed point on the real axis is attained in oneof the two points where the circle intersects the real axes. Thus, the maximaover � in the above equalities are attained at those � which lie on the realaxis. Consequently, maxima over � 2 �(H) are attained for eigenvalues whichare closest to the circle �, and we have� = max( jaj(�� r� � a)2 ; j�jr2� ; �r2� ; b(b� � � r�)2) � maxf�a; ��; ��; �bg;! = max( jaj�� r� � a; j�jr� ; �r� ; bb� � � r�) � maxf!a; !�; !�; !bg:Now !� = 1rgT � 1rg� = bb� � � rg�� � !b: (22)Since � < b, squaring (22) and dividing by � gives �� > �b. We split the restof the proof in two cases, � > 0 and � < 0.Case 1. Let � > 0. We have�� = 1�rg2T � 1�rg2� = jaj(�� �rg� � a)2 � �a:If a > 0, then multiplying the above relation by � and taking square root gives!� > !a. If a < 0, then !a < 1 < !�. Altogether,! = !� = !� = 1rgT ; � = �� = 1�rg2T : (23)Using ! from (23), the assumption � < 1=rgT , and (20), gives �(R��H) < 1,as desired. The theorem now follows by inserting ! and � from (23) and rfrom (18) into (21), and using 0 < � < �.Case 2. Let � < 0. By applying the same reasoning as in (22) to !a and!�, we have !a < !�. Since j�j < jaj, squaring this inequality and dividing byj�j gives �� > �a. Therefore,! = !� = !� = 1rgT ; � = maxf��; ��g = 1minfj�j; �grg2T : (24)7



As in Case 1, we conclude that �(R��H) < 1.From (23) and (24) we see that the latter relations hold in both cases. Thetheorem follows by inserting ! and � from (24) and r from (18) into (21).Q.E.D.If � = �, then our bound reduces to the bound from [21, Theorem 2.48](the term in parentheses equals one), which holds for invariant subspace of one,possibly multiple, eigenvalue. Compared to the existing relative perturbationbounds from [1, 4, 21, 11], our bound is the most general since it holds for allinde�nite non-singular Hermitian matrices and applies to eigenspaces whichcorrespond to any set of neighboring eigenvalues. For positive de�nite matricesone can prove Theorem 1 with a better type of relative gap [19]. If H isgiven in the factorized form H = GAG� and is perturbed through its factorG, the perturbation bound for invariant subspace of one, possibly multiple,eigenvalue, is given in [16]. By using technique similar to the one in the proofTheorem 1, one can generalize this bound to subspaces which correspond to aset of neighboring eigenvalues [19].Remark 1 The bound of Theorem 1 di�ers from the bound of [21, Theorem2.48] by the term in parentheses. This term depends on the relative size ofthe set T , which is essentially the condition number kcHk kcH�1k, where cHis the restriction of H to the observed invariant subspace. This conditionnumber appears naturally if the interval [�; �] is �lled with pathologicallyclose eigenvalues. However, if the set T consists of two sets of eigenvalues,T1 = f�; � � � ; �lg and T2 = f�l+1; � � � ; �g, where �l and �l+1 are well separated,than this condition number is arti�cial and can be avoided as follows: letP � PT , PT1, and PT2 , be the projections onto subspaces corresponding toT , T1 and T2, respectively. Then P = PT1 + PT2 , �P = �PT1 + �PT2 andk�Pk � k�PT1k + k�PT2k, and the bound obtained by bounding k�PT1k andk�PT2k separately will be sharper than the one obtained by bounding k�Pkdirectly. Of course, this idea can be used inductively.3 Numerical exampleIn this section we �rst describe how to compute � from Theorem 1 and howto estimate the accuracy of the computed invariant subspace. Then we givean example which illustrates Theorem 1 and compares it with the classicalbounds (2) and (3). Finally, we make some concluding remarks.Let H be a graded matrix given by (6). In order to compute � from (7),(11) or (13), we need to know bA from (8). bA can be computed by the highlyaccurate eigenreduction algorithm from [20, 14]. This algorithm �rst factorizes8



H as H = GJG� by the symmetric inde�nite factorization from [15]. HereJ = diag(�1). This factorization is followed by the one-sided J-orthogonalJacobi method on the pair G; J [20, 14]. This method forms the sequence ofmatrices Gk+1 = GkFk; where F �kJFk = J:Such matrices Fk are called J-orthogonal. This sequence converges to somematrix GF which has numerically orthogonal columns. The eigenvalues of Hare approximated by the diagonal elements of the matrix � � j�jJ , wherej�j = diag(F �G�GF ). The corresponding eigenvectors of H are approximatedby the columns of the matrix by Q � GF j�j�1=2. Therefore, H from (5)is given by H = GFF �G�. Since the matrix GF is readily available inthe computer, we can compute bA from (8) as bA = D��GFF �G�D�1, or evensimpler, we can compute just its factor D��GF . Therefore, if the eigenvalueproblem is solved by the above highly accurate algorithm, then the computa-tion of bA requires only little extra cost. Error bounds for this highly accurateeigenreduction algorithm, which are given in [14], ensure that the computedbA is accurate enough. This particularly holds for well-scaled matrices, that is,for the matrices where bA is well conditioned if D is chosen as in (10). Oncewe have bA, we can compute � directly from the de�nitions (7), (11), or (13),provided that we know an upper bound for k�Ak or ".Remark 2 In order to estimate the accuracy of the invariant subspace whichis computed by some numerical method, we assume that fH is the originalmatrix, �i; � � � ; �i+k�1 are the computed eigenvalues, and the columns ofQT arethe corresponding computed eigenvectors. With this notation we can clearlyuse (2), provided that we estimate the eigenvalues e�i�1 and e�i+k which appearin the denominator. The bound of Theorem 1, on the other hand, uses onlyoriginal quantities. Therefore, this bound can be applied by simply insertingthe computed quantities, that is, by switching the roles of H and fH, providedwe know � which is generated by the algorithm. For example, if we use theabove highly accurate algorithm in double precision, error analysis from [14, 15]shows that � is given by (13) with " � 10�16 in (12).Let us give a an example. LetH = 26664 7:7e+ 08 9:9e+ 01 �5:8e+ 06 �2:0e� 01 6:1e� 02 1:2e� 019:9e+ 01 5:7e� 04 �7:5e+ 00 �1:1e� 07 �9:9e� 08 �3:2e� 08�5:8e+ 06 �7:5e+ 00 �2:9e+ 05 �8:3e� 04 �3:9e� 03 1:1e� 03�2:0e� 01 �1:1e� 07 �8:3e� 04 1:1e� 09 8:5e� 11 4:9e� 116:1e� 02 �9:9e� 08 �3:9e� 03 8:5e� 11 5:7e� 10 1:4e� 101:2e� 01 �3:2e� 08 1:1e� 03 4:9e� 11 1:4e� 10 4:6e� 10 37775;and �H = 26664 �6:8e+ 02 �2:2e� 05 �2:8e+ 00 7:2e� 09 1:3e� 08 �3:2e� 08�2:2e� 05 �3:7e� 11 �1:6e� 07 9:7e� 15 �4:3e� 15 �5:1e� 15�2:8e+ 00 �1:6e� 07 7:8e� 02 3:4e� 11 �6:4e� 10 1:1e� 097:2e� 09 9:7e� 15 3:4e� 11 6:4e� 16 8:0e� 19 1:1e� 171:3e� 08 �4:3e� 15 �6:4e� 10 8:0e� 19 3:5e� 16 6:1e� 18�3:2e� 08 �5:1e� 15 1:1e� 09 1:1e� 17 6:1e� 18 2:8e� 16 37775:9



The eigenvalues of H are (properly rounded)�1 = �3:34 � 105; �2 = 3:89 � 10�10; �3 = 6:10 � 10�10;�4 = 1:10 � 10�9; �5 = 6:94 � 10�4; �6 = 7:70 � 108:Here �H is a component-wise relative perturbation (9) with " = 10�6. Notethat k�Hk � 6:8 � 102. We have used the diagonal scaling matrix D from (10).Also, � � 4:2 �10�6 is computed from (11) with k jAj k � 1:7 and k bA�1k � 2:4.Perturbations of various subspaces and their bounds are shown in Table1. The table is formed as follows: the �rst column describes the set of theeigenvalues which de�ne QT . For example, T23 means that QT contains eigen-vectors which correspond to eigenvalues �2 and �3. The second column givesthe actual value of k�Pk, and the other columns give error bounds computedfrom Theorem 1, (2) and (3), respectively. Since the diameter of the set T2345is large, and this set is a union of two well separated sets T234 and T5, we usedRemark 1 and computed the bound for k�PT2345k by adding the bounds fork�PT234k and k�PT5k. Table 1: Perturbation bounds.T k�Pk Theorem 1 (2) (3)T2 1:6 � 10�7 1:9 � 10�5 > 1 > 1T23 1:2 � 10�7 3:3 � 10�5 > 1 > 1T234 1:2 � 10�10 1:2 � 10�5 2:9 � 10�4 > 1T2345 2:4 � 10�12 1:6 � 10�5 6:8 � 10�10 2:0 � 10�3T5 1:2 � 10�10 4:2 � 10�6 3:3 � 10�1 > 1T6 1:8 � 10�8 4:2 � 10�6 8:8 � 10�7 8:8 � 10�7The values of k�Pk were computed ask�Pk = kP � ePk = kQTQTT � eQT eQT k;where the matrices QT and eQT are de�ned in Section 1. The matrices QTand eQT were computed by the the above highly accurate algorithm in doubleprecision. Since here k jAj k � 1:7, k bA�1k � 2:4, and " � 10�16, (13) impliesthat � � 10�16. Since relative gaps are moderate in all cases, from Remark 2we conclude that all of QT were computed to almost full accuracy. The sameholds for all of eQT , thus the computed values of k�Pk which are displayed inTable 1 are almost equal to the exact ones.From Table 1 we can make some interesting observations which also depictthe general behavior. The bound of Theorem 1 is usually sharper than theclassical bounds (2) and (3) for subspaces which correspond to tiny (clustered)10



eigenvalues which have large relative gaps and small absolute gaps like T2, T23,T234, T2345, and T5. For such subspaces classical bounds can completely fail.Classical bounds are, as expected, sharper for subspaces which correspond toabsolutely large eigenvalues like T6, but our bound is still good.Let us conclude the paper by saying that our bound is in appropriate casessharper than the classical norm-wise bounds which use absolute gaps. Ourbound is useful for relative perturbations which occur in numerical compu-tations, and can be used to estimate the accuracy of the computed invariantsubspaces.References[1] J. Barlow and J. Demmel, Computing accurate eigensystems of scaleddiagonally dominant matrices, SIAM J. Numer. Anal., 27:762{791 (1990).[2] C. Davis and W. M. Kahan, The rotation of eigenvectors by a perturba-tion. III, SIAM J. Numer. Anal., 7:1{46 (1970).[3] J. Demmel and W. M. Kahan, Accurate singular values of bidiagonalmatrices, SIAM J. Sci. Stat. Comput., 11:873{912 (1990).[4] J. Demmel and K. Veseli�c, Jacobi's method is more accurate than QR,SIAM J. Matrix Anal. Appl., 13:1204{1244 (1992).[5] Z. Drma�c, Computing the Singular and the Generalized Singular Values,PhD thesis, Fernuniversit�at, Hagen, 1994.[6] S. C. Eisenstat and I. C. F. Ipsen, Relative perturbation techniques forsingular value problems, SIAM J. Numer. Anal., 32(6), (1995).[7] S. C. Eisenstat and I. C. F. Ipsen, Relative perturbation results foreigenvalues and eigenvectors of diagonalisable matrices, BIT, 38:502{509(1998).[8] I. C. F. Ipsen, Relative perturbation bounds for matrix eigenvalues andsingular values, in:Acta Numerica 1998, Vol. 7, Cambridge UniversityPress, Cambridge, pp. 151{201 (1998).[9] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin,1966.[10] R.-C. Li, Relative perturbation theory: (i) eigenvalue and singular valuevariations, SIAM J. Matrix Anal. Appl., 19:956{982 (1998).11
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