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or H = U�U� = nXi=1 �iuiu�i ;where H is a non-singular Hermitian matrix of order n, � = diag(�i) is adiagonal matrix whose diagonal elements are the eigenvalues of H, and U =[ u1 u2 � � � un ] is unitary matrix whose i-th column is an eigenvector whichcorresponds to �i. Subspace X is an invariant subspace of a general matrixH if HX � X . If H is Hermitian and the set of eigenvalues f�i1; �i2; � � � ; �ikgdoes not intersect the rest of the spectrum of H, then the corresponding k-dimensional invariant subspace is spanned by the eigenvectors ui1 ; ui2; � � � ; uik .Throughout the paper k�k and k�kF will denote the 2-norm and the Frobeniusnorm, respectively.Our aim is to give bound for perturbations of invariant subspaces for the casewhen H is a graded Hermitian matrix, that is,H = D�AD; (1)where D is some non-singular grading matrix, under Hermitian relative per-turbation of the formH + �H � fH = D�(A+ �A)D:Our bound is a relative variant of the well-known sin� theorems by Davisand Kahan [2], [24, Section V.3.3].The development of relative perturbation results for eigenvalue and singu-lar value problems has been very active area of research in the past years[3,1,4,29,21,6,5,15,16,7,13] (see also the review article [12]). We shall �rst de-scribe the relative perturbation and state the existing eigenvalue perturbationresults. Let �H be the Hermitian relative perturbation which satis�esjx��Hxj � �x� H x; 8x; � < 1; (2)where H = pH2 = U j�jU� is a spectral absolute value of H (that is, H isthe positive de�nite polar factor of H). Under such perturbations the relativechange in eigenvalues is bounded by [29]1� � � e�j�j � 1 + �: (3)2



This inequality implies that the perturbations which satisfy (2) are inertiapreserving. This result is very general and includes important classes of per-turbations. If H is a graded matrix de�ned by (1) andbA = D�� H D�1; (4)then (3) holds with 2� = k�Akk bA�1k: (5)Indeed,jx��Hxj= jx�D��ADxj = kx�D��ADxk � kx�D�kk�AkkDxk�k�Akk bA�1k x� H x; (6)as desired. Another important class of perturbations is when H is perturbedelement-wise in the relative sense,j�Hijj � "jHijj: (7)By settingD = diag(q H ii); (8)since j�Aijj � "jAijj, the relation (6) implies that (3) holds with� = "kjAjkk bA�1k: (9)Since bAii = 1, we have k bA�1k � �( bA) � nk bA�1k, where �(A) � kAkkA�1kis the spectral condition number. Also, kjAjk � n (see [29, Proof of Theorem2.16]). The diagonal grading matrix D from (8) is almost optimal in the sensethat [23]�( bA) � nmin�D �( �D� H �D) � n�( H ) = n�(H);where the minimum is taken over all non-singular diagonal matrices. Similarly,for more general perturbations of the typej�Hijj � "DiiDjj; (10)2 In [29] no attention was paid to scalings with non-diagonal matrix D, so thisresult is new. Also notice that any perturbation H + �H can clearly be interpretedas the perturbation of a graded matrix, and vice versa.3



(3) holds with� = "nk bA�1k � "n�( bA): (11)Remark 1 Application of the bounds (5), (9) and (11) requires only theknowledge of the size of relative perturbation k�Ak, and not the perturbation�A itself. Such situation occurs in several cases which are very important inapplications. When the data are determined to some relative accuracy or whenthe matrix is being stored in computer memory, the only available informationabout �H is that it satis�es (7). Similarly, in error analysis of various numericalalgorithms (matrix factorizations, eigenvalue or singular value computations),the the only available information is that �H satis�es more general condition(10).If H is positive de�nite, then H = H, and (9) and (11) reduce to thecorresponding results from [4]. We would like to point out a major di�erencebetween positive de�nite and inde�nite case.Remark 2 If H is positive de�nite, then small perturbations of the type (7)and (10) cause small relative changes in eigenvalues if and only if �( bA) � �(A)is small [4]. If H is inde�nite, then from (9) and (11) it follows that small �( bA)implies small relative changes in eigenvalues. However, these changes can besmall even if �( bA) is large [29,18]. Although such examples can be successfullyanalyzed by perturbations through factors as in [29,28], this shows that thegraded inde�nite case is essentially more di�cult than the positive de�niteone.Perturbation bounds for eigenvectors of simple eigenvalues were given forscaled diagonally dominant matrices in [1], and for positive de�nite matricesin [4]. The bound for invariant subspace which corresponds to single, possi-bly multiple, eigenvalue of an inde�nite Hermitian matrix was given in [29,Theorem 2.48]. This bound, given in terms of projections which are de�ned byDunford integral as in [14, Section II.1.4], is generalized to invariant subspaceswhich correspond to a set of neighboring eigenvalues in [25]. In [16, Theorems3.3 and 3.4] two bounds for invariant subspaces of a graded positive de�nitematrix were given. We generalize the result of [16, Theorem 3.3] and give thebound for k sin�kF for a graded non-singular inde�nite matrix. Our resultsare, therefore, relative variants of the well-known sin� theorems [2, Section2], [24, Theorem V.3.4]. Our results also generalize the ones from [29,25] tosubspaces which correspond to arbitrary set of eigenvalues. Our results andthe related results from [1,4,29,21] and other works, are also useful in esti-mating the accuracy of highly accurate algorithms for computing eigenvaluedecompositions [1,4,27,18].The paper is organized as follows: in Section 2 we prove our main theorem. InSection 3 we show how to e�ciently apply that theorem, in particular for the4



important types of relative perturbations (7) and (10) (c.f. Remarks 1 and 2).We also describe some classes of well-behaved inde�nite matrices. In Section4 we give some concluding remarks.2 Bound for invariant subspacesLet the eigenvalue decomposition of the graded matrix H be given byH � D�AD = U�U� = [U1 U2 ] ��1 00 �2 � �U�1U�2 � ; (12)where�1 = diag(�i1; �i2 ; � � � ; �ik); �2 = diag(�j1; �j2; � � � ; �jl);and k+ l = n. We assume that �1 and �2 have no common eigenvalues, thus,U1 and U2 both span simple invariant subspaces according to [24, De�nitionV.1.2]. Similarly, let the eigenvalue decomposition of fH befH � D�(A+ �A)D = eU e� eU� = [ eU1 eU2 ] � e�1 00 e�2 � � eU�1eU�2 � ; (13)where e�1 = diag(e�i1 ; � � � ; e�ik) and e�2 = diag(e�j1; � � � ; e�jl).LetX�Y � be a singular value decomposition of the matrix eU�2U1. The diagonalentries of the matrix sin� � �, are the sines of canonical angles betweensubspaces which are spanned by the columns of U1 and eU1 [24, CorollaryI.5.4].Before stating the theorem, we need some additional de�nitions. LetA = Q�Q� = Qj�j1=2J j�j1=2Q�; (14)be an eigenvalue decomposition of A. Here J is diagonal matrix of signs whosediagonal elements de�ne the inertia of A and, by Sylvester's theorem [10,Theorem 4.5.8], of H, as well. SetG = D�Qj�j1=2; (15)such that H = GJG�. Further, setN = j�j�1=2Q��AQj�j�1=2; (16)5



such that fH = G(J +N)G�.Finally, the hyperbolic eigenvector matrix of a matrix pair (M;J), where M isa Hermitian positive de�nite matrix, and J = diag(�1), is the matrixX whichsimultaneously diagonalizes the pair such that X�MX = �M and X�JX = J ,where �M is a positive de�nite diagonal matrix. Some properties of hyperboliceigenvector matrices will be discussed in the next section.Theorem 3 Let H and fH be given as above, and let kA�1kk�Ak < 1. Then Hand fH have the same inertia, thus eU1 and eU2 from (13) span simple invariantsubspaces, as well, and the canonical angles between the subspaces spanned byU1 and eU1 are bounded byk sin�kF � k eU�2U1kF � kA�1k k�AkFq1� kA�1k k�Ak � kV1k k eV2kmin1�p�k1�q�l j�ip � e�jq jqj�ip e�jq j ; (17)
provided that the above minimum is greater than zero. Here V = [V1 V2 ] isthe hyperbolic eigenvector matrix of the pair (G�G; J), where G is de�ned by(14) and (15), and eV = [ eV1 eV2 ] is the hyperbolic eigenvector matrix of thepair ([(I +NJ)1=2]�G�G(I +NJ)1=2; J);where N is de�ned by (16). V and eV are partitioned accordingly to (12) and(13). Note that the matrix square root exists since by the assumption kNk �kA�1k k�Ak < 1 (see [11, Theorem 6.4.12]).Proof. The proof is similar to the proof of [16, Theorem 3.3]. From kNk < 1we conclude that the matrices H = GJG�, J + N and fH = G(J + N)G� allhave the same inertia de�ned by J . Therefore, (12) and (13) can be writtenas H = U�JU�; fH = eU e�J eU�; (18)with the same J = diag(�1) as in (14), respectively. Also, J + N can bedecomposed asJ +N = (I +NJ)1=2J [(I +NJ)1=2]�; (19)which follows from (I +NJ)1=2 = J [(I +NJ)1=2]�J . Thus, we can write fH asfH = G(I +NJ)1=2J [(I +NJ)1=2]�G�: (20)6



From (18) and H = GJG� we conclude that the matrix G has the hyperbolicsingular value decomposition [17] given byG = U j�j1=2JV �J; V �JV = J: (21)Similarly, from (18) and (20) we conclude that the matrix G(I + JN)1=2 hasthe hyperbolic singular value decomposition given byG(I +NJ)1=2 = eU je�j1=2J eV �J; eV �J eV = J: (22)Now (20) and (19) imply thatfH �H =G(I +NJ)1=2J [(I +NJ)1=2]�G� �GJG�=G(I +NJ)1=2 �G�; (23)where� = J [(I +NJ)1=2]� � (I +NJ)�1=2J = (I +NJ)�1=2N: (24)Pre- and post-multiplication of (23) by eU and U , respectively, together with(12), (13), (21) and (22), givese� eU�U � eU�U� = je�j1=2J eV �J � JV J j�j1=2:This, in turn, impliese�2 eU�2U1 � eU�2U1�1 = je�2j1=2J2 eV �2 J � JV1J1j�1j1=2;where J = J1�J2 is partitioned accordingly to (12) and (13). By interpretingthis equality component-wise we have[ eU�2U1]qp = [J2 eV �2 J � JV1J1]qpqje�2;qqjj�1;ppje�2;qq � �1;pp ;for all p 2 f1; : : : ; kg and q 2 f1; : : : ; lg. By taking the Frobenius norm wehavek eU�2U1kF � kJ2 eV �2 J � JV1J1kF �maxp;q qje�2;qqjj�1;ppje�2;qq � �1;pp :7



Further,kJ2 eV �2 J � JV1J1kF � k eV2k kV1k k�kF :The relations (24), (16) and the assumption implyk�kF �k(I + JN)�1=2k kNkF � 1q1� kNkkNkF� kA�1k k�AkFq1� kA�1k k�Ak ;and the theorem follows by combining the last three relations. 2
For positive de�nite H the matrices eV and V are unitary. Thus kV1k =k eV2k = 1, and Theorem 3 reduces to [16, Theorem 3.3]. Thus, the di�erencefrom the positive de�nite and inde�nite case is existence of the additionalfactor kV1k k eV2k in the inde�nite case. This again shows that the inde�nitecase is essentially more di�cult (c.f. Remark 2). The minimum in (17) playsthe role of the relative gap, although the function j� � e�j=qj�e�j does notnecessarily increase with the distance between � and e� if they have di�erentsigns. For example, if �1 = f1g and e�2 = f�1; 0:1g, then the minimum isattained between 1 and �1 and not between 1 and 0:1. Some other results forpositive de�nite matrices and singular value decomposition from [15,16] canbe generalized to inde�nite case and hyperbolic singular value decomposition,respectively, by using the techniques similar to those used in the proof ofTheorem 3 and Section 3. As already mentioned in Section 1, Theorem 3generalizes some other relative bounds from [1,4,29,21], as well.The bound (17) involves unperturbed and the perturbed quantities (� and e�,V1 and eV2), and can, therefore be computed only if �A is known. The exist-ing bounds for graded inde�nite Hermitian matrices from [29,21,25], dependneither upon perturbed vectors nor eigenvalues, and are therfore simpler tocompute, and can be applied to some important problems where only the sizeof the relative perturbation is known (c.f. Remark 1). Our next aim is to re-move the dependence on the perturbed quantities from (17), and to explainwhen is the factor kV1k k eV2k in (17) expected to be small. We do this in thenext section. 8



3 Applying the boundWe show how to remove the perturbed quantities from the bound of Theorem3. In particular, we show how to e�ciently compute � and the upper bound forthe factor kV1k k eV2k. In Section 3.1 we show that this factor will be small if, forthe chosen gradingD, the matrix bA which is de�ned by (4) is well conditioned.We also describe some easily recognisable classes of matrices which ful�ll thiscondition for any diagonal grading D.First note that the perturbed eigenvalues can be expressed in terms of theunperturbed one by using (3) and (5), that is, the minimum in (17) is boundedby min1�p�k1�q�l j�ip � e�jq jqj�ipe�jq j � min1�p�k1�q�l j�ip � �jq(1 + sign(�i � �j) sign(�j)�)jqj�ip�jq(1 + �)j : (25)We now proceed as follows: we �rst bound k eV k in terms of kV k; we thenbound kV k in terms of kA�1k and k bAk; and, �nally, we show how to e�cientlycompute k bAk and � from (5), (9) or (11).The matrices for which X�JX = J , where J = diag(�1) are called J-unitary.Such matrices have the following properties:{ XJX� = J .{ kXk = kX�1k. Moreover, the singular values of X come in pairs of recipro-cals, f�; 1=�g.{ Let J = Il � (�In�l) (26)and let X be partitioned accordingly,X = �X11 X12X21 X22 � :Then kX11k = kX22k, kX12k = kX21k, andkXk = kX21k+q1 + kX21k2 = kX21k+ kX11k: (27)These equalities follow from the CS decomposition of X [20].Lemma 4 Let J be given by (26) and let X and fX be two J-unitary matriceswhich are partitioned accordingly in block columns asX = [Xp Xn ] and fX = [ fXp fXn ] :9



Xp spans the so called positive subspace with respect to J since X�pJXp = Il.Similarly, Xn spans the negative subspace. Then the matrix X�JfX is alsoJ-unitary, andkX�JfXk = kX�nJfXpk+q1 + kX�nJfXpk:Also,kfXk � �kX�nJfXpk+q1 + kX�nJfXpk� kXk: (28)Proof. The equality follows from (27), and the inequality follows since kfXk =kX��X�JfXk � kX��k kX�JfXk = kXk kX�JfXk. 2Lemma 5 Let X and fX be the hyperbolic eigenvector matrices of the pairs(M;J) and (fM;J) where M and fM are positive de�nite, fM = (I +�)�M(I +�), and J is given by (26). Let X and fX be partitioned as in Lemma 4. De�ne
 = k�kF=(1� k�k). If
kXk2 < 14 ; (29)thenkfXk � kXkq1� 4
kXk2 :Proof. The fact that X diagonalizes the pair (M;J) can be written asX�MX = � � ��p �n � ; (30)where � is diagonal positive de�nite matrix which is partitioned according toJ and X. J-unitarity of X and (30) imply MX = X��� = JXJ�, thusMXp = JXp�p and MXn = �JXn�n: (31)Relations analogous to (30) and (31) hold for fM , fX and e�, as well. By pre-multiplying fMfXp = JfXp e�p by X�n we have, after using (31) and rearranging,�nX�nJfXp +X�nJfXp e�p = X�n(fM �M)fXp:10



Set b� = I � (I + �)�� (the inverse exists since (29) implies k�k < 1). Byusing the identity fM �M = b�fM +M�, the above equality can be writtencomponent-wise as[X�nJfXp]ij([�n]ii + [e�p]jj)= [Xn]�:ifb�fM +M�g[fXp]:j= [Xn]�:ib�J [fXp]:j[e�p]jj � [�n]ii[Xn]�:iJ�[fXp]:j:Here [X]:k denotes the k-th column of the matrix X. By dividing this equalityby [�n]ii + [e�p]jj and by using the fact thatmaxf[�n]ii; [e�p]jjg[�n]ii + [e�p]jj < 1;we havej[X�nJfXp]ijj � j[Xn]�:ib�J [fXp]:jj+ j[Xn]�:iJ�[fXp]:jj:Since kb�kF � 
, by taking Frobenius norm we havekX�nJfXpkF � kXnk kfXpk(kb�kF + k�kF ) � 2
kXk kfXk:By inserting this inequality in (28), we havekfXk � �2
kXk kfXk+q1 + (2
kXk kfXk)2 � kXk:After a simple manipulation we obtainkfXk2 � kXk21� 4
kXk2 :as desired. 2Now we can use Lemma 5 to bound k eV k by kV k in Theorem 3. V diagonalizesthe pair (G�G; J) where G is de�ned by (15), and eV diagonalizes the pair([(I + NJ)1=2]�G�G(I + NJ)1=2; J), where N is de�ned by (16). In order toapply Lemma 5 withM = G�G and I+� = (I+NJ)1=2 we need to bound k�kin terms of kNk. Since kNJk < 1, we can apply Taylor series of the function(1 + x)1=2 to the matrix (I +NJ)1=2 [11, Theorem 6.2.8], which gives(I +NJ)1=2 = I + 1Xn=1(�1)n�1 (2n� 3)!!2nn! (NJ)n � I + �:11



Here (2n� 3)!! = 1 � 1 � 3 � 5 � � � (2n� 3). By taking norms we havek�k� 1Xn=1 (2n� 3)!!2nn! kNkn = 12kNk 1Xn=1 (2n� 3)!!2n�1n! kNkn�1� 12kNk 1Xn=1 kNkn�1 � 12 � kNk1� kNk :Similarly, for the Frobenius norm we havek�kF � 12 � kNkF1� kNk :From the above two inequalities we see that 
 from Lemma 5 is bounded by
 � kNkF2� 3kNk � kA�1k k�AkF2� 3kA�1k k�Ak � �: (32)If kA�1k k�AkF < 24kV k2 + 3 ; (33)then � < 1=(4kV k2), that is, (29) holds and Lemma 5 givesk eV k � kV kq1� 4�kV k2 : (34)We can further bound kV k in terms of A and bA from (4). By de�nition, Vdiagonalizes the pair (G�G; J) where H = GJG�, that is, V �G�GV = j�j,where � is the eigenvalue matrix of H. Then, the eigenvalue decomposition ofH is given by H = U�U� where U = GV j�j�1=2. ThenH = U j�jU� = GV V �G�: (35)Therefore kV k2 = kV V �k = kG�1 H G��k. In our case, from (4) and (15),we havekV k2 = kj�j�1=2Q�D��D� bADD�1Qj�j�1=2k � kA�1k k bAk: (36)We can now prove the following theorem.12



Theorem 6 Let the assumptions of Theorem 3 hold and let, in addition,kA�1k k�AkF < 2=(4kA�1k k bAk+ 3). Thenk sin�kF � kA�1k k�AkFq1� kA�1k k�Ak � 1min1�p�k1�q�l j�ip � e�jq jqj�ip e�jq j � kV k2q1� 4�kV k2 (37)� kA�1k k�AkFq1� kA�1k k�Ak � 1min1�p�k1�q�l j�ip � e�jq jqj�ip e�jq j � kA�1k k bAkq1� 4�kA�1k k bAk(38)where � is de�ned by (32).Proof. The assumption and (36) imply (33), which in turn implies (34). Now(37) follows by inserting (34) in Theorem 3, and (38) follows by inserting (36)in (37). 2Note that the assumption of the theorem implies the positivity of the secondsquare root in (38), and is therefore not too restrictive provided that kA�1kand k bAk are not too large. Some classes of matrices which ful�ll this conditionare described in Section 3.1. Also, instead of (36) we can use an alternativeboundkV k2 = kV �1k2 � kAk k bA�1k: (39)In order to apply (38), besides kA�1k, k�AkF and k�Ak, we also need to knowk bAk. For the special case (8) when D is diagonal, we simply have k bAk �trace( bA) = n. Such D appears naturally when we consider perturbations ofthe type (7) and (10) which occur in numerical computation (see Remark 1).We now show that, for any D, k bAk from (38) and � from (25) can be computedby highly accurate eigenreduction algorithm from [27,18] at little extra cost 3 .This algorithm �rst factorizes H as H = FJF � by symmetric inde�nite fac-torization [19]. This factorization is followed by one-sided J-orthogonal Jacobimethod on the pair F; J . This method forms the sequence of matricesFk+1 = FkXk; where X�kJXk = J:3 In [18] only the algorithm for the real symmetric case was analyzed, but a versionfor the Hermtian case is possible, as well.13



This sequence converges to some matrix FX which has numerically orthog-onal columns, and F is J orthogonal, that is, F �JF = J . The eigenvaluesof H are approximated by � = J diag(X�F �FX), and the eigenvectors areapproximated by U = FXj�j�1=2. Therefore, H = FXX�F �. Note that Xalso diagonalizes the pair (F �F; J). Since the matrix FX is readily availablein the computer, we can compute bA asbA = D��FXX�F �D�1; (40)or, even simpler, just its factor D��FX. Finally, after computing bA, � can becomputed directly from the de�nitions (5), (9), or (11), respectively.3.1 "Well-behaved" matricesOur bounds di�er from the bounds for the positive de�nite case [16, Theorem3.3] by additional factors, namely the last quotients in (37) and (38). From(36) and (39) we also have kV k2 � (�(A)�( bA))1=2. From (1) and (4) and thede�nitions of H and H from Section 1, we haveA = D��U j�j1=2J j�j1=2U�D�1; bA = D��U j�j1=2j�j1=2U�D�1:This implies that (see also [29, Proof of Theorem 2.16])jAijj2 � bAii bAjj; jA�1ij j2 � bA�1ii bA�1jj ;and hencek jAj k � trace( bA); k jA�1j k � trace( bA�1):This implies that A is well conditioned if so is bA.We conclude that the additional factors will be small if, for the chosen gradingD, any of the right hand sides in (36) or (39) are small, or (which is a morerestrictive condition) simply if bA is well conditioned. We call such matrices\well-behaved". We also conclude that an invariant subspace is stable undersmall relative perturbations for the chosen grading D, if kA�1k is small, anyof the three above conditions is ful�lled, and the eigenvalues which de�ne thesubspace are well relatively separated from the rest of the spectrum.Although bA can be easily computed as described in the comments of Theo-rem 6, we are interested in identifying classes of \well-behaved" matrices inadvance. In the positive de�nite case the answer is simple { such are the well14



graded matrices, that is the matrices of the form H = DAD, where D is diag-onal positive de�nite such that Aii = 1, and A is well conditioned. In the indef-inite case we have two easily recognisable classes of \well-behaved" matrices,namely scaled diagonally dominant matrices [1] and Hermitian quaside�nitematrices [26,8]. Moreover, for the same A such matrices are well-behaved forany diagonal grading D.Scaled diagonally dominant matrices have the form H = D(J + 	)D, whereD is diagonal positive de�nite, J = diag(�1) and k	k < 1. For these matricesA = J + 	 and kAk k bA�1k � n(1 + k	k)=(1 � k	k) [29, Theorem 2.29].Thus, (39) implies that the last quotient in (37) is small when k	k is not tooclose to one. Also, k�Ak which is used in the de�nition of � in (32) has to besu�ciently small.Hermitian matrix H is quaside�nite if there exists a permutation P such thatP THP = �H = � �H11 �H12�H�12 � �H22 � ;where H11 and H22 are positive de�nite. The proof that such matrix is \well-behaved" is rather involved. Quaside�nite matrix always has a triangular fac-torization H = FJF �, where F is lower triangular with real diagonal and Jis diagonal with Jii = sign(Hii) [26] 4 . Set H = DAD where D = diag(jHiij).Then�H = �D �A �D = �D � �A11 �A12�A�12 � �A22 � �D; �D = P TDP; �A = P TAP: (41)Note that A is also quaside�nite, and its triangular factorization is given byA = BJB� where B = D�1F . Let us now bound �( bA). Assume without lossof generality that the diagonal elements of D are nonincreasing which can beeasily attained by permutation. From (40) we have�( bA) � �(B)2�(X)2; (42)where, as already mentioned, X diagonalizes the pair (F �F; J). In [22] it wasshown that�(X) � min� q�(��F �F�);4The proof in [26] is for the real symmetric case, but it is easily seen that it holdsfor the Hermitian case, as well. 15



where the minimum is over all matrices which commute with J . In our casethis clearly implieskXk2 � �(FD�1) = �(DBD�1):Since B is lower triangular and D has nondecreasing diagonal elements, wehave jDBD�1j � jBj and jDB�1D�1j � jB�1j, so that�(X) � k jBj k k jB�1j k � kBkFkB�1kF � �F (B): (43)The matrix JA is positive de�nite according to [9]. By appropriately modifyingthe proof of [9, Theorem], we havek jBj jBjTkF � n(kTk+ kST�1Sk);where T = [JA + (JA)T ]=2 and S = [JA � (JA)T ]=2. Note that the proof in[9] is for the real case, but it readily holds in the complex case as is recentlyshown in [28]. From (41) we havek jBj jBjTkF �n(kP TTPk+ kP TSPP TT�1PP TSPk) (44)�nmaxfk �A11k+ k �A12 �A�122 �A�12k; k �A22k+ k �A�12 �A�111 �A12k:Now note that the inverse of a quaside�nite matrix is also quaside�nite [26,Theorem 1.1]. By modifying the proof of [9, Theorem] we obtain a boundsimilar to (44) for k jB�T j jB�1jkF (for details see [28]). By combining thisdiscussion with (43), from (42) we conclude that essentially �( bA) will be smallif in (41) �A11 and �A22 are well conditioned and k �A12k is not too large.4 ConclusionWe derived new perturbation bounds for invariant subspaces of non-singularHermitian matrices. Our bounds improve the existing bounds in the followingaspects. Our bounds extend the bounds for scaled diagonally dominant matri-ces from [1] to general inde�nite matrices. Our bounds also extend the boundof [16, Theorem 3.3] for positive de�nite matrices to inde�nite case. Finally,our bounds extend the bounds for inde�nite matrices from [29,25] to subspaceswhich correspond to any set of possibly nonadjacent eigenvalues (numericalexperiments also indicate that our bounds tend to be sharper). For gradedmatrices of the form (1) which are well-behaved according to Section 3.1, our16



bounds are sharper that the general bound for diagonalizable matrices from[13], k sin�kF � kH�1�HkFmin1�p�k1�q�l j�ip�e�jq jj�ip j : (45)
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