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Abstract

We give a bound for the perturbations of invariant subspaces of graded indefinite
Hermitian matrix H = D* AD which is perturbed into H+dH = D*(A+§A)D. Such
relative perturbations include important case where H is given with an element-wise
relative error. Application of our bounds requires only the knowledge of the size of
relative perturbation ||§A||, and not the perturbation §A itself. This typically occurs
when data are given with relative uncertainties, when the matrix is being stored
into computer memory, and when analyzing some numerical algorithms. Subspace
perturbations are measured in terms of perturbations of angles between subspaces,
and our bound is therefore relative variant of the well-known Davis-Kahan sin ©
theorem. Our bounds generalize some of the recent relative perturbation results.

1 Introduction and preliminaries

We are considering the Hermitian eigenvalue problem
HUZ' = )\iui;
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or

i=1

where H is a non-singular Hermitian matrix of order n, A = diag(};) is a
diagonal matrix whose diagonal elements are the eigenvalues of H, and U =
[uy uy --- wu,]|isunitary matrix whose i-th column is an eigenvector which
corresponds to A;. Subspace X’ is an invariant subspace of a general matrix
Hif HX C X.If H is Hermitian and the set of eigenvalues {\;;, Aiy, -+, i, }
does not intersect the rest of the spectrum of H, then the corresponding k-
dimensional invariant subspace is spanned by the eigenvectors w;,, u;,, - - -, u;, .
Throughout the paper ||| and ||-|| will denote the 2-norm and the Frobenius
norm, respectively.

Our aim is to give bound for perturbations of invariant subspaces for the case
when H is a graded Hermitian matrix, that is,

H = D*AD, (1)

where D is some non-singular grading matrix, under Hermitian relative per-
turbation of the form

H+0H =H = D*(A+6A)D.

Our bound is a relative variant of the well-known sin © theorems by Davis
and Kahan [2], [24, Section V.3.3].

The development of relative perturbation results for eigenvalue and singu-
lar value problems has been very active area of research in the past years
[3,1,4,29,21,6,5,15,16,7,13] (see also the review article [12]). We shall first de-
scribe the relative perturbation and state the existing eigenvalue perturbation
results. Let 0 H be the Hermitian relative perturbation which satisfies

2 0Hz| < nz*lHlz, Yz, n<1, (2)
where | H| = VH? = U|A|U* is a spectral absolute value of H (that is, | H] is

the positive definite polar factor of H). Under such perturbations the relative
change in eigenvalues is bounded by [29]

>

l-n<Z <140, (3)
Aj



This inequality implies that the perturbations which satisfy (2) are inertia
preserving. This result is very general and includes important classes of per-
turbations. If H is a graded matrix defined by (1) and

A=D*|HID ", (4)

then (3) holds with?

n = |[SA[[[[ A (5)
Indeed,

w*dHzx|=|2*D*0ADx| = ||[x*D*§ ADx|| < ||z*D*||||6A||||Dx||
< [IBAA™Y 2" 1 H ]z, (6)

as desired. Another important class of perturbations is when H is perturbed
element-wise in the relative sense,

(0H;j| < e|Hjjl. (7)

By setting
D = diag(\/ IHIZZ), (8)

since [0A4;;| < €|A;j|, the relation (6) implies that (3) holds with
n=elllA/[[[IA]. (9)

Since A; = 1, we have |A~"|| < k(A) < n||A7"||, where x(4) = | A|||A7"

is the spectral condition number. Also, |||A]|] < n (see [29, Proof of Theorem

2.16]). The diagonal grading matrix D from (8) is almost optimal in the sense
that [23]

K(A) < nmgn/ﬁ(D*lHlD) <nk(lHI) =nk(H),

where the minimum is taken over all non-singular diagonal matrices. Similarly,
for more general perturbations of the type

‘5Hl]‘ S EDZ'Z'D]']', (10)

2In [29] no attention was paid to scalings with non-diagonal matrix D, so this
result is new. Also notice that any perturbation H + 6 H can clearly be interpreted
as the perturbation of a graded matrix, and vice versa.



(3) holds with
n=en||A7Y| < enk(A). (11)

Remark 1 Application of the bounds (5), (9) and (11) requires only the
knowledge of the size of relative perturbation || A||, and not the perturbation
0 A itself. Such situation occurs in several cases which are very important in
applications. When the data are determined to some relative accuracy or when
the matrix is being stored in computer memory, the only available information
about 0 H is that it satisfies (7). Similarly, in error analysis of various numerical
algorithms (matrix factorizations, eigenvalue or singular value computations),
the the only available information is that d H satisfies more general condition
(10).

If H is positive definite, then |H|l = H, and (9) and (11) reduce to the
corresponding results from [4]. We would like to point out a major difference
between positive definite and indefinite case.

Remark 2 If H is positive definite, then small perturbations of the type (7)
and (10) cause small relative changes in eigenvalues if and only if £(A) = k(A)
is small [4]. If H is indefinite, then from (9) and (11) it follows that small «(A)
implies small relative changes in eigenvalues. However, these changes can be
small even if m(ﬁ) is large [29,18]. Although such examples can be successfully
analyzed by perturbations through factors as in [29,28], this shows that the
graded indefinite case is essentially more difficult than the positive definite
one.

Perturbation bounds for eigenvectors of simple eigenvalues were given for
scaled diagonally dominant matrices in [1], and for positive definite matrices
in [4]. The bound for invariant subspace which corresponds to single, possi-
bly multiple, eigenvalue of an indefinite Hermitian matrix was given in [29,
Theorem 2.48]. This bound, given in terms of projections which are defined by
Dunford integral as in [14, Section II.1.4], is generalized to invariant subspaces
which correspond to a set of neighboring eigenvalues in [25]. In [16, Theorems
3.3 and 3.4] two bounds for invariant subspaces of a graded positive definite
matrix were given. We generalize the result of [16, Theorem 3.3] and give the
bound for || sin©|| for a graded non-singular indefinite matrix. Our results
are, therefore, relative variants of the well-known sin © theorems [2, Section
2], [24, Theorem V.3.4]. Our results also generalize the ones from [29,25] to
subspaces which correspond to arbitrary set of eigenvalues. Our results and
the related results from [1,4,29,21] and other works, are also useful in esti-
mating the accuracy of highly accurate algorithms for computing eigenvalue
decompositions [1,4,27,18].

The paper is organized as follows: in Section 2 we prove our main theorem. In
Section 3 we show how to efficiently apply that theorem, in particular for the



important types of relative perturbations (7) and (10) (c.f. Remarks 1 and 2).
We also describe some classes of well-behaved indefinite matrices. In Section
4 we give some concluding remarks.

2 Bound for invariant subspaces

Let the eigenvalue decomposition of the graded matrix H be given by

H = D*AD = UAU* = [U; UQ]H)1 ISHZI} (12)
2 2

where
A1 = diag()\il, )\1'2, T, )\’lk)i A2 = diag()\jl, )‘jw T )\jl),
and k + [ = n. We assume that A; and Ay have no common eigenvalues, thus,

Ui and U both span simple invariant subspaces according to [24, Definition
V.1.2]. Similarly, let the eigenvalue decomposition of H be

A=pa+onp=0i =0, o[ V1[%], (13)
0 Ao L0
where /Kl = diag(s\il, SN S\Zk) and 7\2 = diag(s‘jla ) j‘jl)‘

Let XY™ be a singular value decomposition of the matrix ﬁg* U;. The diagonal
entries of the matrix sin© = X, are the sines of canonical angles between
subspaces which are spanned by the columns of U; and Uy [24, Corollary
[.5.4].

Before stating the theorem, we need some additional definitions. Let

A=QAQ" = QA['T|AIN*Q", (14)

be an eigenvalue decomposition of A. Here J is diagonal matrix of signs whose
diagonal elements define the inertia of A and, by Sylvester’s theorem [10,
Theorem 4.5.8], of H, as well. Set

G = D*Q|A|Y?, (15)

such that H = GJG*. Further, set

N = |A|2Q s AQ|A| /2, (16)



such that H = G(J 4+ N)G*.

Finally, the hyperbolic eigenvector matrix of a matrix pair (M, J), where M is
a Hermitian positive definite matrix, and J = diag(+1), is the matrix X which
simultaneously diagonalizes the pair such that X*M X = Ay, and X*JX = J,
where A, is a positive definite diagonal matrix. Some properties of hyperbolic
eigenvector matrices will be discussed in the next section.

Theorem 3 Let H and H be given as above, and let [|A7"||[|0A|| < 1. Then H
and H have the same inertia, thus Uy, and Uy from (18) span simple invariant
subspaces, as well, and the canonical angles between the subspaces spanned by

U, and ﬁl are bounded by

A5 Al Vil IVl
Isin®llr = T30 1r < — R )
= A oAl i P =l
1021 VXA,
provided that the above minimum is greater than zero. Here V.= [V V3] is

the hyperbolic eigenvector matriz of the pair (G*G, J), where G is defined by
(14) and (15), and V = [Vy V3] is the hyperbolic eigenvector matriz of the
pair

([(I + NOYV2PG*G(I + NJ)Y2, ),

where N is defined by (16). V and V are partitioned accordingly to (12) and
(13). Note that the matriz square root exists since by the assumption ||N|| <
|A7Y| [6A]] < 1 (see [11, Theorem 6.4.12]).

Proof. The proof is similar to the proof of [16, Theorem 3.3]. From || N|| <1
we conclude that the matrices H = GJG*, J+ N and H = G(J + N)G* all
have the same inertia defined by J. Therefore, (12) and (13) can be written
as

H=UAJU*, H=UANU" (18)

with the same J = diag(+1) as in (14), respectively. Also, J + N can be
decomposed as

J+N=(I+NJIYV2J[I+ NI, (19)

which follows from (I + N.J)"/2 = J[(I + N.J)'/2]*J. Thus, we can write H as

H =G+ NJ)Y2J[(I + NJ)YG. (20)



From (18) and H = GJG* we conclude that the matrix G has the hyperbolic
singular value decomposition [17] given by

G=UAY2JV*], VIV = (21)

Similarly, from (18) and (20) we conclude that the matrix G(I + JN)'/? has
the hyperbolic singular value decomposition given by

GUI+NI)YV2=UA"2JV ], VIV = (22)

Now (20) and (19) imply that

H—H=G(I+ NJ)'Y2J[(I+ NG - GIG*
=G(I+NJ)'?=G, (23)

where

E=JI+ NI — (I +NJ) V2] = (I +NJ) 2N, (24)
Pre- and post-multiplication of (23) by U and U, respectively, together with
(12), (13), (21) and (22), gives

AU*U — U*UA = |AMY2JV* T2 JVJ|A V2,

This, in turn, implies

MNUU, — Ui U, = |A|YV2ILVE T E TV A2,

where J = .J, @ J, is partitioned accordingly to (12) and (13). By interpreting
this equality component-wise we have

_ _ As gql|A
030l = L7572 7V 2

)
2,99 — Al,pp

for all p € {1,...,k} and ¢ € {1,...,1}. By taking the Frobenius norm we
have

7 % Ko gl A
U U||r < ||V JE IV || F - r%aqxw

2,99 — Al,pp



Further,

112V5 T2 IVl |e < |[Vall IVAIL I

The relations (24), (16) and the assumption imply

- . 1
I=llF < 1T+ IN) 2| [Nlp < ———IINl|r
1 — ||l
A= l9Allr

T L= AT 8 Al

and the theorem follows by combining the last three relations. O

For positive definite H the matrices V and V are unitary. Thus ||[V;]] =
V2] = 1, and Theorem 3 reduces to [16, Theorem 3.3]. Thus, the difference
from the positive definite and indefinite case is existence of the additional
factor ||V4]|]|V2| in the indefinite case. This again shows that the indefinite
case is essentially more difficult (c.f. Remark 2). The minimum in (17) plays

the role of the relative gap, although the function |A — A|/1/|A)| does not

necessarily increase with the distance between A and A if they have different
signs. For example, if A; = {1} and A, = {—1,0.1}, then the minimum is
attained between 1 and —1 and not between 1 and 0.1. Some other results for
positive definite matrices and singular value decomposition from [15,16] can
be generalized to indefinite case and hyperbolic singular value decomposition,
respectively, by using the techniques similar to those used in the proof of
Theorem 3 and Section 3. As already mentioned in Section 1, Theorem 3
generalizes some other relative bounds from [1,4,29,21], as well.

The bound (17) involves unperturbed and the perturbed quantities (A and ),
Vi and ‘72), and can, therefore be computed only if §A is known. The exist-
ing bounds for graded indefinite Hermitian matrices from [29,21,25], depend
neither upon perturbed vectors nor eigenvalues, and are therfore simpler to
compute, and can be applied to some important problems where only the size
of the relative perturbation is known (c.f. Remark 1). Our next aim is to re-
move the dependence on the perturbed quantities from (17), and to explain
when is the factor ||Vi]| [|Va]| in (17) expected to be small. We do this in the
next section.



3 Applying the bound

We show how to remove the perturbed quantities from the bound of Theorem
3. In particular, we show how to efficiently compute n and the upper bound for
the factor ||Vi]| ||Vz]|. In Section 3.1 we show that this factor will be small if, for
the chosen grading D, the matrix A which is defined by (4) is well conditioned.
We also describe some easily recognisable classes of matrices which fulfill this
condition for any diagonal grading D.

First note that the perturbed eigenvalues can be expressed in terms of the
unperturbed one by using (3) and (5), that is, the minimum in (17) is bounded
by

A, — A Ni, = A, (1 +sign(X; — A;) sign(X\j)n)]|

min Py = Al > min 27— : (25)

E DY = Vs, )

We now proceed as follows: we first bound |V in terms of ||V]|; we then
bound [|V[| in terms of [|A~"|| and || A[]; and, finally, we show how to efficiently
compute ||Al| and n from (5), (9) or (11).

The matrices for which X*JX = J, where .J = diag(£1) are called J-unitary.
Such matrices have the following properties:

- XJX*=.
— || X| = ||X~"|. Moreover, the singular values of X come in pairs of recipro-
cals, {o0,1/0}.
— Let
J=1& (—1,) (26)

and let X be partitioned accordingly,

Xll X12
X21 X22

o

Then || Xy || = || Xoz, | Xi2|| = [[X21]], and

[XT] = X[ + /1 + 1 X[ = [| X || + (| X1 ] (27)

These equalities follow from the CS decomposition of X [20].

Lemma 4 Let J be given by (26) and let X and X be two J-unitary matrices
which are partitioned accordingly in block columns as

X=[X, X,] and X=[X, X,].



Xp spans the so called positive subspace with respect to J since X;JX, = I).

Similarly, X, spans the negative subspace. Then the matrix X*JX is also
J-unitary, and

IX"IX | = X5 T X+ V1 + [ X5 X .

Also,

X0 < (1650 + V1 + 10K, 1) X1 (28)

Proof. The equality follows from (27), and the inequality follows since |X]| =
[ XXX < XXX = (XXX B

Lemma 5 Let X and X be the hyperbolic eigenvector matrices of the pairs
(M, J) and (M, J) where M and M are positive definite, M = (I +T)*M (I +
['), and J is given by (26). Let X and X be partitioned as in Lemma 4. Define
v = ITlle/ (X =T). If

1
A< (20)
then
¥ 1XT]
)< 2
V1= 41X
Proof. The fact that X diagonalizes the pair (M, .J) can be written as
. _[A
X'MX=A= || (30)

where A is diagonal positive definite matrix which is partitioned according to
J and X. J-unitarity of X and (30) imply MX = X *A = JXJA, thus

MX,=JX,\, and MX,=—JX,A,. (31)

Relations analogous to (30) and (31) hold for M, X and A, as well. By pre-

multiplying M X, = JX,A, by X we have, after using (31) and rearranging,

A XEIX, 4+ XPIX,A, = X3(M — M)X,.

10



Set T = T — (I + [')= (the inverse exists since (29) implies ||T']| < 1). By
using the identity M — M = I'M + MT, the above equality can be written
component-wise as

[X;J)?p]ij([/\n]ii + [T\p]jy) [X ] £ ]\{"‘ MF}[X] N
[X] FJ[X] [A ]JJ [An]ii[Xn]TiJF[Xp]:j-

Here [X]x denotes the k-th column of the matrix X. By dividing this equality
by [Anlii + [A,];; and by using the fact that

maX{[An]iiaN[Kp]jj}
[Anlis + [Aply

<1,

we have

X T X, )il < XTI )]+ [[Xal5 T TIX ).

Since ||T||» < v, by taking Frobenius norm we have

X T X e < (1l I N IT e + 1T Ie) < 29l X1

By inserting this inequality in (28), we have

X0 < (290X0 K]+ 1+ @XTIX? ) 1X)

After a simple manipulation we obtain

- X2
X< = =T

as desired. O

Now we can use Lemma 5 to bound ||V|| by ||V in Theorem 3. V diagonalizes
the pair (G*G,J) where G is defined by (15), and V diagonalizes the pair
([(I + N)2)*G*G(I + N.J)'/2,.J), where N is defined by (16). In order to
apply Lemma 5 with M = G*G and I+T = (I+N.J)"/? we need to bound ||T|
in terms of || N||. Since || NJ|| < 1, we can apply Taylor series of the function
(1+2)'/2 to the matrix (I + NJ)l/2 [11, Theorem 6.2.8], which gives

— 3!

2"n'

(I+NJ)V? = J+Z (NJ)"=1+T.

11



Here (2n —3)!!=1-1-3-5---(2n — 3). By taking norms we have

n ) n—
< 2 e = Ly 35 2o e
n=1 n=1
L
<L s v < |
Z 2 T—TV]

N | —

Similarly, for the Frobenius norm we have

[N

1
IT[[r < 5 -
2 1N

From the above two inequalities we see that v from Lemma 5 is bounded by

INIe A 15AlL

v < < = q. (32)
2 3|N = 23] A 1] JoA]
If
A 6Ar <~ (33)
4|V |I?+ 3

then o < 1/(4||[V']]?), that is, (29) holds and Lemma 5 gives

VI

V]l < :
1 — da||V]?

(34)

We can further bound ||V|| in terms of A and A from (4). By definition, V
diagonalizes the pair (G*G,.J) where H = GJG*, that is, V*G*GV = |A],
where A is the eigenvalue matrix of H. Then, the eigenvalue decomposition of
H is given by H = UAU* where U = GV|A|7'/2. Then

|H| = UIAU* = GVV*G™. (35)
Therefore |V||? = ||[VV*|| = |G IHIG*||. In our case, from (4) and (15),

we have
V2= [[|A|"2Q*D *D*ADD'Q|A| 2| < [JA7Y|| [|A]. (36)

We can now prove the following theorem.

12



Theorem 6 Let the assumptions of Theorem 3 hold and let, in addition,
AT 0AllF < 2/(4l[AH |l + 3). Then

[AI9AlF 1 Ve

_ (37)
S ATAT =Xl 1= dal|V]?

120t Vi,
[AI9AlF 1 A=A
V1= IA- 8 Al

— —(38)
i e = il /1 - aaf A4

1258 VA,

where « is defined by (32).

Proof. The assumption and (36) imply (33), which in turn implies (34). Now
(37) follows by inserting (34) in Theorem 3, and (38) follows by inserting (36)
in (37). O

Note that the assumption of the theorem implies the positivity of the second
square Toot in (38), and is therefore not too restrictive provided that ||A™"|
and || A|| are not too large. Some classes of matrices which fulfill this condition
are described in Section 3.1. Also, instead of (36) we can use an alternative
bound

IVIE=1VH2 < Af A, (39)

In order to apply (38), besides ||[A7|, |6 A]|# and [|[6A[|, we also need to know
|A]|. For the special case (8) when D is diagonal, we simply have [|A| <
trace(A) = n. Such D appears naturally when we consider perturbations of
the type (7) and (10) which occur in numerical computation (see Remark 1).

We now show that, for any D, ||A|| from (38) and 5 from (25) can be computed
by highly accurate eigenreduction algorithm from [27,18] at little extra cost?.
This algorithm first factorizes H as H = FJF* by symmetric indefinite fac-
torization [19]. This factorization is followed by one-sided .J-orthogonal Jacobi
method on the pair F),.J. This method forms the sequence of matrices

Fk—i—l = Fka, where X;JXk =.J.

31n [18] only the algorithm for the real symmetric case was analyzed, but a version
for the Hermtian case is possible, as well.

13



This sequence converges to some matrix FX which has numerically orthog-
onal columns, and F' is J orthogonal, that is, F*JF = .J. The eigenvalues
of H are approximated by A = Jdiag(X*F*FX), and the eigenvectors are
approximated by U = FX|A|~'/2. Therefore, | H| = FXX*F*. Note that X
also diagonalizes the pair (F*F,J). Since the matrix F X is readily available

~

in the computer, we can compute A as

A=D7*FXX*F*D™, (40)

or, even simpler, just its factor D™*F X . Finally, after computing ﬁ, n can be
computed directly from the definitions (5), (9), or (11), respectively.

3.1 "Well-behaved” matrices

Our bounds differ from the bounds for the positive definite case [16, Theorem
3.3] by additional factors, namely the last quotients in (37) and (38). From
(36) and (39) we also have |V < (k(A)x(A))"2. From (1) and (4) and the
definitions of H and | H| from Section 1, we have

A= DUIAY2TIAY?U*D™Y, A= D*U|A|Y?|A|V2U* D

This implies that (see also [29, Proof of Theorem 2.16])

~

Aiyl? < Audy;,  |AGY)? < AFAZ

and hence

HAJ| < trace(A), [[[A7']]| < trace(A™").

This implies that A is well conditioned if so is A.

We conclude that the additional factors will be small if, for the chosen grading
D, any of the right hand sides in (36) or (39) are small, or (which is a more
restrictive condition) simply if A is well conditioned. We call such matrices
“well-behaved”. We also conclude that an invariant subspace is stable under
small relative perturbations for the chosen grading D, if ||A™"|| is small, any
of the three above conditions is fulfilled, and the eigenvalues which define the
subspace are well relatively separated from the rest of the spectrum.

Although A can be easily computed as described in the comments of Theo-
rem 6, we are interested in identifying classes of “well-behaved” matrices in
advance. In the positive definite case the answer is simple — such are the well

14



graded matrices, that is the matrices of the form H = DAD, where D is diag-
onal positive definite such that A;; = 1, and A is well conditioned. In the indef-
inite case we have two easily recognisable classes of “well-behaved” matrices,
namely scaled diagonally dominant matrices [1] and Hermitian quasidefinite
matrices [26,8]. Moreover, for the same A such matrices are well-behaved for
any diagonal grading D.

Scaled diagonally dominant matrices have the form H = D(.J + ¥)D, where
D is diagonal positive definite, .J = diag(+1) and ||¥|| < 1. For these matrices
A= J+ T and ||A|||A7] < n(1 + [|])/(1 = [[¥]) [29, Theorem 2.29].
Thus, (39) implies that the last quotient in (37) is small when || ¥|| is not too
close to one. Also, ||§A|| which is used in the definition of a in (32) has to be
sufficiently small.

Hermitian matrix H is quasidefinite if there exists a permutation P such that
- H H
PTHP:H:[il 12 }
Hiy —Hyl’

where Hy; and Hqy are positive definite. The proof that such matrix is “well-
behaved” is rather involved. Quasidefinite matrix always has a triangular fac-
torization H = FJF*, where F' is lower triangular with real diagonal and J
is diagonal with J;; = sign(H;) [26]*. Set H = DAD where D = diag(|H;)).
Then

H=DAD=D [A}} A } D, D=PTDP, A= PTAP, (41)
Aly —Ax

Note that A is also quasidefinite, and its triangular factorization is given by
A = BJB* where B = D 'F. Let us now bound x(A). Assume without loss
of generality that the diagonal elements of D are nonincreasing which can be
easily attained by permutation. From (40) we have

k(A) < Kk(B)%k(X)?, (42)

where, as already mentioned, X diagonalizes the pair (F*F,J). In [22] it was
shown that

k(X) < mAin \VE(A*F*FA),

4 The proof in [26] is for the real symmetric case, but it is easily seen that it holds
for the Hermitian case, as well.

15



where the minimum is over all matrices which commute with J. In our case
this clearly implies

|X|? < k(FD™) = (DBD™Y).

Since B is lower triangular and D has nondecreasing diagonal elements, we
have [DBD | < |B| and |DB 'D!| < |B |, so that

£(X) < [IBIB~ N < IBllrlB~|F = kr(B). (43)

The matrix J A is positive definite according to [9]. By appropriately modifying
the proof of [9, Theorem|, we have

BBz < n(IT| + [STS]),

where T = [JA + (JA)T]/2 and S = [JA — (JA)T]/2. Note that the proof in
[9] is for the real case, but it readily holds in the complex case as is recently
shown in [28]. From (41) we have

||B||B|"||r <n(|PTTP| + |P"SPP"T~'PP"SP|) (44)
<nmax{||[ Ay | + [|A12A% AL |, [| Ao + [ AT, AT Ass.

Now note that the inverse of a quasidefinite matrix is also quasidefinite [26,
Theorem 1.1]. By modifying the proof of [9, Theorem| we obtain a bound
similar to (44) for || |B™"||B7'|||r (for details see [28]). By combining this
discussion with (43), from (42) we conclude that essentially x(A) will be small
if in (41) A;; and Ay are well conditioned and || A3 is not too large.

4 Conclusion

We derived new perturbation bounds for invariant subspaces of non-singular
Hermitian matrices. Our bounds improve the existing bounds in the following
aspects. Our bounds extend the bounds for scaled diagonally dominant matri-
ces from [1] to general indefinite matrices. Our bounds also extend the bound
of [16, Theorem 3.3] for positive definite matrices to indefinite case. Finally,
our bounds extend the bounds for indefinite matrices from [29,25] to subspaces
which correspond to any set of possibly nonadjacent eigenvalues (numerical
experiments also indicate that our bounds tend to be sharper). For graded
matrices of the form (1) which are well-behaved according to Section 3.1, our
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bounds are sharper that the general bound for diagonalizable matrices from
[13],

Isin@, < ME0Hlr (45)
a min [ip X
1<p<k  Nipl
1<q<!

This bound makes no preference for positive definite matrices over indefinite
ones, and is easier to interpret than our bound. However, since in (45) 6H is
multiplied by H~! from the left, this bound does not accommodate two sided
grading well. Finally, our bounds are computable from unperturbed quantities
and can be efficiently used in analyzing numerical algorithms in which graded
perturbations naturally occur.

We would like to thank the referee for valuable remarks which lead to consid-
erable improvements in the paper.
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