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Abstract. The ULV decomposition (ULVD) is an important member of a class of rank-revealing
two-sided orthogonal decompositions used to approximate the singular value decomposition (SVD).
It is useful in the applications of the SVD such as principal components where we are interested in
approximating a matrix by one of lower rank. It can be updated and downdated much more quickly
than an SVD.

In many instances, the ULVD must be refined to improve the approximation it gives for the
important right singular subspaces or to improve the matrix approximation. Present algorithms to
perform this refinement require O(mn) operations if the rank of the matrix is k where k is very close
to 0 or n, but these algorithms require O(an) operations otherwise. Presented here is an alternative
refinement algorithm that requires O(mn) operations no matter what the rank is. Our tests show
that this new refinement algorithm produces similar improvement in matrix approximation and in
the subspaces. We also propose slight improvements on the error bounds on subspaces and singular
values computed by the ULVD.

1. Introduction. The singular value decomposition (SVD) of a matrix X €
R™*™ m > n, is written

(1.1) X =vzw?”

where W € R™*" is orthogonal and Y € R™*" is left orthogonal, that is, Y'Y = I,,,
and

(1.2) Y =diag(o1,...,00) ER™™, 01 >...> 0p.

It contains useful information about a linear operator including rank, important sub-
spaces, and conditioning. It also gives us the ability to compute low rank approxima-
tions.

Some of the most important applications of the SVD include solving
ill-conditioned least squares problems [5], total least squares problems [24], subspace
tracking, and isolating principal components [17].

In these applications, our interest in the SVD is to write X in the form

(1.3) X =Y1Zi W + VoS Wy
where
21 =diag(01,...,ak), 22 :diag(ak+1,...,an)

and Y1, Yo , Wi and W are the corresponding matrices of left and right singular
vectors. The other information in the SVD is not needed. Moreover, accurate rep-
resentations of Range(W;) and/or Range(W5) are often satisfactory. In principal
component analysis, we only need a good low rank approximation of X.

We use || || to denote the two norm (matrix and vector), and || - ||z to denote the
Frobenius norm. The notation o (X) denotes the kth largest singular value of X.
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Complete Orthogonal Decompositions (CODs) can compute a approximation to
the dichotomy in (1.3) slightly faster than an SVD. However, if the decomposition
must be modified by adding rows (updating) and/or deleting rows (downdating),
then the SVD can be computationally expensive [15] whereas CODs may be updated
and downdated in O(mn) flops [10, 3, 26, 22, 23]. Our algorithms for construction
and refinement lead to a form that can be updated by any of these procedures.

The CODs have the form

(1.4) X =vcv?
where C is a triangular matrix partitioned according to

k n—k
C= (i Co ), |G~ %2l =orm

and U € R™*™ ig left orthogonal, V' € R™*" is orthogonal.

The first such decompositions were proposed independently in [11] and in [16].
These used maximal column pivoting [6]. More recent enhancements, such as the URV
and ULV decompositions, discussed in [22, 23], made use of condition estimators. This
paper uses the ULV decomposition (ULVD) which we define in the form (1.4) where,
for a fixed integer £ and tolerance €, we have

k m-—k k n—k
(1.5) U= (Ui U, ), V= (Wi W),
k n—k
k L 0
(1.6) C_n—k(F G )
and
(1.7) IL7™ <e, I(F G)| <@

Here ®(n) is modestly growing function of n, say, 4/n. This formulation is a variant
of one in [26, 9, 10, 4, 8]. We refer to k are the e-psuedorank of X, corresponding to
a definition used by Lawson and Hanson [18, p.77].

The matrix V yields approximations to the two right singular subspaces,
Range(W1) and Range(Ws,), the matrix U yields approximations to the two left sin-
gular subspaces Range(Y;) and Range(Y2). The accuracy of these approximations
and approximations to the singular values of C' are discussed in §2. The results given
there are slight enhancements of those by Mathias and Stewart [19] and Fierro and
Bunch [12].

In this work, we give improvements to a refinement procedure for the ULVD in
[19]. Often after an update or downdate, the conditions (1.7) are not satisfied, and
or [[( F G )||r is not small enough. Thus procedures which make ||[( F G )||r
smaller are necessary. Procedures are given in [19, 12], but these require O(mn?)
flops (floating point operations, see [14, pp.18-19]) unless k is very close to 0 or n.
Our new procedure (Algorithm 4.2) requires O(mn) flops regardless of the value of k.

Throughout the paper, we use MATLAB notation for submatrices, thus X (i: j,:)
denotes rows ¢ through j of X, X (:, k: £) denotes columns k through ¢, and X (i: 5, k: £)
denotes the intersection of the two.



In the next section, we give some improvements of singular value and vector
bounds in [19, 12]. In §3, we introduce the necessary matrix computational tools
to build the algorithms for the ULVD. In §4, give our new refinement procedure
(Algorithm 4.2) and some results on its properties. In §5, we give numerical tests of
the new algorithm, and give a conclusion in §6.

2. Subspaces and Singular Values. The ULVD (1.4)—(1.5) generates approx-
imations to the right and left singular subspaces associated with the first k and last
n — k singular values. In the Davis—-Kahan [7] framework the errors in these subspaces
are characterized by

(2.1) |sin Or| = [[W{ Vall = [V Wall2,
(2.2) |sin Or] = [|Y{" Uall2 = [|U{ Yall2.

The following proposition is a slight improvement on bounds by Mathias and
Stewart [19] and Bunch and Fierro [12]. It characterizes the error in the singular
subpspaces and singular values. The long, but elementary proof is in longer technical
report version of this paper [2].

PROPOSITION 2.1. Let X have the ULVD (1.4)—(1.5) and let

def . fort1(X) 01(G)
(2.3) p= mln{ D) o (X))
de L
(24) 1 maxol(x) - 2@t | (1 )| = o0,
def Uk(X) - U%(G) U%(L) - ‘71%+1(X)
Then
T «
(2.6) (sin Or| < G2 600, < ”fﬁ
L
(2.7) |sin Og| < p|sin O,
UJ(L) az-l-k(X) .7:]-323k
(28) lcos Ol < Ty @) SV i=12,.. n—k

The bounds in [19] and [12] are the right side of these two inequalities, thus the
bounds in (2.6) are sharper.

IETCl _ [1FlalCs
>~ "5 2 )
TR Uk(L)_‘71(G)
I1Fl2 | F'l|20%(L)

sin Op| < < .
[ Ol < < 2 D) - o%E)

|sin Og| <

Through the use of trigonometric identities (2.8) implies the relative error bound

O"(X)—O"(L) U,’(G)-O’,’+k(X) Sin2 Or
2. < ! <
(29) 0= 0 (X) ’ gk (X) = 14 |cos O’

forj =1,2...,kand i = 1,2,...,n — k. Thus as pointed out in [19], the relative
error in the singular values is proportional to || F||3.
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3. Matrix Computational Tools for the ULVD.

3.1. Norm and Condition Estimates. For a lower triangular matrix C' €
R™ ™ we need to estimate its smallest singular value and associated vectors given by
the triple (o, u,, v,). Realistically, we need to compute &, @i, and ¥,, such that

(31) C_lﬁn = 6;1‘77“
3.2 C™T9n =6, in + Tiny,
(33) rg;wﬁn =0, ”rinv“ < (_7;16

where ¢ is some prescribed tolerance which should be smaller than € in (1.5). In
our tests in §5, we used § = 1073¢. In practice, we expect to use only a few Lanc-
zos or power iterations and some back and forward solves with C' to perform this
computation.

Likewise, to estimate the largest singular value and associated vectors, given by
the triple (o1, u1,v1), we compute a triple (1,11, V1) such that

(34) C\_ll = 5’11_11,
(3.5) CTay =519, +r,
(36) I‘T\_fl = 0, ||I'|| S 5'15.

Again, this can be achieved with a few Lanczos or power iterations. Here we do
not restrict C' to be lower triangular or even square. For complexity estimates, we
assume a fixed number iterations, ¢z, for both of these procedures.

When these operations are counted in complexity estimates, we count (3.1)—(3.3)
as cjern? flops and for C € R™*™ we count (3.4)—(3.6) as 2c¢;ze,mn flops.

When using these procedures in the analysis of other algorithms, we ignore the
errors r and r;,,, though they affect the accuracy.

3.2. Chasing Algorithms. Once we have computed the approximate singular
vectors in §3.1, we need the two chasing procedures described in this section. Such
algorithms are discussed in [23, 12, 1, 4], so we just summarize them here.

First, suppose that we have computed (G, @y, ¥,,) from (3.1)—(3.3). To “deflate”
this smallest singular value, we find an orthogonal matrix U such that

(3.7 UTa, = +e,
and an orthogonal matrix V' such that
(3.8) uTcev =C

is lower triangular. The matrices U and V are each the products of n — 1 Givens
rotations. R
The algorithm (3.7)—(3.8) has interesting consequences for C. If

(39) Vp = VT‘_ln; Tiny = UTrimn
then (3.1)—(3.3) becomes

(3.10) C¥, = topen,
(3.11) +CTe, =,V + 00C biny,  ||Fino]| < 05,1
4



Tt is easily concluded from (3.10) that

Vp = xen, Cpp = 0p,

10T enll” = 55 + A ICT Finu I < 55 + ICI76,
and that
(0 C(n,2:n) ) = Fonip,C.
Thus
IC(n,2:n)|| < S|CI-

Likewise, if C' is lower trapezoidal with more columns than rows, we can develop a
chasing procedure similar to that above that starts with @ in (3.4)—(3.6) and produces
orthogonal matrices U and V such that

(3.12) UTa, = e,

and V such that C in (3.8) remains lower trapezoidal.
If v, =V7Tv; and £ = V7r, then

Cvy = +o,€e1,

iC'Tel :5'1\Afl+f‘, ||f‘|| 556'1

Since #7%; = 0, we have

(3.13) ICTeul” = &7 + [I£]I°,
thus

(3.14) 51 < [|ICTeq|| < &1 (1 + 6%)1/2.

4. Refining a ULVD. Refinement is a process of improving the accuracy of the
ULVD. We discuss how to measure that improvement below.

The notion of refinement was popularized in [19] where the following was pre-
sented. It is equivalent to the QR algorithm without shifts.

ALGORITHM 4.1 (Mathias—Stewart Refinement Procedure).

Step 1. Find orthogonal U € R™™ such that
- - L 0 L g
T _ 77T _ —c)
0TC =0 (F G)_( ; G(1)>_C .
U+« UU.
Step 2. Find orthogonal V € R™™ such that

o AR 2] .
C<>V_( 0 o V=

V« VV.
5
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We note three important properties of Algorithm 4.1. Other properties were
shown in [19].
1. Since this is the QR algorithm without shifts, it follows that asymptotically

Il ~ IFIl =57

‘713-1-1 (C)
a3 (C)

2. One can show that

ICF GHI<IGI, ICF G)llr <IGllF-

3. Repeated application of this algorithm forces ||( F G )|| to converge to
or+1(C), but at about the rate of the shiftless QR algorithm.

This algorithm requires O((m + n)(n — k)k) flops where the constant in O(-)
depends upon the implementation. Thus, if min{k,n — k} = O(1), then this is an
O(mmn) algorithm, but if min{k,n — k} = O(n), this is an O(mn?) algorithm. In our
tests, we used a chasing procedure that combines steps 1 and 2.

An alternative to Algorithm 4.1, proposed in [12], just computes a ULVD of C,
and thereby produce a better ULVD of X. This costs about the same as Algorithm
4.1, it is O(mn(n — k)) flops, making it O(mn) flops if n — k = O(1) and O(mn?)
flops if n — k = O(n).

Below we give an algorithm that computes a refinement in O(mn) flops no matter
what the value of k is. For our statement of this refinement procedure, C' has the
form

k n—k
k L 0
C= -k (F G )
ALGORITHM 4.2 (Alternative Refinement Algorithm).

Step 1. Using procedures such as those in §3.1, find unit vectors u1,v1 such that
(F G )v=aiiy,
where a1 1s the largest singular value of ( F G )
Step 2. Construct orthogonal matrices U1y and V(1) such that
[U(l)]Tﬁl = :i:el,
and
Gy = [Uw]" GV
remains lower triangular. Also compute

Fuy = [Un)]"F,

UG, k+1in) < UG, k+1:n)Uqy, V(,E+1in) < V(i k+1:n)Vy.

Note that
k n—k
1 [f(l)]T g(l)eT
(Foy Guy)=, _1 ( PO o
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where

ICE™T gWer )l=al( £ G, I Fyy Gy )ll=cel( £ Gl

S ( L o0 )
= T
£ gy

Find unit vectors Qpy1, Vi1 such that

Step 3. Let

SVkt1 = Opt10p+1

where Gr41 is the smallest singular value of S.
Step 4. Construct orthogonal matrices Uz, Vi) € REFVXE+D) gych that

[Uo)) k1 = Teppa
L 0
st = ( (()1) Ok+1 ) - [U(z)]TSV@)

where Ly is lower triangular.

(Foy Go(,1))=(Foy Gu(,1) )V

UG, Lk+1) < UG, LEk+10)Ug), V(E,Lk+1)«<V(,LE+1)Vy.
If opt1 > €, let
L=SW, F=(F® G(:,1)), G=GD(,2:n—k)

else

= — 0 = Ok+1€
1 +1€]
o1, p_(~(2)>, G_< 1€ )

The refinement algorithm requires 6(m + n)n + 12nk + cje,n? flops. Thus, this
is an O(mn) algorithm for all k.
It does not have a property similar to property (1) of Algorithm 4.1. Fortunately,

it does have two properties similar to properties (2) and (3). These are:
1.

ICF GHllr<ICF G)lr

where equality occurs if and only if [|( F' G )|| = o441 (C).

2. Repeated application forces || F G )| to converge to o1 (C). Under rea-
sonable assumptions, a good approximation of ox4+1(C) is produced after one
iteration.



The following lemma exactly quantifies the decrease in ||[( F' G )||F.
LEMMA 4.1. Assume the terminology of Algorithm 4.2. If 611 < € then

(4.1) I(F G)lI% = [(F Q) = 03[(F G)] + 07.,,(S)
(4.2) = |(F &IIZ ~ 1T, g2 + 524

If Gp41 > € then

(4.3) I(F & = I(F &% - oi[(F G)]
and

ICF Glll=ox( F G)<I(F G)I.

Proof. First, due to orthogonal invariance of Frobenius norm we first observe that
(4.4) ICFR Gullr=ICF G)lr

where ||( Fi G; )Tei]| is the largest singular value of the matrix (F G). Second, we
observe that

15 LO)IIIILOII
(45) 1( 5 pn JIr={ g )ir

L 0
where 041 is the smallest singular value of the matrix < f(l)T ) > . Thus equa-
1 911

tion (4.1) follows from combining (4.4)—(4.5). If Gx11 > €, then the last row of S is

not included in ( ¥ G ), thus (4.3).
Since ||( fl(l)T gV ) = o1[( F G )] and e is the left singular vector as-

sociated with this singular value, it follows that ||( £V G® )| = oo[( F G )]
ad

The computation of equation (4.2) requires O(n) flops.

The following theorem shows that repeated application of Algorithm 4.2 forces
[|( F G )] to converge to opy1(C).
Ly O
Fy, Gq

THEOREM 4.2. Suppose we apply Algorithm 4.2 to Cy = ( ) t times to

. . (L O
obtain the matriz Cy = ( £ G, ) Then
(4.6) Jm (IO F - Gy )l = ok41(Co)-

Proof. By using Lemma 4.1 we have
2
2 2 2 Lyt 0
AN Fer1 Ger)lle — (I(F: G)llp = (I(Fr G)II° — okt g™ )
1 11

T
t+1 t+1
where £\ = Fl e, g = TGy ey
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By the Cauchy interlace theorem [25, pp.103—-104], we have

Lt+]_ 0
(48) Ok+1 (t+1)T (t+1) S Ok+1 (CO) S ”( F G )”
f) 911
Thus from (4.7),
(4.9) |(Fer Gera)llr < ||(Fe Ge)llr
unless ||(F; Gt)|| = ok+1(Co). Furthermore, we have
(4.10) or+1(Co) < [[(Fe Ge)llr < [|( Fo  Go |-

Thus by (4.9) and (4.10), {||(F; G¢)||r} defines a monotone, bounded sequence which,
in turn, has a limit [20, pp. 47-55]. So we have

(4.11) Jim [[(F; Gyl = v

for some ¥ € R.
By equation (4.7), since the sequence {||(F} G¢)||r} is a Cauchy sequence, and
using (4.8), we have

. ) Ly 0
Jin [|(F; Go)l| = lim oy l( fl(t)T WO )] = 0j+1(Co)-
0
The next theorem shows that just one step of the refinement procedure can yield
a value of G4 that is a very good approximation of the (k + 1)st singular value of
C.
THEOREM 4.3. For a given matriz C of the form

kE n—k
k L 0
i ek (58
Algorithm 4.2 produces a matriz of the form
k. n—k
ok L o0
(4.13) c=1 0 Okt1eq
n—k—1\F G
such that
2(F G
(4.14) 0 <0k41(C) = Fp41 < 7l )

0k+1(C) + Opt1

Proof. By orthogonal equivalence, C' and C have the same singular values. First,
we note that

k 1 n—k—1
k LLT 0 LFT
cct=1 0 o7, rr1el GT

n—k—1 F.ET 5]94_1@(31 FFT—FGGT
9



The Cauchy interlace theorem applied to CC7 gives us that
Gry1 <031 (C) = 0741 (C)

thereby yielding the upper bound in (4.14).
If we note that

T~ LTL 0 N S

TFH _ T

C’C—( 0 62+1e1e1T>+(F G)(F G),

then Weyl’s monotonicity theorem applied to the (k + 1)st eigenvalue of CC7 is
L 0

‘7129-4-1(0) < ‘71%-4-1 [( 0 Grp1

)] +etcE @

Steps 1-2 of Algorithm 4.2 give us that

Steps 3-4 give us that

Thus
512c+1 < ‘712c+1(0) < 512c+1 +o3l( F G

Solving for og41(C) — g1 yields the upper bound. O
In the next section, we give some numerical tests that confirm the stated proper-
ties of these alternative algorithms.

5. Numerical Tests. The following tests were done using MATLAB 6.
Test Set Let w = 1.1¢, for a fixed value of k, let (;, =In w/k. Then let

Dy, = diag(eS*, €2, ..., e**),
noting that w = e*%*. For p = [100/k|, we let
%), = diag(Dy, € % Dy, .., Dy, €9 Dy(1: 100 — p k), € = 0.9€.

Using a technique for generating random orthogonal matrices given by Stewart [21],
we generated U,V € R100%100 and et

X, =Ux, V7.
We then computed the Q-R decomposition
X, =QCy

and used the lower triangular matrix C. This is matrix with exactly & singular values
greater than e, but with the singular values clustered.

For each value of k¥ = 10,20,...,90, we generated 10 such matrices. We used
values of € = 107¢,£ = 2, ...,8. The results were similar for all values of k, so we give
the results for £ = 3 only.

We computed and plotted the following;:

10



e MATLAB run times, using the tic and toc commands. (In Figure 5.1)
o Relative error in the kth (in Figure 5.3) and (k+ 1)st (in Figure 5.2) singular
values. That is, we compute the log;, of
0k(C) —on(L)|  |ok41(C) — 01(G)]
or(C) 7 o1 (C)

e Error in the subspaces. We computed the log;, of

|sin©r| = [|W{ V|2
in Figure 5.1 and the log; of
|5in O] = ||V} Uall2

in Figure 5.3.

The unrefined ULVD was computed using the m-file hulv_a from the UTV tools
package in [13]. Except for rare cases resulting from innaccuracy of the condition
estimators, the e-psuedoranks of these matrices were computed correctly by all of the
procedures.

We applied each of Algorithm 4.1 and Algorihtm 4.2 after a decomposition com-
puted by hulv_a. In Figure 5.1, we plotted the flop counts of the two refinement
procedures and the subspaces errors including those from computing a ULVD using
hulv_a with no refinement at all. In Figure 5.2 we graphed the error in the (k + 1)st
singular value and the rank error using hulv_a. In Figure 5.3, we graphed the error
in the kth singular value and the left subspaces.

As one would predict, Algorithm 4.2 is much faster than Algorithm 4.1. Algo-
rithm 4.2 significantly improves the estimate of oi41(C) given by ¢1(G) and slightly
improves the estimate of o1 (C) given by ox(L). It does both better than Algorithm
4.1. Tt also makes the angles O and O with the right and left singular subspaces
small and does so as well or better than Algorithm 4.1.

6. Conclusion. The ULVD has already been shown to be a good substitute for
the SVD in circumstances where frequent updates and downdates are done.

We propose a refinement procedure that requires O(mn) flops that is just as
effective as the O(mn?) flops procedures proposed in [19]. Our tests above show that
this procedure successfully improves both the singular value and subspace estimates.

11



MATLAB timings for Refinement Algorithms for 100x 100 matrices
8 T T T T T

Time
'
T
|

— — Algorithm 4.2
Algorithm 4.1

10 20 30 40 50 60 70 80 90
Rank

FiG. 5.1. Flops Counts of Refinement Algorithms, e = 1073
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