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2matrix with 1 � 1 and 2 � 2 diagonal blocks. The factorization (1.1) is anatural extension of the Cholesky factorization of a positive de�nite matrix,H = LLT � LILT ; (1.2)where L is lower triangular matrix, and I is the identity matrix. The indef-inite factorization di�ers from the Cholesky factorization in three aspects:J instead of I, 2 � 2 diagonal blocks, and the permutation matrix P . Thenumber of positive (negative) diagonal elements of J is equal to the numberof positive (negative) eigenvalues of H. Existence of 2� 2 diagonal blocksin the matrix PG is necessary since, in general, an inde�nite matrix doesnot allow the factorization (1.2), even with J instead of I. As an exampleconsider the matrix H = � 0 11 0 �. The permutation matrix P ensuresstability of the factorization, as we shall see later.The factorization (1.1) is a modi�cation of the well-known method byBunch and Parlett [8]. The relationship between these two factorizations isas follows [27, 16]: the Bunch{Parlett method decomposes H asPHP T = LTLT ; (1.3)where P is permutation matrix, L is unit lower triangular matrix with fullcolumn rank, T is block-diagonal matrix with 1 � 1 and 2� 2 blocks, andthe diagonal blocks of L which correspond to 2 � 2 diagonal blocks of Tare 2� 2 identity matrices. This factorization is an extension of the LDLTfactorization of a positive de�nite matrix [19, 30]. Let UTTU = � �j�j1=2J j�j1=2 be the eigenvalue factorization of T . ThenG = P TLU j�j1=2: (1.4)The Bunch{Parlett method is well suited for solving symmetric sys-tems of linear equations. In particular, the version of the Bunch{Parlettmethod with partial pivoting known as the Bunch{Kaufman method [6] isimplemented in LAPACK [1]. The factorization (1.1) has recently attrac-ted attention in two ways: �rst, eigenvalues of the pair (GTG; J) are thenon-zero eigenvalues of H, and the factorization (1.1) followed by one-sidedJacobi type method on the pair (G; J) makes highly accurate eigenreduc-tion algorithm [13, 31, 27]. Second, a version of the matrix GGT is used asa good preconditioner for some inde�nite systems of linear equations [16].Factoring real symmetric and Hermitian matrices also has other importantapplications in eigenvalue problems, optimization and control. The inverseiteration method [26] which solves a sequence of linear systems by factoringH � �I is used to determine few eigenvectors of Hermitian matrix H. Inoptimization the so called augmented systems (or the Karush{Kuhn{Tucker



3systems) of the form � A B�B 0 � are used in several cases: in unconstrainedleast squares problems [2] where the augmented system approach has bet-ter numerical properties than the normal equation approach, in constrainedleast squares problems [14], and in general quadratic programming [17, 33].The last application naturally extends to the minimization of general func-tion with linear constraints, since the Newton step is computed from thelocal quadratic problem (see e.g. the review paper [33]). In control the-ory the above factorizations are used in solving algebraic Riccati equations,where the matrix sign function of the corresponding Hamiltonian matrix iscomputed by symmetric iterations [9, 24].In this paper we give componentwise error bounds for the factorization(1.1). Our main result is the componentwise backward error bound: thecomputed G and J are the exact factors of the perturbed matrix H +E,GJGT = H + E ; jEj � 91n(jHj+ jGjjGjT)"; (1.5)Here " is the machine precision, and j � j stands for the elementwise absolutevalue. This bound compares well to the existing bound for the Bunch-Parlett method by Bunch [5]. Maximal predicted errors are in both casessimilar and close to actual errors. Our bound reveals better the error struc-ture, and has simpler form which is more suitable for further applications.For example, as a part of the error analysis of the above mentioned accur-ate eigenreduction algorithm, we can apply the relative perturbation theoryfor inde�nite eigenvalue problems by Veseli�c and Slapni�car [32, 28] to thebound (1.5), thus obtaining error bounds for eigenvalues and eigenvectorsof H after the factorization [27]. Demmel and Veseli�c [13] used the sameapproach for positive de�nite matrices.The bound (1.5) holds for complete pivoting. We also prove similarbound for the partial pivoting strategy which is used in the Bunch{Kaufmanmethod [6, 7] and in the LAPACK routine dsyjf2.f. Further, we discussnormwise stability of the method.If the matrix PG has only 1� 1 diagonal blocks, then the bound (1.5)reduces to jEj � 3n(jHj+ jGjjGjT)". This is, for example, always the casefor positive de�nite and scaled diagonally dominantmatrices [4]. Moreover,in both these cases the factorization (1.1) can be performed without pivot-ing, that is, with P = I. If H is positive de�nite and P = I, then (1.1)reduces to the Cholesky factorization, and the above bound is similar to thebounds by Demmel [11] and Sun [30].Our second result is the componentwise forward error bound. Firstwe need the forward perturbation result. Let H = eG eJ eGT and H + E =GJGT be the factorizations of the unperturbed and perturbed matrix H.Since the factorization (1.1) involves pivoting, it is generally not possibleto give reasonable bounds for the forward perturbation matrix �G = G� eG.



4However, if we make additional assumptions that in both factorizations thesame pivoting sequence and only 1 � 1 pivots have been used, and thateJ = J , then we can bound the elements of �G in terms of G and E. Thisresult generalizes the result by Sun [30, Theorem 2.2.1] for the Choleskyfactorization. The forward error bound follows by inserting the backwarderror bound into the forward perturbation bound.If H is Hermitian, then the algorithm and the error bounds for thefactorization are similar to the ones for the real symmetric case. As aspecial case, we obtain componentwise backward and forward error boundfor the Cholesky factorization of a Hermitian matrix.Further, we derive similar results for the Bunch{Parlett factorization(1.3). In particular, these results hold for the LAPACK implementationsthe Bunch{Kaufman method [6], dsytf2.f and chetf2.f [1].All above results can be viewed as generalizations of the results forLLT and LDLT factorizations of positive de�nite matrices by Sun [30] toinde�nite real symmetric and Hermitian matrices.Finally, we prove bounds for the scaled condition of the matrix G. Thescaled matrix of G is de�ned by scal (G) = GD�1, where D is diagonal suchthat the columns of scal (G) have unit 2-norms. We prove a remarkablefact that �(scal (G)) � O(n3:781n) irrespective of the condition or evensingularity of H. Here � is the spectral condition number. If H is positivede�nite, then the bound is of order O(n2n), which can be almost attained.Both bounds hold for the Hermitian case, as well. As an application, weshow that the factorization usually has non-trivial diagonalization e�ectand, consequently, rank reveling property.The rest of the paper is organized as follows: in Section 2 we describethe algorithm of the factorization (1.1) in detail. In Section 3 we givethe backward error analysis and discuss some special cases and normwisestability. In Section 4 we prove the forward error bound. In Section 5 wegive the algorithm and the error bounds for the Hermitian case. In Section6 we derive bounds for the scaled condition. In Section 7 we derive similarresults for the Bunch{Parlett factorization. In Section 8 we summarize ourresults, and compare our backward error bounds with the existing analysisof the Bunch{Parlett method by Bunch [5]. We also describe results ofnumerical experiments, and illustrate our results by numerical example.2. ALGORITHMWe shall now derive the algorithm of the factorization (1.1). We beginby describing the �rst step of the algorithm. Let H be a non-zero real



5symmetric matrix of order n. Let P̂ be the permutation matrix such thatP̂HP̂T = � X CTC Y � ; (2.1)where X is nonsingular k� k matrix, k 2 f1; 2g, C is a (n� k)� k matrix,and Y is a (n � k) � (n � k) matrix. Such P̂ always exists because H isnon-zero. Let QTXQ = D be the eigenvalue factorization of X. If k = 1then Q = I1, and if k = 2 thenQ = � cs sn�sn cs � ; cs2 + sn2 = 1: (2.2)Thus, X = QjDj1=2JkjDj1=2QT , where Jk = diag (�1), and we haveP̂HP̂T = � X CTC Y � = � B 0Z In�k � � Jk 00 Ĥ � � B 0Z In�k �T ;(2.3)where B = QjDj1=2; Z = CQjDj�1=2Jk; Ĥ = Y � ZJkZT :The pivoting strategy is as follows: according to [8] we choose 1 � 1pivot if and only if �1 � ��0, where� = 1 +p178 ; �0 = maxi6=j jHijj; �1 = maxi jHiij: (2.4)If we are performing 1� 1 pivot, then we choose P̂ in (2.1) to interchangerow and column 1 with s, where s is the least integer such that �1 = jHssj.Therefore, jXj = �1. If we are performing 2 � 2 pivot, we can choose P̂in (2.1) according to several complete and partial pivoting strategies whichare described in [8, 6, 7]. We shall use the unequilibrated diagonal pivotingfrom [8], that is, we choose P̂ to interchange rows and columns 1 with qand 2 with p, where q is the least column integer and p is the least rowinteger in the qth column such that �0 = jHpqj. Note that p > q. Thispivoting strategy implies that in the 1 � 1 case J1 = sign (X), and in the2 � 2 case X has one positive and one negative eigenvalue, that is, eitherJ2 = diag (1;�1) or J2 = diag (�1; 1).IfH is non-singular, then by recursive application of (2.3) in the obviousmanner we obtain the factorizationPHP T = (PG)J(PG)T ; (2.5)where PG is a lower block triangular matrix, J = diag (�1), and P is apermutation matrix. This, in turn, implies the factorization (1.1).



6Pivoting strategy can be de�ned with some other � 2 (0; 1), as well.The case � ! 0 (� ! 1) corresponds to the use of 1 � 1 (2 � 2) pivot ateach step [8], and both of these cases are clearly unstable. As shown in [8],the choice of � from (2.4) minimizes the element growth which can takeplace in the transition from H to Ĥ in (2.3), and the elements of the strictlower triangle of the matrix L from (1.3) are bounded as follows:jLijj � � 1=� for a 1� 1 pivot;1=(1� �) for a 2� 2 pivot: (2.6)We now present algorithm in the Matlab notation:Algorithm 2.1 (Symmetric indefinite factorization) On entry,array H contains an n � n real symmetric matrix. On exit the �rst r =rank (H) columns of the array H are overwritten by the factor matrix G.Vector J contains the diagonal of the matrix J . Vector P describes thepivoting./* Initialize starting values. */alpha = (1 + sqrt(17))=8r = nP = 1 : n/* Main loop. */i = 1while i <= n/* Find the current �0 and �1, and the indices p, q and s. */[temp; p] = max(abs(H(i : n; i : n)� diag(diag(H(i : n; i : n)))))[nu0; q] = max(temp)p = p(q)[nu1; s] = max(abs(diag(H(i : n; i : n))))if nu1 � alpha � nu0/* 1� 1 pivot. If the current block is singular, then �nish. */if nu1 == 0r = i� 1i = n+ 1else/* Permute H such that H(s; s) comes to the position (i; i), and notifythis in P . */s = s + i� 1H([i s]; :) = H([s i]; :)H(i : n; [i s]) = H(i : n; [s i])P ([i s]) = P ([s i])/* Update H. */J(i; i) = sign(H(i; i))



7H(i; i) = sqrt(abs(H(i; i)))if i < nH(i+ 1 : n; i) = H(i + 1 : n; i) � (J(i; i)=H(i; i))H(i; i+ 1 : n) = zeros(1; n� i)H(i+ 1 : n; i+ 1 : n) = H(i + 1 : n; i+ 1 : n) � : : :J(i; i) �H(i + 1 : n; i) �H(i+ 1 : n; i)0endi = i + 1end /* 1� 1 pivot. */else/* 2� 2 pivot. Permute H such that H(p; p) and H(q; q) come to theposition (i + 1; i+ 1) and (i; i), respectively. Notify this in P . */p = p+ i � 1q = q + i� 1H([i q]; :) = H([q i]; :)H([i+ 1 p]; :) = H([p i+ 1]; :)H(i : n; [i q]) = H(i : n; [q i])H(i : n; [i+ 1 p]) = H(i : n; [p i + 1])P ([i q]) = P ([q i])P ([i+ 1 p]) = P ([p i + 1])/* Compute the 2� 2 orthogonal matrix Q. */zeta = (H(i + 1; i+ 1)�H(i; i))=(2 �H(i+ 1; i))if z == 0t = 1elset = sign(zeta)=(abs(zeta) + sqrt(zeta2 + 1))endh = sqrt(1 + t2)cs = 1=hsn = t=hQ = [cs sn;�sn cs]/* Update H. */a = H(i; i)�H(i+ 1; i) � tb = H(i+ 1; i+ 1) +H(i+ 1; i) � tJ(i : i+ 1; i : i+ 1) = diag(sign([a b]))D = sqrt(diag(abs([a b])))H(i : i + 1; i : i+ 1) = Q �Dif i < n � 1H(i+ 2 : n; i : i + 1) = H(i+ 2 : n; i : i + 1) �Q � : : :J(i : i+ 1; i : i+ 1) � inv(D)H(i : i + 1; i+ 2 : n) = zeros(2; n� i� 1)H(i+ 2 : n; i+ 2 : n) = H(i + 2 : n; i+ 2 : n) � : : :H(i+ 2 : n; i : i + 1) � J(i : i + 1; i : i+ 1) � : : :



8H(i+ 2 : n; i : i + 1)0endi = i + 2end /* 2� 2 pivot. */end /* Main loop. *//* Permute rows of H to obtain the �nal factor. */H(P; :) = HThe fact that the symmetry of the submatrices is lost in the above al-gorithm, does not in
uence the subsequent error analysis. The algorithmcan easily be rede�ned to preserve symmetry, and to use only lower or up-per part of the matrix H, which saves storage and reduces the operationcount. We omit these enhancements for the sake of simplicity.In some applications [31, 27] it is convenient to have the diagonal of Jsorted, that is, �rst +1's, then �1's, or vice versa. This is easily achievedby appropriately permuting the columns of G in (1.1). This permutationdoes not in
uence the error analysis.IfH is singular, then at some stage of the algorithmwe shall have Ĥ = 0.By taking only those columns of G and the elements of J which have so farbeen computed, we obtain the desired factorization (1.1).If H is positive de�nite, then Algorithm 2.1 reduces to the Choleskyfactorization with diagonal pivoting (see e.g. [13]).3. BACKWARD ERROR ANALYSISIn this section we give the backward error analysis of the symmetricfactorization de�ned by Algorithm 2.1. In Section 3.1 we prove the errorbound for partial pivoting. In Section 3.2 we give some comments aboutdi�erent implementations of the algorithm. In Section 3.3 we discuss norm-wise stability of the algorithm, and in Section 3.4 we specialize or mainresult for the case when only 1� 1 pivots are used.We �rst present our model of the �nite precision 
oating-point arith-metic: 
oating-point result fl (�) of the operation (�) is given by [13, 18, 19]fl (a� b) = a(1 + "1)� b(1 + "2)fl (a� b) = (a � b)(1 + "3) (3.1)fl (a=b) = (a=b)(1 + "4)fl (pa) = pa(1 + "5)where j"ij � ", and "� 1 is the machine precision. This is somewhat moregeneral than the usual model which uses fl (a � b) = (a � b)(1 + "1) and



9includes machines like the Cray which do not have a guard digit. If a and bhave the same sign, then in our model we also have fl (a+b) = (a+b)(1+"1).To make the analysis simpler we shall ignore the terms of order O("2),that is, we shall make the usual assumptions(1 + "1)(1 + "2) = 1 + "1 + "2 = 1 + "0; 1 + "11 + "2 = 1 + "1 � "2 = 1 + "00;where j"0j; j"00j � 2". Under additional realistic assumption on ", say" � 0:0001, we can bound the second order terms in terms of O("), andthe bound of the following theorem holds exactly but with slightly largerconstant.We shall also assume that no under
ow or over
ow occurs.Theorem 3.1. Let G and J be the factors of a real symmetric matrixH computed by Algorithm 2.1 in 
oating-point arithmetic with precision ".Then, with the relative error of order O("),GJGT = H +E ; jEj � 91n(jHj+ jGjjGjT)" :Proof. The proof is by induction on n. We use the approach from [19,Theorem 3.3.1]. It is easy to see that the theorem holds for all matricesof order 1. To start the induction, we must also analyze the case of the2� 2 pivot for n = 2. Let e� , et, ecs, fsn, ea, eb, and eGij denote the quantitiescomputed by Algorithm 2.1 in exact arithmetic. We shall show that in the
oating-point arithmetic these quantities are computed with small relativeerrors. From now on we assume that j"ij � " for all i.We have� = fl �H22 �H112H21 � = H22(1 + "1) �H11(1 + "2)2H21(1 + "3) (1 + "4) = e� + "� ;where j"� j � 3�". The bound on "� follows from the fact that our pivotingstrategy impliesjH21j = �0; maxfjH11j; jH22jg � �1; (3.2)which, in turn, impliesje�j � � � if sign (H11) = �sign (H22) ;�=2 otherwise: (3.3)Therefore, we havefl (1 + �2) = (1 + "5)(1 + (e� + "� )2(1 + "6)) = (1 + e�2)(1 + "0);



10where, by solving the above equation for "0, and then bounding j"0j fromabove, j"0j � 2j"� e�j+ (j"5j+ j"6j)e�2 + j"5j � (8�2 + 1)" � 4:3":Further, the equalityfl (j�j+p1 + �2) = (1 + "7)(je� + "� j+ (1 + "8)(1 + "0=2)q1 + e�2)= (1 + "00)(je�j+q1 + e�2)holds for some j"00j � 7", so that �nallyt = fl  sign (�)j�j+p1 + �2! = et(1 + "t); j"tj � 8";cs = fl (1=p1 + t2) = ecs(1 + "cs); j"csj � 11";sn = fl (t=p1 + t2) = fsn(1 + "sn); j"snj � 11": (3.4)Leta = fl (H11�H21t) = ea(1+ "a); b = fl (H22+H21t) = eb(1+ "b): (3.5)If H11 = 0 and/or H22 = 0 or sign (H11) 6= sign (H22), then both a and bare computed by adding numbers of the same sign, thusj"aj; j"bj � j"tj+ 2" � 10": (3.6)If H11 � H22 > 0 or 0 > H22 � H11, then a is again computed byadding numbers of the same sign, so j"aj � 10". By using (3.2 { 3.4),since jH22j < jH21etj, we haveb = H22(1 + "9) + (1 + "10)(1 + "11)(1 + "t)H21et � eb(1 + "b);j"bj � jH22j+ 10jH21etjjH21etj � jH22j " � 11jH21etjjH21etj � jH22j" � 
b" � 90": (3.7)Here 
b � 111� �jetj � 111� �(�=2 +p1 + �2=4) :Similarly, if H22 � H11 > 0 or 0 > H11 � H22, then j"bj � 10", andj"aj � jH11j+ 10jH21etjjH21etj � jH11j � 
a" � 90": (3.8)



11Thus, we conclude that in any casej"aj; j"bj � maxf10; 
a; 
bg" � 90": (3.9)This, for example, impliesG21 = fl (�snpjaj) = eG21(1 + "G);j"Gj � j"snj+ j"aj=2 + 2" � 58"; (3.10)so we have G = eG+ �G; j�Gj � 58j eGj": (3.11)Therefore,GJGT = ( eG+ �G)J( eG+ �G)T = H +E;jEj � 2 � 58j eGjj eGjT" +O("2) = 116jGjjGjT"+ O("2); (3.12)and the theorem holds.The induction step must also be analyzed separately for 1� 1 and 2� 2pivot. We assume without loss of generality that the permutation matrixP̂ from (2.1) and (2.3) is the identity. Let us �rst consider a 1� 1 pivoty,that is k = 1. Then (2.3) holds withB = fl (jH11j1=2) = jH11j1=2 + �B;j�Bj � jH11j1=2";Z = fl (CJ1=B) = CJ1jH11j�1=2 + �Z;j�Zj � 2"jCjjH11j�1=2;Ĥ = fl (Y � ZJ1ZT ) = Y � ZJ1ZT + F̂ ;jF̂ j � 2"(jY j+ jZjjZjT ): (3.13)By assumption the computed factors Ĝ and Ĵ of Ĥ satisfyĜĴĜT = Ĥ + Ê; jÊj � 91(n� k)"(jĤj+ jĜjjĜjT ): (3.14)By setting G = � B 0Z Ĝ �, we haveG � J1 Ĵ �GT = � BJkBT BJkZTZJkBT ZJkZT + ĜĴĜT � : (3.15)yThe analysis of the 1� 1 case is similar to the one of [30, Theorem 2.1.1], althoughhere the matrix H need not be positive de�nite.



12By setting J = Jk � Ĵ and using (3.13), we obtainGJGT = H +E; jEj � � 2jH11j 3jCjT3jCj jÊ + F̂ j � ": (3.16)From (3.13) it also follows thatjĤj � (1 + 2")(jY j+ jZjjZjT ):By inserting this into (3.14), and adding the bound for jF̂ j from (3.13), wehave jÊ + F̂ j � (91(n� 1) + 2)(jY j+ jZjjZjT + jĜjjĜjT )": (3.17)By inserting the above inequality into (3.16) we �nally obtainjEj � (91(n� 1) + 3)(jHj+ jGjjGjT)";and the theorem holds.Let us now consider a 2� 2 pivot, that is, k = 2. Let H be partitionedas in (2.3). Let eQTX eQ = eD be the exact spectral factorization of X, andlet Q and D be the computed matrices eQ and eD, respectively. The analysisfor n = 2 also applies to Q and D, that is, (3.4) and (3.9) imply thatQ = eQ+ �Q; j�Qj � 11j eQj";D = eD + �D; j�Dj � 90j eDj": (3.18)Similarly to the 1 � 1 case, from (3.11) and (3.18) we conclude that (2.3)holds with B = fl (QjDj1=2) = eQj eDj1=2 + �B;j�Bj � 58j eQjj eDj1=2";Z = fl (CQjDj�1=2J2) = C eQj eDj�1=2J2 + �Z;j�Zj � 60jCjjeQjj eDj�1=2";Ĥ = fl (Y � ZJ2ZT ) = Y � ZJ2ZT + F̂ ;jF̂ j � 3"(jY j+ jZjjZjT ): (3.19)The induction assumption (3.14), (3.15), and (3.19) imply thatGJGT = � X CTC Y �+ � �X �CT�C Ê + F̂ � � H + E; (3.20)where �C = �ZJ2j eDj1=2 eQT +C eQj eDj�1=2J2�BT : (3.21)



13From (3.12) it follows directly thatj�Xj � 116jBjjBjT": (3.22)Further, as in the proof of (3.17), we havejÊ + F̂ j � (110(n� 2) + 3)(jY j+ jZjjZjT + jĜjjĜjT )"; (3.23)so it remains to bound j�Cj in terms of jZjjBjT and jCj. From (3.21) and(3.19) we havej�Cj � 118jCjjeQjj eQjT" � 118(jCj+ 2 ecsjfsnj � jC:2j jC:1j �)"; (3.24)where C:j denotes the j�th column of C, andjZjjBjT � jZBT j � jC eQJ2 eQT j � 118jCjjeQjj eQjT" + O("2): (3.25)In both cases, J2 = diag (1;�1) or J2 = diag (�1; 1), we havejC eQJ2 eQT j:1 = j( ecs2 �fsn2)C:1 � 2 ecsfsnC:2jjC eQJ2 eQT j:2 = j � 2 ecsfsnC:1 � ( ecs2 �fsn2)C:2j:Therefore,jC eQJ2 eQT j � 2 ecsjfsnj � jC:2j jC:1j �� ( ecs2 �fsn2)jCj: (3.26)Now (3.3) implies jetj � 1=(�+p1 + �2) which, in turn, implies0 � ecs2 �fsn2 � �p1 + �2 � 0:539: (3.27)By inserting this, (3.26), and (3.25) into (3.24), and ignoring terms of orderO("2), we obtainj�Cj � 118 �jCj+ jZjjBjT + 0:539jCj�"� 182(jCj+ jZjjBjT )": (3.28)The theorem now follows by inserting this, (3.22), and (3.23) into (3.20).Note that the theorem also holds if H is singular, that is, if Algorithm2.1 encounters a zero submatrix at some step. In that case the error matrixÊ from the induction step of the proof equals zero at some stage of thefactorization.We can further reduce the bound of Theorem 3.1 as follows: for each2 � 2 step, instead of using the worst-case bounds, we can compute the



14actual values of 
 from (3.9), and ecs2 � fsn2 from (3.27). The fact thatthese quantities are computed by using t instead of et is not important sincethis only contributes an error of O("2). By inserting these quantities intothe rest of the proof we havej�Cj � "C � ��13 + 
2� � 2 + 2� (1 + ecs2 �fsn2) ";and the theorem holds with 91 replaced by maxf"C=2g, where maximum istaken over all 2� 2 steps. In numerical experiments this procedure usuallyreduces the constant 91 by four times.3.1. Other Pivoting StrategiesWe can easily obtain bounds for some � other than the one de�ned in(2.4). For example, if we set � = 1=2, then Theorem 3.1 holds with 91replaced by 41.Theorem 3.1 holds for any pivoting strategy for which (3.3) holds whenwe apply a 2�2 step. Moreover, Theorem 3.1 holds for any pivoting strategyfor which the tangents in the 2 � 2 steps can be accurately computed, al-though with di�erent constants. In particular, we shall show that the the-orem holds for the partial pivoting strategy used in the Bunch{Kaufmanmethod [6, 7] which is implemented in the LAPACK routine dsytf2.f [1].This strategy is of interest since it requires only O(n2) search, contraryto the unequilibrated diagonal pivoting that we use which requires O(n3)search. We have chosen the unequilibrated diagonal pivoting since (asalready mentioned) it has better bounds for the element growth, and (2.6)makes it possible to bound the scaled condition in Section 6.Let us now prove the backward error bound for the Bunch{Kaufmanpartial pivoting strategy. We �rst describe the pivoting strategy. Let � bethe absolute value of the absolutely largest o�-diagonal element in the �rstcolumn, � = maxi�2 jHi1j;and let s be the least integer such that � = jHsij. Further, let � be theabsolute value of the absolutely largest o�-diagonal element in the s-thcolumn, � = maxi6=s jHisj:We have the following algorithm:Algorithm 3.1 (Partial pivoting) We describe only the �rst stepof the pivoting strategy. The complete algorithm is obtained by combiningthis algorithm with Algorithm 2.1.



15determine �if � = 0go to the next stepelseif jH11j � ��perform 1� 1 pivotelsedetermine s and �if jH11j� � ��2perform 1� 1 pivotelse if jHssj � ��interchange rows and columns 1 with sperform 1� 1 pivotelseinterchange rows and columns 2 with sperform 2� 2 pivotendendgo to the next stependTheorem 3.2. Let G and J be the factors of a real symmetric matrixH computed by symmetric inde�nite decomposition with partial pivoting ofAlgorithm 3.1 in 
oating-point arithmetic with precision ". Then Theorem3.1 holds.Proof. The induction for 1� 1 pivots is proved as in Theorem 3.1. Letus assume that we are performing 2�2 step. The conditions fromAlgorithm3.1 imply jH21j = �;jH11j < ��2� � ��;jH22j < ��;jH11jjH22j < �2�2: (3.29)If n = 2, then � = � = jH21j; jH11j; jH22j < ��;and the start of the induction is proved as in Theorem 3.1. Let us nowassume that n � 3. If, in addition to (3.29), jH22j < ��, then the inductionstep is proved as in Theorem 3.1. LetjH11j < ��2� < �� � jH22j < ��:



16We consider two cases.Case 1. If sign (H11) 6= sign (H22), then � = e�(1 + "0� ), where j"� j � 3",thus the relations (3.4), (3.5), and (3.6) hold. We proceed as in the proof ofTheorem 3.1, with the exception that (3.27) is replaced by the trivial boundecs2 �fsn2 � 1. We �nally obtain that (3.28) holds with 76 instead of 182,which completes the proof of this case.Case 2. Let sign (H11) = sign (H22). Thenje�j � jH22j2� � ��2� :We consider two sub-cases.Case 2A. If �=� � 2, then je�j � � and (3.4) holds. In (3.5), b iscomputed by adding numbers of the same sign, thus j"bj � 10". Further, "ais bounded by (3.8), where
a � 111� jH11j�jetj � 111� ��� ���2� +q1 + ���2� �2�= 111� ���2 +q�2�2 + �24 � � 90: (3.30)The rest of the proof is the same as the proof of Theorem 3.1.Case 2B. If �=� > 2, then jH11j=jH22j < 1=2, and � = e� + "� , wherej"� j �  2 + jH22j+ jH11j2� � 1je�j! je�j" � 5je�j":Therefore, � = e�(1+"0�), where j"� j � 5", and the relations (3.4) hold again.As above, j"bj � 10", and by inserting �=� < 1=2 into (3.30), we obtainj"aj � 
a" � 27". The rest of the proof is as in the proof of Theorem 3.1,with the exception that again (3.27) is replaced by ecs2�fsn2 � 1. We obtainthat (3.28) holds with 110 instead of 182, which completes the proof of thetheorem.Several pivoting strategies which ensure the normwise stability of themethod (see Section 3.3) have recently been derived by Ashcraft, Grimesand Lewis in [3]. These strategies perform the number of searches for thepivot element that lies between complete pivoting of Algorithm 2.1 andpartial pivoting of Algorithm 3.1. By combining Theorems 3.1 and 3.2 wesee that our bound holds for these strategies, as well.3.2. Di�erent ImplementationsIn the case of 2� 2 pivots, cs, sn, a and b can be computed by di�erentformulas than those used in Algorithm 2.1. One can, for example, use the



17formulas which are used in the LAPACK auxiliary routine dlaev2.f whichsolves the 2 � 2 symmetric eigenvalue problem. Also, in the case of 2 � 2pivots, the Schur complement Ĥ from (2.3) can be computed by using onesymmetric rank two update Ĥ = CX�1CT ;instead of using two rank one updates Ĥ = Y � ZJkZT , as in Algorithm2.1. These modi�cations only slightly change the error analysis, so Theor-ems 3.1 and 3.2 still hold, but with slightly di�erent constants. However,as noticed in [3], the use of two rank one updates can in real computationslead to unnecessary errors in some cases (see the illustrative example in[3]). Similarly, sometimes it is better to compute X�1 by using the directinversion formula, X�1 = 1det(X) � X22 �X12�X12 X11 �, which is component-wise more accurate than the approach via the eigenvalue decomposition.We have chosen to use the rank one updates, which are also used by thecurrent LAPACK implementation of the Bunch{Kaufman method dsytf2.f.This is due to the fact that BLAS [1] does not implement a symmetric ranktwo update yet. This will be cured in the next version of BLAS [12].3.3. Normwise StabilityThe standard de�nition of normwise stability is the following: factoriz-ation is considered normwise stable if the computed factorization is equalto the exact factorization of some matrix H + E and kEk=kHk is small insome norm. Such bounds have been proved for the Bunch{Parlett factor-ization with complete and partial pivoting. Bunch [5] proved that for theBunch{Parlett method (1.3) with complete pivotingkEk1 � O(115n3")�nkHkM ; (3.31)where the M -norm is de�ned by kHkM = maxi;j jHijj, and �n is the growthfactor. The growth factor is de�ned by �n = maxk kH(k)kM=kHkM , whereH(k) is the Schur complement arising in the k-th stage of the factorization.The a priori upper bound for the element growth in this case is [5]�n � 3:07pn(n � 1)0:446f(n); f(n) =vuut nYk=2k 1k�1 � 1:8n logn4 : (3.32)The analogous bound for the Bunch{Kaufman factorization (1.3) ([6],see also Section 7) with partial pivoting of Algorithm 3.1 has recently beenproved by Higham [21]. He proved thatkjLjjT jjLjTkM � 36n�nkHkM ;



18which, in turn, implies the normwise stability. For the partial pivotingthe element growth is a priori bounded by �n � 2:57n�1 [6]. However,such large element growth is very rare in practice, and in [6] a simple andinexpensive algorithm for monitoring element growth is given.Another possibility to ensure the normwise stability and have less searchfor pivot elements than complete pivoting, is to use some pivoting strategywhich ensures that the elements of the matrix L from (1.3) are bounded.Namely, for complete pivoting (2.6) holds, but it is possible to have boundssimilar to (2.6) without complete pivoting, as well. Such approach is usedin [3] and in [14] for sparse matrices.We shall now analyze normwise stability of the symmetric inde�nitedecompositions of Algorithms 2.1 and 3.1. We shall use the technique from[21]. Let us �rst analyze Algorithm 2.1. For simplicity, we assume that Gand J are the exact factors of H, since by Theorem 3.1 this contributesonly O("2) term in the �nal bound for kEk. LetjGjjGjT � � jBj 0jZj jĜj � � jBj 0jZj jĜj �T= � jBjjBjT jBjjZjTjZjjBjT jZjjZjT + jĜjjĜjT � ;where B and Z are de�ned by (2.2) and (2.3), and Ĥ = ĜĴĜ is the fac-torization of the Schur complement Ĥ. If the �rst pivot is 1 � 1, then�0=�1 � 1=� and kjBjjBjTkM = kXkM � kHkM ;kjBjjZjTkM = kCkM � kHkM ;kjZjjZjTkM � kjCjjDj�1jCjTkM� 1�kCkM � 2kHkM : (3.33)In the last inequality we have used the fact that jDj = �1. If the �rst pivotis 2� 2, then jH21j = �0 andkjBjjBjTkM � kjQjjDjjQjTkM � maxfjD11j; jD22jg� kXk1 � 2kHkM ;kjBjjZjTkM � kjQjjQjTjCjkM � 2kHkM ;kjZjjZjTkM � kjCjjQjjDj�1jQjT jCjTkM : (3.34)It is easy to see that[jZjjZjT ]ij � 1jD11jjD22j � �0 �0 � � (3.35)



19� � cs2jD22j+ sn2jD11j �0�0 cs2jD11j+ sn2jD22j � � �0�0 �� �20jD11jjD22j (2�0 + jD11j+ jD22j) � 11kHkM : (3.36)The last inequality follows fromD11D22 = H11H22 � �20 ; jH11jjH22j � �2�20 ;which combined gives �20=(jD11jjD22j) � 1=(1� �2).By applying the above bounds recursively to Ĝ and Ĥ and by notingthat every Schur complement Ĥ satis�es kĤkM � �nkHkM , where �n isthe growth factor, we conclude that kjGjjGjTkM � 11n�nkHkM . By usingTheorem 3.1 and jHj � jGjjGjT , we �nally havekEkM � 182 � 11n2"�nkHkM ;where �n is bounded by (3.32). Note that this bound is of the same orderas (3.31).Let us now analyze Algorithm 3.1. If the �rst pivot is 1� 1, then (3.33)holds, with the exception that nowkjZjjZjTkM � �2jH11j � max���; ��� � 2kHkM ;if jH11j � �� or jH11j� � ��2, andkjZjjZjTkM � �2jHssj � �� � 2kHkM ;if jHssj � ��. Therefore, we conclude that the method of Algorithm 3.1 isnormwise stable if only 1�1 pivots are used. This includes some importantclasses of matrices which are described in Section 3.4.However, if 2 � 2 pivots are used, the method of Algorithm 3.1 is notas stable as Algorithm 2.1 or the Bunch{Kaufman method. Namely, (3.34)holds, but with the exception that now[jZjjZjT ]ij � 1jD11jjD22j � � � � �� � cs2jD22j+ sn2jD11j �� cs2jD11j+ sn2jD22j � � �� �� 1jD11jjD22j ((�2 + �2)maxfjD11j; jD22jg+ 2��2);and even though �2=(jD11jjD22j) � 1=(1 � �2), the bound such as (3.35)does not exist. The examples when such worst case is attained can be easilyconstructed by taking � large enough.



203.4. Lower Triangular FactorIn the proof of Theorem 3.1 we see that 2 � 2 steps contribute muchmore to the error bound than 1�1 steps. If only 1�1 steps are performed,that is, if the factor PG from (2.5) is lower triangular, then the bound ofTheorem 3.1 reduces to jEj � 3n(jHj+ jGjjGjT)": (3.37)Indeed, if only 1 � 1 steps are performed, then the constant 91 from theinduction assumption (3.14) can be changed to 3, which combined with(3.17) gives (3.37). Also note that (3.37) holds always when only 1 � 1pivots are used, even without pivoting, so long as the algorithm does notbreak down. Such factorization may, however, lead to large element growth,which will then be included in the jGjjGjT term.Two important classes of matrices which can be decomposed by per-forming only 1�1 steps without pivoting are positive de�nite matrices andscaled diagonally dominant matrices [4].If H is positive de�nite, then Algorithm 2.1 reduces to the Choleskyfactorization with diagonal pivoting, and only 1 � 1 steps are performed,so (3.37) holds. From the proof we see that (3.37) holds even if we donot use pivoting, in which case it closely resembles the results by Sun[30, Section 2]. Even more, by analyzing the proofs, we see that theseresults by Sun, which are slightly stronger than (3.37), hold for all inde�nitematrices which can be decomposed by using only 1�1 pivots. Further, sincejHj+ jGjjGjT � 2pHiiHjj, which holds with the relative error of O("), wehave jEijj � 6n(HiiHjj)1=2":This is similar to the result by Demmel [11]. There the constant 6n isreplaced by (n+ 1)=(1� (n+ 1)"), which is slightly better. Note, however,that the above bound holds for the outer product version of the Choleskyfactorization [19, Algorithm 4.2.2] with or without diagonal pivoting, whileDemmel analyzed the Gaxpy version [19, Algorithm 4.2.1].Scaled diagonally dominantmatrix is de�ned asH = D(J+N )D, whereD is diagonal positive de�nite, J = diag (�1), and N has zero diagonal withkNk2 < 1 [4]. We shall now show that such matrix can be decomposed byperforming only 1 � 1 steps both with or without pivoting, so that (3.37)holds. Indeed, the form of H implies that H11 6= 0, thus we can start byperforming a 1� 1 step. Therefore, (2.3) impliesH = D(J +N )D = � B 0Z In�1 � � J1 00 Ĥ � � B 0Z In�1 �T � eL eHeLT :Also, sign (Hii) = sign ( eHii): for i = 1 this is obvious; for i = 2; � � � ; n we



21have eHii = D2iiJii � N2i1D2iiJ11 = D2ii(Jii �N2i1J11); (3.38)and the statement follows from the fact that jNi1j < 1. Thus, we can writeeH = eD(J + eN ) eD, where eD is diagonal positive de�nite, and eN has zerodiagonal. Since J+N and J+ eN are congruent, they have the same inertia,and we conclude that k eNk2 < 1. Therefore, eH and, consequently, Ĥ arescaled diagonally dominant matrices, and by induction we conclude thatthe factorization can be continued by performing only 1� 1 steps withoutpivoting.Similar problem of performing LU factorization without pivoting wasanalyzed by Funderlic, Neumann and Plemmons in [15]. They showed thatthe Gaussian elimination can be performed without pivoting for generalizeddiagonally dominant matrices, that is, the matrices which can be row scaledto be diagonally dominant. By de�nition, H is such matrix if there existsa vector y such thaty > 0; yT (jdiag (H)j � jH � diag (H)j) � 0; (3.39)where the last two inequalities are interpreted componentwise. We shallrestrict ourselves to strictly generalized diagonally dominant matrices, thatis to the case where \�" in (3.39) is replaced by \>". Let now H =D(J + N )D , be a scaled diagonally dominant matrix. Then (3.39) (with\>" instead of \�") is equivalent toy > 0; yT (I � jN j) > 0:Notice that such y exists if and only if I � jN j is an M -matrix [23, p. 114].This implies that if �H is strictly generalized diagonally dominant, thenkjN jk2 < 1, which, in turn, implies that �H is scaled diagonally dominant.The converse is not true, that is, there exist scaled diagonally dominantmatrices which are not (strictly) generalized diagonally dominant. Indeed,let �H = D(I + N )D; N = 2664 0 0:4 �0:4 �0:40:4 0 0:4 �0:4�0:4 0:4 0 0�0:4 �0:4 0 0 3775 :Then kNk2 = 0:8 and kjN jk2 > 1. We have therefore enlarged the classof symmetric matrices from [15] for which the Gaussian elimination can beperformed without pivoting.4. FORWARD ERROR BOUNDForward error is de�ned as the matrix �G = G� eG, where eG and G arethe exact and the computed factors of a given matrix H, respectively. In



22this section we shall derive the componentwise forward perturbation bound,and then combine it with Theorem 3.1 to obtain the componentwise forwarderror bound. An example is given in Section 8.Since the decomposition (1.1) and Algorithm 2.1 require pivoting, smallrelative componentwise perturbations ofH can cause di�erent permutationsand di�erent choices of 1 � 1 and 2� 2 pivots. This implies that it is not,in general, possible to obtain useful bounds for �G. We illustrate thisby a simple example: let eH = � 1 22 1 � and H = � 1 + " 22 1 �. TheneG � � 0:70711 1:22474�0:70711 1:22474 � and G � � 1:22474 �0:707111:22474 0:70711 �, and we seethat even J need not remain the same. It is also easy to construct examples,where 1�1 pivots are used, but the permutation sequence changes, or wherethe inertia changes.Our results are generalizations of the results by Sun [30, Sections 2.2and 2.3] to inde�nite matrices. In order to prove the following theoremswe need some additional assumptions. These assumptions are the weakestpossible, and our results apply to large class of matrices which includes e.g.scaled diagonally dominant matrices. We shall �rst prove the perturbationtheorem:Theorem 4.1. Let H and H + E be non-singular matrices with thesame inertia, and let H = eGJ eGT and H + E = GJGT . Set �G = G� eG.If the permutation sequences are in both decompositions the same, and ifboth matrices P eG and PG from (2.5) are lower triangular, thenj�Gj � jGjtril �jG�1jjEjj eG�1jT� : (4.1)Here tril (A) denotes the lower triangle of the matrix A. Moreover, if� � minD2D k(D eG)�1k2k(DG)�1k2kDEDkF < 1; (4.2)where D is the set of all n� n diagonal positive de�nite matrices, thenj�Gj � jGjtril �jG�1jjEjjG�1jT �+jGjtril �jG�1jjEjjG�1jT�jG�1jjEjjG�1jT � ; (4.3)where �ij = 1=(1� �2).Proof. Our proof is very similar to the proof by Sun [30, Theorem2.2.1]. Matrices PG and ePG are by assumption lower triangular, whichimplies that only 1 � 1 pivots have been used in both decompositions.



23From Algorithm 2.1 we see that both matrices have all positive diagonalelements. FromPEP T = (P�G)J(P eG)T + (PG)J(P�G)Twe have(PG)�1PEP T (P eG)�T = (PG)�1(P�G)J + J(P�G)T (P eG)�T :Further, (PG)�1(P�G)J is lower triangular, J(P�G)T (P eG)�T is uppertriangular, andsign ([(PG)�1(P�G)J ]ii) = sign ([J(P�G)T (P eG)�T ]ii):This implies thatj(PG)�1(P�G)j � tril �j(PG)�1PEP T (P eG)�T j� : (4.4)Finally, (4.1) follows by inserting this into j�Gj � jGjjG�1�Gj.The inequality (4.4) also implies that for any D 2 DkG�1�GkF � kG�1E eG�TkF � k(DG)�1DED(D eG)�TkF� k(DG)�1k2k(D eG)�Tk2kDEDkFThe assumption (4.2) gives kG�1�GkF � � < 1, which implies that thematrix Z = I � jG�1�Gj is invertible. The rest of the proof is as in [30,Theorem 2.2.1].As in [30, Section 2.3], the componentwise forward error bound is nowobtained by inserting (3.37) into Theorem 4.1:Theorem 4.2. Let H = eGJ eGT be the decomposition of H computedby Algorithm 2.1 in exact arithmetic. Let G and J be the factors of Hcomputed by Algorithm 2.1 in 
oating-point arithmetic with precision ".Set �G = G� eG. If eG and G satisfy the assumptions of Theorem 4.1, andif 3n" minD2D k(D eG)�1k2k(DG)�1k2kD(jHj+ jGjjGjT)DkF < 1;then j�Gj � 3njGjtril �jG�1j(jHj+ jGjjGjT)jG�1jT� " + O("2):5. HERMITIAN CASEIn this section we consider the decomposition of a Hermitian matrixH,H = GJG�; (5.1)



24where G has full column rank and J = diag (�1). We derive the algorithm,and show that all results from previous sections hold here, as well.The description of the algorithm is as in Section 2, except that thetransposed matrices CT , QT and ZT are replaced by conjugate transposedmatrices C�, Q�, and Z�, respectively. Also, the matrix Q from (2.2) isnow Q = � cs sn�sn cs � ; cs2 + jsnj2 = 1 : (5.2)The elements of Q and D are computed similarly as in the auxiliary routineclaev2.f, which is used in the Hermitian implementation of the Bunch-Parlett method (1.3) in the Lapack routine chetf2.f [1]. Since in MatlabH0 = HT if H is real, and H 0 = H� if H is complex, the only parts inAlgorithm 2.1 which change are the computation of Q, a, and b.Algorithm 5.1 (Hermitian indefinite decomposition) On entryarray H contains an n � n complex Hermitian matrix. On exit the �rstr = rank (H) columns of the array H are overwritten by the factor matrixG. Vector J contains the diagonal of the matrix J . Vector P describes thepivoting. Only part which di�ers from Algorithm 2.1 is displayed./* Compute the 2� 2 orthogonal matrix Q. */phi = H(i + 1; i)=abs(H(i + 1; i))zeta = (H(i + 1; i+ 1)�H(i; i))=(2 � abs(H(i + 1; i)))if z == 0t = 1elset = sign(zeta)=(abs(zeta) + sqrt(zeta2 + 1))endh = sqrt(1 + t2)cs = 1=hsn = t � phi=hQ = [cs conj(sn);�sn cs]/* Update H. */a = H(i; i)� abs(H(i+ 1; i)) � tb = H(i+ 1; i+ 1) + abs(H(i + 1; i)) � tAll comments about Algorithm 2.1 hold here, as well.In order to prove error bounds, we �rst need to describe complex �niteprecision 
oating-point arithmetic. All subscribed and superscribed "'sdenote complex numbers, " denotes the machine precision, and we assumethat j"ij � " for all i. It is easy to see that for 
 2 IR and a; b 2 C the realmodel (3.1) impliesfl (a� 
) = (a � 
)(1 + "1)



25fl (a=
) = (a=
)(1 + "2)fl (a� b) = a(1 + "3)� b(1 + "4)fl (a� b) = (a � b)(1 + 2"5)The backward error bound is given by the following theorem.Theorem 5.1. Let G and J be the factors of a Hermitian matrix Hcomputed by Algorithm 5.1 in 
oating-point arithmetic with precision ".Then, with the relative error of order O("),GJG� = H +E ; jEj � 126n(jHj+ jGjjGjT)" :Proof. The proof is very similar to the proof of Theorem 3.1, so we stateonly parts where the proofs di�er. First, all transposed matrices should bereplaced by conjugate transposed matrices, where applicable.Let H21 = jH21j� =p[Re(H21)]2 + [Im(H21)]2:Then fl (jH21j) = jH21j(1 + "jH21j); j"jH21jj � 2";fl (�) = fl � H21jH21j� = e�(1 + "�); j"�j � 3":This, (3.2), and (3.3) imply that� = fl �H22 �H112jH21j � = e� + "� ; j"�j � 5�";which further implies j"0j � (12�2 + 1)" and j"00j � 9". Thus, we concludethat (3.4) holds withj"tj � 10"; j"csj � 13"; j"snj � 13"+ j"�j+ " � 17":If H11 = 0 and/or H22 = 0 or sign (H11) 6= sign (H22), thena = fl (H11�jH21jt) = ea(1+"a); b = fl (H22+jH21jt) = eb(1+"b); (5.3)holds with j"aj; j"bj � j"tj + j"jH21 jj + 2" � 14". If H11 � H22 > 0 or0 > H22 � H11, then (5.3) holds withj"aj � 14"; j"bj � jH22j+ 14jH21jjetjjH21jjetj � jH22j " � 122";and if H22 � H11 > 0 or 0 > H11 � H22, then (5.3) holds withj"bj � 14"; j"aj � jH11j+ 14jH21jjetjjH21jjetj � jH11j � 122":



26Therefore, (3.11) holds withj�Gj � (j"snj+maxfj"aj; j"bjg=2 + 2")j eGj � 80j eGj";and (3.12) holds with jEj � 160jGjjGjT"+O("2), which completes the startof the induction.The proof of the induction step for a 1 � 1 pivot is as in Theorem 3.1,except that now (3.13) holds with jF̂ j � 3"(jY j+ jZjjZjT ).The proof of the induction step for a 2 � 2 pivot is as in Theorem 3.1with the following changes: (3.19) holds withj�Bj � 80j eQjj eDj1=2"; j�Zj � 83jCjjeQjj eDj�1=2"; jF̂ j � 4"(jY j+ jZjjZjT );and (3.26) and (3.27) hold with fsn2 replaced by jfsnj2, so that �nallyj�Cj � 163(1 + 0:539)(jCj+ jZjjBjT )" � 251(jCj+ jZjjBjT )":The computational e�ort in searching for �0 = maxi6=j jHijj can bereduced by using 1-norm instead of 2-norm. That is, we can set �0 =maxi6=j(jRe(Hij)j+jIm(Hij)j). Such approach is used in the Lapack routinechetf2.f. Since the two norms di�er by at most factor p2, Theorem 5.1 alsoholds for the above choice of �0, but with slightly larger constant.All comments from Sections 3.1, 3.2, 3.3 and 3.4 apply to Theorem5.1, as well. From the proof we see that if the matrix is decomposed byusing only 1 � 1 pivots, then the elements of E are again bounded by(3.37). In particular (3.37) bounds the componentwise backward error forthe Cholesky decomposition of a Hermitian semi-de�nite matrix. Also,scaled diagonally dominant Hermitian matrix can be decomposed by usingonly 1 � 1 steps with or without pivoting. The proof of this fact is asin Section 3.4, with the exception that in (3.38) the term N2i1 should besubstituted by jNi1j2.Finally, let us consider forward error bounds. From the proof of The-orem 4.1 we see that the forward componentwise perturbation bounds (4.1)and (4.3) hold for the Hermitian decomposition (5.1). By combining (4.3)with (3.37), we see that the Theorem 4.2 also holds for the Hermitian de-composition. For example, these results hold for the Hermitian Choleskydecomposition and scaled diagonally dominant Hermitian matrices.6. BOUNDS FOR THE SCALED CONDITIONLet H = GJGT be the factorization of a real symmetric n � n matrixH, where G has full column rank and J = diag (�1), and let us de�ne thematrix scal (G) byG = scal (G)D; Dii = kG:ik2; Dij = 0; for i 6= j: (6.1)



27The matrix scal (G) is the scaled matrix of the matrix G, and its condition�(scal (G)) � kscal (G)k2k(scal (G))�1k2 is the scaled condition of the mat-rix G. Note that the columns of scal (G) have unit norms. According to theresult by van der Sluis [29, Theorem 4.1], such scaling is almost the bestpossible over all diagonal scalings, that is,�(scal (G)) � pn min�=diag �(G�): (6.2)Demmel and Veseli�c [13] proved a remarkable fact that if H is positivesemi-de�nite and the factorization H = GGT is obtained by the Choleskydecomposition with complete pivoting, �(scal (G)) is bounded by a func-tion of n irrespective of the condition or even singularity of H. However,their bound is, as they stated, a large overestimate. Here we show that amuch better bound from [25, (6.13)], which is essentially almost attainable,readily applies here, and extend the result to inde�nite, possibly singular,matrices. By combining these results, numerical evidence, and the perturb-ation results of [13] and [32], we show that the inde�nite decompositionusually has diagonalization e�ect and rank revealing property. All resultsalso hold for Hermitian matrices.In the positive semi-de�nite case we have the bound�(scal (G)) � pn3 (42 + 6n� 1)�1=2: (6.3)which follows from [25, (6.13)]. Indeed, if H in positive de�nite, then thefact that we are performing Cholesky decomposition with complete pivotingimplies that the matrix PG is such that[PG]2ii � jXk=i[PG]2jk; i = 1; : : : ; n� 1; ; j > i: (6.4)Therefore, scal (PG) is equal to both matrices A and R from [25, (6.13)],so k(scal (PG))�1k2 � 13(42 + 6n� 1)�1=2:Here we have also used the fact that [scal (PG)]nn = 1. Combining theabove inequality with kscal (PG)k2 � pn gives (6.3).By inspecting the proof of [25, (6.13)] it can be seen that the proof alsoapplies to singular H, and the bounds are even better since some summa-tions have fewer terms. The full proof of this result is in [27]. Similar proofwas also used by Higham [20] in a di�erent context.The bound (6.3) is almost attained, as we see in the following example



28due to Kahan [25]: let H = LLT , whereL = 2666664 1�c 1�c �c 1... . . .�c �c � � � �c 1 37777752666664 1 s s2 . . . s(n�1) 3777775 ; c2 + s2 = 1:Then L is itself the Cholesky factor with complete pivoting of H, and whenc! 1, then �(H)!1, while (scal (L))�1 tends to the matrix eDeL from theproof of the theorem. The examples like this are, however, very rare, and�(scal (G)) is usually much smaller, typicallyO(n). Even the above examplecan be improved: if we apply Algorithm 2.1 to the permuted matrixPHP T ,where P swaps the �rst and the last row and column, we get �(scal (G)) � n{ see also the related result of Hong and Pan [22].Demmel and Veseli�c [13, Proposition 2.10] proved the following resultfor a positive de�nite matrix H: if H = DAD, where D is diagonal suchthat Aii = 1, then �min(A) � �ihi � �max(A);where �i are the eigenvalues of H and hi are the diagonal entries of H,both sorted in the ascending order.If H is positive semi-de�nite, then matrices H = GGT and GTG havethe same nonzero eigenvalues. By applying the above inequality to thematrix GTG, we obtain�2min(scal (G)) � �ihi � �2max(scal (G)); (6.5)where �min and �max are the minimal and the maximal elements from thespectrum of scal (G), �i are the nonzero eigenvalues of H, and hi are thediagonal entries of GTG (squares of the norms of the columns of G), bothsorted in ascending order. The above relation holds, of course, for any factorG. If G is obtained by the Cholesky decomposition with complete pivoting,then, by combining the above relation with (6.3) and the fact mentionedabove that �(scal (G)) is usually very small (even if H is singular), weconclude that the decomposition with complete pivoting usually has strongdiagonalization e�ect. Also, by looking only at the small eigenvalues, weconclude that such decomposition usually has rank reveling property. Thisproperty is similar to the one of QR factorization with complete columnpivoting as described by Chan [10] and Hong and Pan [22]. From the pre-vious example we also conclude that in some cases the complete diagonalpivoting does not produce good results. This, too, corresponds to the res-ults from [10, 22], where rank revealing QR factorization requires some



29additional information about singular vectors of small singular values inorder to �nd satisfactory pivoting sequence.Let us now turn to the inde�nite case.Theorem 6.1. Let H = GJGT be the decomposition of a symmetricmatrix H obtained by Algorithm 2.1 in exact arithmetic. Then�(scal (G)) �pn+ 15n2 3:781n: (6.6)Proof. Assume that H is non-singular. From (1.4) we see that thematrix PG = LU j�j1=2 is lower block triangular with 1 � 1 and 2 � 2diagonal blocks. Here U is orthogonal and block diagonal, and L is unitlower triangular. According to (2.6), the under diagonal elements of L arebounded by jLijj � 2:781 � �. By using the monotonicity property of the2-norm, jAijj � Bij =) kAk2 � kBk2;we have k(GD�1)�1k2 = k(PGD�1)�1k2 � k eDjU jT �Lk2 � k eDeLk2;where �Lij = 8<: 1; i = j;�(1 + �)i�1�j; i > j;0; i < j;eLij = 8>><>>: 1 + �; i = j;�(2 + �)(1 + �)i�1�j; i > j;1; i = j � 1;0; i < j � 1;and eD is diagonal with eDii =p1 + 2(n� i)�2. Therefore,k(GD�1)�1k22 � trace( eDeLeLT eD)= nXi=1 241 + (1 + �)2 + i�1Xj=1��(1 + �)(i�1�j)(2 + �)�235 (1 + 2(n� i)�2)= nXi=1 h1 + �(2 + �)((1 + �)2(i�1) � 1)i (1 + 2(n� i)�2)� (1 + 2n�2)(1 + �)2n;and the theorem follows by using this and kGD�1k2 � pn. It is easy tosee that the theorem holds for singular H, as well.



30Note that the optimal value of � in (2.6) is 1=2, in which case the theoremholds with 3:781 replaced by 3. As in the positive de�nite case, numericalexperiments show that �(scal (G) is usually very small, typically O(n).We shall generalize (6.5) to the inde�nite case.Theorem 6.2. Let H = GJGT be the decomposition of a symmetricmatrix H obtained by Algorithm 2.1 in exact arithmetic. Then (6.5) holds,where now �i are the nonzero eigenvalues of H, and hi are the diagonalelements of GTGJ , both sorted in ascending order.Proof. Let r = rank(H), and let�1 � �2 � � � � � �k < 0 < �k+1 � � � ��rbe the nonzero eigenvalues of H. Let �i < 0, and let us without lossof generality assume that the columns of G are permuted such that J =�Ik � Ir�k, and� 1[GTG]11 � � 1[GTG]22 � � � � � � 1[GTG]kk :Let B � scal (G). Since the nonzero eigenvalues ofH are the inverses of theeigenvalues of the pair (J;GTG), by applying the Courant{Fischer MinimaxTheorem we have1�i = mindim(S)=k�i+1 max06=x2S xTJxxTGTGx � max06=x2S0 xTJxxTDBTBDx:Here S0 is spanned by the �rst k� i+1 standard basis vectors, and D andB are de�ned by (6.1). By setting y = Dx we have1�i � max06=y2S0 yTD�1JD�1yyTBTBy � � 1[GTG]k�i+1;k�i+1maxkzk2=1 zTBTBz = 1hi�max(BTB) ;which proves the right hand side of (6.5). Further,1�i = maxdim(S)=r�k+i min06=x2S xTJxxTGTGx � min06=y2S0 yTD�1JD�1yyTBTBy � 1hi�min(BTB) ;where S0 is spanned by the last r� k+ i standard basis vectors. Thus, thetheorem is proved for �i < 0. For �i > 0 consider the matrix �H.If G is obtained by Algorithm 2.1, then by combining the above relationwith Theorem 6.1 and the fact that �(scal (G)) is usually very small, weconclude that such decomposition usually has strong diagonalization e�ectand rank revealing property.Finally, note that, since both key properties (6.4) and (2.6) hold forHermitian matrices (for the latter see [8]), the results of this section alsohold for the Hermitian decomposition from Section 5.



317. ANALYSIS OF THE BUNCH{PARLETT METHODIn this section we prove results similar to the results of Sections 3, 4,and 5 for the Bunch{Parlett method. By combining (2.1-2.3) with (1.4) wesee that one step of the decomposition (1.3) is given byP̂HP̂T = � X CTC Y � = � Ik 0Z In�k �� X 00 Ĥ � � Ik ZT0 In�k � ; (7.1)where W = CQ; Ĥ = Y �WD�1WT ; Z = WD�1QT ;and X = QDQT is the eigenvalue decomposition of X. These formulas areused in the Lapack implementation of the method, dsytf2.f, and are formallyslightly di�erent from the original formulas from [8] or [19, Section 4.4.4].The remarks from Section 3.2 hold here, as well.Let us begin by the backward error analysis.Theorem 7.1. Let L and T be the factors of a real symmetric mat-rix H computed by the Bunch{Parlett method with unequilibrated diagonalpivoting from Section 2 in 
oating-point arithmetic with precision ". Then,with the relative error of order O("),LTLT = PHP T + E; jEj � 5148n(P jHjPT + jLjjU jj�jjU jTjLjT )";where U�UT is the computed eigenvalue decomposition of T .Proof. We are using the notation from the proof of Theorem 3.1. Thetheorem holds for n = 1, and for n = 2 for a 2� 2 pivot since in both casesE = 0.We must analyze the induction step separately for 1�1 and 2�2 pivot.We assume without loss of generality that the permutation matrices P̂ from(7.1) and P from (1.3) are the identity matrices.Let us �rst consider a 1 � 1 pivot, that is, k = 1, W = C, Q = 1,and X = H11. The analysis is similar to the one of [30, Theorem 3.1.1],although here the matrix H need not be positive de�nite. We haveĤ = fl (Y � CX�1CT ) = Y � CX�1CT + F̂ ;Z = fl (WX�1) = CX�1 + �Z; (7.2)where jF̂ j � 3"(jY j+ jCjjX�1jjCjT); j�Zj � "jCjjX�1j:The induction assumption isL̂T̂ L̂T = Ĥ + Ê; jÊj � 5148(n� k)"(jĤj+ jL̂jjÛ jj�̂jjÛ jT jL̂jT ); (7.3)



32where Û�̂ÛT is the computed eigenvalue decomposition of T̂ . By settingL = � Ik 0Z L̂ � ; T = � X T̂ � ;we haveLTLT = � X XZTZX ZXZT + L̂T̂ L̂T � � H + E; E = � 0 (�C)T�C �Y � :(7.4)From (7.2) we have C = (Z � �Z)X andj�Cj = j�ZXj � "jCjjX�1jjXj = "jCj: (7.5)From (7.2) and (7.3), by ignoring the terms of O("2), we havej�Y j = jÊ + F̂ + ZXZT �CX�1CT j� 5148(n� 1)"(jY j+ jCjjX�1jjCjT + jL̂jjÛ jj�̂jjÛ jT jL̂jT )+3"(jY j+ jCjjX�1jjCjT) + 2"jCjjX�1jjCjT� (5148(n� 1) + 5)(jY j+ jZjjXjjZjT + jL̂jjÛ jj�̂jjÛ jT jL̂jT )":(7.6)The theorem now follows by inserting this and (7.5) into (7.4) and settingU = � 1 Û � ; � = � X �̂ � :Let us now consider a 2� 2 pivot, that is, k = 2. Let X = eQ eD eQT andQDQT be the exact and the computed eigenvalue decompositions of X,respectively. The relationship between these two decompositions is givenby (3.18). Now (7.1) holds withW = fl (CQ) = C eQ+ �W;Ĥ = fl (Y �WD�1WT ) = Y � C eQ eD�1 eQTCT + F̂ ;Z = fl (WD�1QT ) = C eQ eD�1 eQT + �Z; (7.7)where j�W j � 13jCjjeQj";jF̂ j � 120(jY j+ jCjj eQjj eD�1jj eQjT jCjT )";j�Zj � 117jCjjeQjj eD�1jj eQjT ":Therefore, (7.4) holds withj�Cj = j�Z eQ eD eQT j � 117jCjjeQjj eD�1jj eQjT j eQjj eDjj eQjT"; (7.8)



33and we have to bound the right hand side in terms of jCj and jZjjQjjDjjQjT.After a tedious computation we obtainjCjjeQjj eD�1jj eQjT j eQjj eDjj eQjT =  1 + 2ecs2fsn2( jeajjebj + jebjjeaj)! jCj++2 ecsjfsnj � �1 + ecs2 jeajjebj +fsn2 jebjjeaj� jC:2j �1 + ecs2 jebjjeaj +fsn2 jeajjebj� jC:1j � ;and jC eQ eD�1 eQjT j eQjj eDjj eQjT � � 1 + 2 ecs2fsn2( jeajjebj + jebjjeaj + 1)! jCj++ ecsjfsnj � �1 + ecs2 jeajjebj +fsn2 jebjjeaj� jC:2j �1 + ecs2 jebjjeaj +fsn2 jeajjebj� jC:1j � :By combining these two relations and using ecs2fsn2 � 1=4, we getjCjjeQjj eD�1jj eQjT j eQjj eDjj eQjT � 2jC eQ eD�1 eQjT j eQjj eDjj eQjT+ 4 + 32( jeajjebj + jebjjeaj)! jCj: (7.9)Further, (3.2-3.5) imply thatmax( jeajjebj ; jebjjeaj) � jetj�0 + �1jetj�0 � �(�+p1 + �2) + 1 � 2:171;for sign (H11) = �sign (H22), andmax( jeajjebj ; jebjjeaj) � jetj�0 + �1jetj�0 � �1 � 1 + 2�1�=2+p1+�2=4 � � � 15:322otherwise, so that jeajjebj + jebjjeaj � 15:387:By inserting this and (7.7) into (7.9), we havejCjjeQjj eD�1jj eQjT j eQjj eDjj eQjT � 2jZjjQjjDjjQjT + 27:081jCj+O("): (7.10)By inserting this into (7.8) and ignoring the O("2) term, we �nally havej�Cj � 3168:5(jZjjQjjDjjQjT + jCj)": (7.11)



34To complete the proof it remains to bound j�Y j from (7.4) in terms ofjY j and jZjjQjjDjjQjTjZjT . Indeed, (7.3) and (7.7) imply thatj�Y j = jÊ + F̂ + ZXZT �CX�1CT j� jÊj+ jF̂ j+ j�ZjjCjT + jCjj�ZjT +O(")� 5148(n� 2)"(jĤj+ jL̂jjÛ jj�̂jjÛ jT jL̂jT )+120"jY j+ (120 + 2 � 117)"jCjj eQjj eD�1jj eQjT jCjT : (7.12)Since Ĥ = Y � ZQDQTZT + F̂ + O(");we have jĤj � jY j+ jZjjQjjDjjQjT jZjT + O("): (7.13)Further, (7.10) and (7.7) imply thatjCjj eQjj eD�1jj eQjT jCjT � jCjj eQjj eD�1jj eQjT j eQjj eDjj eQjT j eQ eD�1 eQTCT j� (2jZjjQjjDjjQjT + 27:081j(Z � �Z) eQ eD eQT j)j eQ eD�1 eQTCT j� 29:081jZjjQjjDjjQjTjZjT +O("):By inserting this and (7.13) into (7.12) and ignoring the O("2) term we havej�Y j � (5148(n�2)+10296)(jY j+jZjjQjjDjjQjTjZjT+jL̂jjÛ jj�̂jjÛ jT jL̂jT )":The theorem now follows by inserting this and (7.11) into (7.4) and settingU = � Q Û � ; � = � D �̂ � :Even though the constant of the theorem is larger than the constant fromTheorem 3.1, numerical experiments show that the entire factor O(n) isusually an overestimate. All remarks from Sections 3.1, 3.2 and 3.4 holdhere, as well. In particular, if the matrix T from the theorem is diagonal,then (7.6) implies that the error is bounded byjEj � 5(P jHjP T + jLjjT jjLjT)": (7.14)This bound holds e.g. for positive de�nite and scaled diagonally dominantmatrices. For positive de�nite matrices this bound is slightly worse than thebound of [30, Theorem 3.1.1]. Further, by inspecting its proof, we see thatthis theorem gives the backward error for the Bunch{Parlett decomposition,too, if T is diagonal. The only exception is that the matrix eD from [30,(3.1.4)] should be replaced by j eDj.



35Normwise stability has been proved by Bunch [5] for the Bunch{Parlettmethod with complete pivoting, and recently by Higham [21] for the Bunch{Kaufman method with partial pivoting (see also Section 3.3).Let us now consider forward error. Let us make assumptions similar tothe ones in Section 4: non-singular unperturbed and perturbed problems aredecomposed by using the same permutation sequence, resulting in matricesT from (1.3) being diagonal and having the corresponding diagonal elementsof the same sign. Then we see that the componentwise forward perturbationand error bounds are given by [30, Theorem 3.2.1] and [30, Theorem 3.3.1],respectively. Here, too, in the statements of the theorems the matrices Dand eD should be replaced by jDj and j eDj, respectively.Similarly as in Section 5 we conclude that all above results hold forHermitian matrices, with the exception that the constant in Theorem 7.1 isslightly larger due to the complex arithmetic.Finally, in view of Section 3.1, all results of this section hold for theLapack implementations of the real symmetric and Hermitian versions ofthe Bunch{Kaufmann{Parlett method [6, 7], dsytf2.f and chetf2.f.8. CONCLUDING REMARKSIn this section we summarize our contributions, describe results of nu-merical experiments, and compare our results with the existing analysis byBunch [5]. We also illustrate our results by a small example.We have proved componentwise backward error bounds for two versionsof the real symmetric and Hermitian decomposition, the H = GJGT de-composition and the Bunch{Parlett decomposition PHP T = LTLT . Thebounds hold for the outer product version of the algorithms. The boundsare easy to compute, and simple to use in further applications. Numericalexperiments show that the bounds reveal well the structure of actual er-rors, and that the factors of order O(n) are usually an overestimate. Moreprecisely, the bounds of Theorems 3.1 and 5.1 can usually be replaced bythe simpler bound jEj � jGjjGjT", and the bound of Theorem 7.1 can bereplaced by jEj � jLjjU jj�jjU jTjLjT ".For non-singular real or Hermitian matrices which have lower triangularfactor G or diagonal factor T , we proved componentwise forward errorbound, that is, we are able to estimate the precision of the computed factors.Our results extend the results by Sun [30] by enlarging the class ofmatrices to inde�nite matrices and by including the Hermitian case.We proved attainable bounds for the scaled condition of the matrix G,and showed that the decomposition H = GJGT usually has non-trivialdiagonalization e�ect and rank revealing property.



36It is interesting to compare our result with the analysis of the Bunch{Parlett decomposition (1.3). Bunch [5, (2.3.4)] showed that the factors Land T computed with the unequilibrated diagonal pivoting in 
oating-pointarithmetic with precision " satisfy LTLT = PHP T +E, where elements ofthe backward error matrix E are bounded in terms of absolutely maximalelements of the reduced matrices:jEjkj = jEkjj � Cjk"; for j � k; (8.1)Cjk = 5:71 k�1Xi=1pi=1 �(i)0 + 31:65 kXi=1pi=2 �(i)0 +8><>: �(k)0 if pk = 113:7�(k)0 if pk = 213:7�(k�1)0 if pk = 0Here �(i)0 denotes the value of �0 in the ith step of Algorithm 2.1. If in thestep i � 1 a 2 � 2 pivot was chosen, then �(i)0 = 0. The quantities pi havethe following meaning: pi = 1 if in the ith step a 1 � 1 pivot was chosen;pi = 2 if in the ith step a 2� 2 pivot was chosen; and pi = 0 if in the stepi� 1 a 2� 2 pivot was chosen (in this case �(i)0 does not exist). AlthoughBunch [5] gives no explicit error bound for the Hermitian version of theBunch{Parlett decomposition, the nature of his proof is such that it holdsfor the Hermitian version, as well.Our bounds and (8.2) are all a posteriori bounds since they are computedafter the decomposition is completed. The bounds for maximal elements,�(i)0 , are implicitly included in the jGjjGjT or jLjjU jj�jjU jTjLjT terms ofour bounds. Note that our bounds are more convenient for further applica-tions such as in [27]. The comparison of the bound (8.2), our bounds, andactual errors is as follows: the maximal elementwise bounds are almost thesame; our bounds often reveal better the actual error structure (note thatin (8.2) all elements Ejk, j � k, have the same bound, and the bound growswith k); bounds for particular elements of E can vary by even several or-ders of magnitude, although our bounds are on average better; for smallerdimensions all bounds approximate actual errors well, for larger dimensionsall bounds overestimate actual errors by a factor of order O(n).We conclude the paper by illustrating our results with the followingexample: letH = 264 3207938000 300000 �423212 19800300000 1600 �300 14�423212 �300 43:5 �4:7519800 14 �4:75 0:1875 375 :Note that H is stored exactly on machines with base 2 [18]. The decom-position (1.1) computed by Algorithm 2.1 in single precision, " � 10�8,



37is G = 264 56638:662 0 0 05:2967353 39:6477567 0 0�7:4721398 �6:568393 7:4482656 00:34958453 0:30640682 0:01681668 0:16826074 375 ;with J = diag (�1; 1; 1;�1) and P = I. The backward error matrix E =GJGT �H isE = 264 3:32e+ 01 3:60e� 04 �5:49e� 04 3:51e� 053:60e� 04 4:00e� 05 3:81e� 06 �1:37e� 07�5:49e� 04 3:81e� 06 �6:55e� 07 9:13e� 093:51e� 05 �1:37e� 07 9:13e� 09 5:61e� 09 375 ;and its elements are bounded by (3.37) as follows:jEj � 264 7:70e+ 02 7:20e� 02 1:02e� 01 4:75e� 037:20e� 02 3:84e� 04 7:20e� 05 3:36e� 061:02e� 01 7:20e� 05 2:38e� 05 1:14e� 064:75e� 03 3:36e� 06 1:14e� 06 5:19e� 08 375 :Further, we assume that the factor eG computed by Algorithm 2.1 in doubleprecision, " � 10�16, is exact. The forward error matrix �G = G� eG is�G = 264 2:93e� 04 0 0 0�2:10e� 08 5:07e� 07 0 02:89e� 08 1:72e� 07 �1:37e� 07 0�1:19e� 09 �7:03e� 09 1:49e� 08 �3:34e� 08 375 ;and its elements are bounded by Theorem 4.2 as follows:j�Gj � 264 1:36e� 02 0 0 03:81e� 06 1:02e� 05 0 05:80e� 06 5:80e� 06 1:28e� 05 02:88e� 07 2:89e� 07 6:58e� 07 1:36e� 06 375 :This also illustrates the perturbation bound of Theorem 4.2. Finally, notethat �2min(scal (G)) = 0:83628307, �2max(scal (G)) = 1:1635069, while theeigenvalues of H, the diagonal elements of the matrix GTGJ , and theirrespective quotients from (6.5) are�i = �54:043364; �0:028309685; 1613:7487; 3207938084hi = �55:476945; �0:028311688; 1615:1823; 3207938040�i=hi = 0:97415898; 0:99992925; 0:99911242; 1This illustrates Theorem 6.2, and diagonalization e�ect and rank revealingproperty of the symmetric inde�nite decomposition.



38The Bunch{Parlett decomposition de�ned by (1.3) and (7.1) computedin single precision isL = 264 1 0 0 09:3518017e � 05 1 0 0�1:3192649e � 04 �0:16566872 1 06:1721891e � 06 7:7282259e � 03 2:257798e� 03 1 375 ;T = diag (3207938000; 1571:9446; �55:476663; �0:02831168);and P = I. The backward error matrix E = LTLT �H isE = 264 0:00e+ 00 4:19e� 04 �4:78e� 04 �4:29e� 054:19e� 04 5:14e� 06 3:15e� 06 �2:96e� 07�4:78e� 04 3:15e� 06 �1:60e� 06 �2:52e� 08�4:29e� 05 �2:96e� 07 �2:52e� 08 1:99e� 09 375 ;and its elements are bounded by (7.14) as followsjEj � 264 1:28e+ 03 1:20e� 01 1:69e� 01 7:92e� 031:20e� 01 6:40e� 04 1:20e� 04 5:60e� 061:69e� 01 1:20e� 04 3:96e� 05 1:90e� 067:92e� 03 5:60e� 06 1:90e� 06 8:64e� 08 375 :On the other hand, the bound by Bunch (8.2) isjEj � 264 4:23e� 03 4:23e� 03 4:23e� 03 4:23e� 034:23e� 03 2:42e� 02 2:42e� 02 2:42e� 024:23e� 03 2:42e� 02 4:42e� 02 2:42e� 024:23e� 03 2:42e� 02 2:42e� 02 4:42e� 02 375 ;and we see that in this example both our bounds reveal the error structuremuch better. Further, we assume that the factors eL and eT computed indouble precision are exact. The forward error matrices �L = L � eL and�T = T � eT are�L = 264 0 0 0 01:31e� 13 0 0 0�1:49e� 13 2:60e� 09 0 0�1:34e� 14 �2:12e� 10 1:93e� 09 0 375 ;�T = diag (0; 5:06 � 10�6; �5:12e � 10�7; 7:87 � 10�9);and their elements are bounded by [30, Theorem 3.3.1] (modi�ed as de-scribed in Section 7) as follows:j�Lj � 264 0 0 0 05:05e� 11 0 0 07:68e� 11 1:10e� 07 0 03:81e� 12 5:47e� 09 6:62e� 08 0 375 ;j�T j � diag (577; 3:03 � 10�4; 7:13 � 10�5; 1:71 � 10�7):
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