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ABSTRACT

We derive componentwise backward error bound for the factorization H =
GJGT, where H is a real symmetric matrix, G has full column rank, and J
is diagonal with +1’s on the diagonal. We also derive componentwise forward
error bound, that is we bound the difference between the exact and the computed
factor (&, in the cases where such bound is possible. We extend these results to
the Hermitian case, and to the well-known Bunch Parlett factorization. Finally,
we prove bounds for the scaled condition of the matrix , and show that the
factorization can have rank revealing property.

1. INTRODUCTION

The n x n real symmetric matrix H can be decomposed as
H=GJG", (1.1)

where GG has full column rank, and J = diag(+1). Further, there is a
permutation matrix P such that the matrix PG 1s lower block triangular
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matrix with 1 x 1 and 2 x 2 diagonal blocks. The factorization (1.1) is a
natural extension of the Cholesky factorization of a positive definite matrix,

H=rLI"=1I11", (1.2)

where [, is lower triangular matrix, and 7 is the identity matrix. The indef-
inite factorization differs from the Cholesky factorization in three aspects:
J instead of T, 2 x 2 diagonal blocks, and the permutation matrix P. The
number of positive (negative) diagonal elements of .J is equal to the number
of positive (negative) eigenvalues of H. Existence of 2 x 2 diagonal blocks
in the matrix P( 1s necessary since, in general, an indefinite matrix does
not allow the factorization (1.2), even with .J instead of T. As an example

. . 0 1 . .
consider the matrix H = R The permutation matrix P ensures
stability of the factorization, as we shall see later.

The factorization (1.1) is a modification of the well-known method by
Bunch and Parlett [8]. The relationship between these two factorizations is

as follows [27, 16]: the Bunch Parlett method decomposes H as
PHPT =1TI", (1.3)

where P is permutation matrix, I, is unit lower triangular matrix with full
column rank, T is block-diagonal matrix with 1 x 1 and 2 x 2 blocks, and
the diagonal blocks of 1. which correspond to 2 x 2 diagonal blocks of T
are 2 x 2 identity matrices. This factorization is an extension of the LD/LT
factorization of a positive definite matrix [19, 30]. Tet UTTU = A =
|A[2T|A|'/? be the eigenvalue factorization of 7. Then

G = PTLU|AY2. (1.4)

The Bunch Parlett method is well suited for solving symmetric sys-
tems of linear equations. In particular, the version of the Bunch Parlett
method with partial pivoting known as the Bunch Kaufman method [6] is
implemented in LAPACK [1]. The factorization (1.1) has recently attrac-
ted attention in two ways: first, eigenvalues of the pair (G7G,J) are the
non-zero eigenvalues of H, and the factorization (1.1) followed by one-sided
Jacobi type method on the pair (7, .J) makes highly accurate eigenreduc-
tion algorithm [13, 31, 27]. Second, a version of the matrix GG7 is used as
a good preconditioner for some indefinite systems of linear equations [16].
Factoring real symmetric and Hermitian matrices also has other important
applications in eigenvalue problems, optimization and control. The inverse
iteration method [26] which solves a sequence of linear systems by factoring
H — AT is used to determine few eigenvectors of Hermitian matrix H. In
optimization the so called augmented systems (or the Karush Kuhn Tucker



E3
systems) of the form [ are used in several cases: in unconstrained

B 0

least squares problems [2] where the angmented system approach has bet-
ter numerical properties than the normal equation approach, in constrained
least squares problems [14], and in general quadratic programming [17, 33].
The last application naturally extends to the minimization of general func-
tion with linear constraints, since the Newton step is computed from the
local quadratic problem (see e.g. the review paper [33]). Tn control the-
ory the above factorizations are used in solving algebraic Riccati equations,
where the matrix sign function of the corresponding Hamiltonian matrix is
computed by symmetric iterations [9, 24].

In this paper we give componentwise error bounds for the factorization
(1.1). Our main result is the componentwise backward error bound: the
computed (G and J are the exact factors of the perturbed matrix H + F,

GIGT=H+F, El < 9n(|H|+ |GG e, (1.5)

Here € is the machine precision, and |- | stands for the elementwise absolute
value. This bound compares well to the existing bound for the Bunch-
Parlett, method by Bunch [5]. Maximal predicted errors are in hoth cases
similar and close to actual errors. Our bound reveals better the error struc-
ture, and has simpler form which is more suitable for further applications.
For example, as a part of the error analysis of the above mentioned accur-
ate eigenreduction algorithm, we can apply the relative perturbation theory
for indefinite eigenvalue problems by Veseli¢ and Slapnicar [32, 28] to the
bound (1.5), thus obtaining error bounds for eigenvalues and eigenvectors
of H after the factorization [27]. Demmel and Veseli¢ [13] used the same
approach for positive definite matrices.

The bound (1.5) holds for complete pivoting. We also prove similar
bound for the partial pivoting strategy which is used in the Bunch Kaufman
method [6, 7] and in the LAPACK routine dsyjf2.f. Further, we discuss
normwise stability of the method.

Tf the matrix PG has only 1 x 1 diagonal blocks, then the bound (1.5)
E| < 3n(|H|+ |G||G|")e. This is, for example, always the case
for positive definite and scaled diagonally dominant matrices [4]. Moreover,

reduces to

in both these cases the factorization (1.1) can bhe performed without pivot-
ing, that is, with P = I. Tf H is positive definite and P = T, then (1.1)
reduces to the Cholesky factorization, and the above bound is similar to the
bounds by Demmel [11] and Sun [30].

Our second result is the componentwise forward error bound. First
we need the forward perturbation result. Tet H = GJIGT and H + F =
GJGT be the factorizations of the umperturbed and perturbed matrix H.
Since the factorization (1.1) involves pivoting, it is generally not possible

to give reasonable bounds for the forward perturbation matrix G = G —G.
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However, if we make additional assumptions that in both factorizations the
same pivoting sequence and only 1 x 1 pivots have been used, and that
J= J, then we can bound the elements of §GG in terms of (G and F. This
result, generalizes the result by Sun [30, Theorem 2.2.1] for the Cholesky
factorization. The forward error bound follows by inserting the backward
error bound into the forward perturbation bound.

If H is Hermitian, then the algorithm and the error bounds for the
factorization are similar to the ones for the real symmetric case. As a
special case, we obtain componentwise backward and forward error bound
for the Cholesky factorization of a Hermitian matrix.

Further, we derive similar results for the Bunch Parlett factorization
(1.3). Tn particular, these results hold for the LAPACK implementations
the Bunch Kaufman method [6], dsytf2.f and chetf2.f[1].

All above results can be viewed as generalizations of the results for
LLT and LDILT factorizations of positive definite matrices by Sun [30] to
indefinite real symmetric and Hermitian matrices.

Finally, we prove bounds for the scaled condition of the matrix (G. The
scaled matrix of (5 is defined by scal (G) = GD™', where D is diagonal such
that the columns of scal (() have unit 2-norms. We prove a remarkable
fact that k(scal (7)) < O(n3.781™) irrespective of the condition or even
singularity of H. Here  is the spectral condition number. If H is positive
definite, then the bound is of order O(n2"), which can be almost attained.
Both bounds hold for the Hermitian case, as well. As an application, we
show that the factorization usually has non-trivial diagonalization effect
and, consequently, rank reveling property.

The rest of the paper is organized as follows: in Section 2 we describe
the algorithm of the factorization (1.1) in detail. Tn Section 3 we give
the backward error analysis and discuss some special cases and normwise
stability. Tn Section 4 we prove the forward error bound. Tn Section b we
give the algorithm and the error bounds for the Hermitian case. In Section
6 we derive bounds for the scaled condition. In Section 7 we derive similar
results for the Bunch Parlett factorization. In Section 8 we summarize our
results, and compare our backward error bounds with the existing analysis
of the Bunch Parlett method by Bunch [5]. We also describe results of
numerical experiments, and illustrate our results by numerical example.

2. ALGORITHM

We shall now derive the algorithm of the factorization (1.1). We begin
by describing the first step of the algorithm. Tet H be a non-zero real



symmetric matrix of order n. Tet P be the permutation matrix such that

sooer [ X CT
PHP [(7 vl (2.1)

where X is nonsingular k x k matrix, k € {1,2}, C'is a (n — k) x k matrix,
and Y is a (n — k) x (n — k) matrix. Such P always exists becanse H is
non-zero. Let Q7 XQ = 1 be the eigenvalue factorization of X. Tf k = 1
then @ = Iy, and if & = 2 then

S sn
—8n S

Q= [ ] , es? 4+ sn? = 1. (2.2)

Thus, X = Q|D|"/?1.|D|'?Q", where .J,, = diag (£1), and we have

pppr_ [ X CTY1_[B 0 Joolrms o 1
o v | |2 L. 0 H VAR '

(2.3)

B=Q|D|"? 7 =CQID|~2, H=Y - 257",

The pivoting strategy is as follows: according to [8] we choose 1 x 1
pivot if and only if 11 > avy, where

o= M vo = max |Hjl, vy = max|Hj;|. (2.4)
8 i£] i

If we are performing 1 x 1 pivot, then we choose Pin (2.1) to interchange
row and column 1 with s, where s is the least integer such that vy = |H .
Therefore, |X| = v1. If we are performing 2 x 2 pivot, we can choose P
in (2.1) according to several complete and partial pivoting strategies which
are described in [8, 6, 7]. We shall use the unequilibrated diagonal pivoting
from [8], that is, we choose P to interchange rows and columns 1 with ¢
and 2 with p, where ¢ is the least column integer and p is the least row
integer in the ¢th column such that vy = |H,,|. Note that p > ¢. This
pivoting strategy implies that in the 1 x 1 case J; = sign (X), and in the
2 x 2 case X has one positive and one negative eigenvalue, that is, either
Jy =diag(1,—1) or Jo = diag (—1,1).

Tf H is non-singular, then by recursive application of (2.3) in the obvious
manner we obtain the factorization

PHPT = (PGYJ(PG)T, (2.5)

where P is a lower block triangular matrix, J = diag(+1), and P is a
permutation matrix. This, in turn, implies the factorization (1.1).



Pivoting strategy can be defined with some other a € (0,1), as well.
The case @ — 0 (o« — 1) corresponds to the use of 1 x 1 (2 x 2) pivot at,
each step [8], and both of these cases are clearly unstable. As shown in [8],
the choice of a from (2.4) minimizes the element growth which can take
place in the transition from H to H in (2.3), and the elements of the strict
lower triangle of the matrix . from (1.3) are bounded as follows:

1/ for a 1 x 1 pivot,
Fijl < { 1/(1 —a) for a 2 x 2 pivot. (2:6)

We now present. algorithm in the Matlab notation:

ATLGORITHM 2.1 (SYMMETRIC INDEFINITE FACTORIZATION) On entry,
array H contains an n x n real symmetric matriz. On erit the first r =
rank (H) columns of the array H are overwritten by the factor matriz 3.
Vector J contains the diagonal of the matrix J. Vector P describes the
prvoting.

/% Initialize starting values. */

alpha = (1 + sqrt(17))/8

r=n

P=1:n

/* Main loop. */
1= 1
while 7 <=n

/% Find the current vq and vy, and the indices p, q and 5. */
[temp, p] = max(abs(H (i : n,i : n) — diag(diag(H (i : n,i : n)))))
[nu0, q] = max(temp)
p=plq)

[nul, s] = max(abs(diag(H (i : n,i: n))))
if nul > alpha x nu0
/%1 x 1 pivot. If the current block is singular, then finish. */

if nul ==10
r=1—1
1=n-+1
else
/¥ Permute H such that H(s,s) comes to the position (i,1), and notify
this in P. */
s=s4+1—1

A ([ s],:) = H([s )
H(i:n,[is]) = H(i:n,[s])
P(li s)) = P(ls 1)
/¥ Update H. */

J(i,1) = sign(H (i,1))



H(i,i) = sqrt(abs(H(i,1)))

ifi<n
Hi+1:n,40)=H@E+1:nd)* (J(i,4)/H(i,1))
H(i,i+1:n)=zeros(l,n—1)
Hi+1l:ni+1:n)=H@E+1:ni+1:n)—...

JE, )« HE+1:n i)« Hli+1:n,1)
end
1=+ 1
end /*1 x 1 pivot. */
else

/%2 x 2 pivol. Permute H such that H(p,p) and H(q,q) come to the
position (i + 1,14 1) and (i,1), respectively. Notify this in P. */

p=p+i—1

g=g+i—1

H([i ql,) = H([g 4],:)
H({i+1pl,:)=H(pi+1],:)
H(i:n,[iq))=H(i:n, g 1i])
H@:n, i+ 1p))=H@E:n,[pi+1])
P(li q]) = P([q 7])
P+ 9) = Py i+ 1)

/* Compute the 2 x 2 orthogonal matriz Q. */

zeta = (H@E+ 1,0+ 1) — H(@,D))/(2x Hi+1,1))

if 2==10
=1

else
t = sign(zeta)/(abs(zeta) —|—sqrt(ze7‘,r1,2—|— 1))

end

h = sqrt(1 —|—7‘,2)

es=1/h

sn=1/h

Q = [es sn; —sn cs]

/¥ Update H. */

a=H(ii)— H(i+1,0) 1

b=H@E+1,i+ 1)+ H@E+1,i)*1

JE i+ 1,044 1) = diag(sign([a b]))

D = sqrt(diag(abs([a b])))

H:i+1,i:i+1)=Q=D

ifi<n-—1
Hi+2:n,i:i4+1)=HE+2:n,i:0+1)xQx*...

JE i+ 1,044 1) xinv(D)
H(Gi:i+1,i4+2:n)==zeros(2,n—1i—1)
Hi+2:n,i+2:n)=H@FE+2:n,i+2:n)— ...
H(G4+2: micit ) e d(iitliit)s. .



Hi+2:n,i:i+1)
end
1=1+2
end /*2 x 2 pivot. */
end /* Main loop. */
/* Permute rows of H to obtain the final factor. */
H(P,:)=H

The fact that the symmetry of the submatrices is lost in the above al-
gorithm, does not influence the subsequent error analysis. The algorithm
can easily be redefined to preserve symmetry, and to use only lower or up-
per part of the matrix H, which saves storage and reduces the operation
count. We omit these enhancements for the sake of simplicity.

In some applications [31, 27] it is convenient, to have the diagonal of .J
sorted, that is, first +1’s, then —1’s, or vice versa. This is easily achieved
by appropriately permuting the columns of G in (1.1). This permutation
does not influence the error analysis.

If H is singular, then at some stage of the algorithm we shall have H=0.
By taking only those columns of (G and the elements of .J which have so far
been computed, we obtain the desired factorization (1.1).

If H is positive definite, then Algorithm 2.1 reduces to the Cholesky
factorization with diagonal pivoting (see e.g. [13]).

3. BACKWARD ERROR ANATYSIS

In this section we give the backward error analysis of the symmetric
factorization defined by Algorithm 2.1. Tn Section 3.1 we prove the error
bound for partial pivoting. Tn Section 3.2 we give some comments about
different implementations of the algorithm. Tn Section 3.3 we discuss norm-
wise stability of the algorithm, and in Section 3.4 we specialize or main
result for the case when only 1 x 1 pivots are used.

We first present our model of the finite precision floating-point arith-
metic: floating-point result f1(-) of the operation (-) is given by [13, 18, 19]

) = a(l4e1)+b(1 +e9)

Maxbh) = (axb)(l+e) (3.1)
) = (a/b)(1 +c4)

) = Va(l+es)

where |g;] < &, and € < 1 is the machine precision. This is somewhat more
general than the usual model which uses fl(a £b6) = (a £ b)(1 + &) and



includes machines like the Cray which do not have a guard digit. Tf @ and b
have the same sign, then in our model we also have fl (a+b) = (a+b)(1+¢1).

To make the analysis simpler we shall ignore the terms of order O(g?),
that 1s, we shall make the usual assumptions

1—|—61
1—|—62

(T+e)(14e)=T+e +ea=1+¢, =14e —gy=14¢",
where |¢'|, [¢”] < 2. Under additional realistic assumption on ¢, say
£ < 0.0001, we can bound the second order terms in terms of O(e), and
the bound of the following theorem holds exactly but with slightly larger
constant.

We shall also assume that no underflow or overflow occurs.

THEOREM 3.1. Let G and J be the factors of a real symmetric matriz
H computed by Algorithm 2.1 in floating-point arithmetic with precision €.
Then, with the relative error of order O(e),

GIG"=H+F, E| < 9n(|H|+ |GG e .

Proof. The proof is by induction on n. We use the approach from [19,
Theorem 3.3.1]. Tt is easy to see that the theorem holds for all matrices
of order 1. To start the induction, we must also analyze the case of the
2 x 2 pivot for n = 2. Tet (, 1, ¢s, 5n, a, b, and (?77 denote the quantities
computed by Algorithm 2.1 in exact arithmetic. We shall show that in the
floating-point arithmetic these quantities are computed with small relative
errors. From now on we assume that |g;| < ¢ for all 4.

We have

¢ ="l (HQQH”) — Hoo(T4e1) — Hir (1 +e9)

14¢ :~—|—6,
2 o, 2Ha1 (1 + 23) (T4ea) =C+ec

where |e¢| < 3ae. The bound on g follows from the fact that our pivoting
strategy implies

|Hat| = vo, max{|H|, [Haol} < i, (3.2)
which, in turn, implies

|E| < { o if sign (Hy1) = —sign (Has) (3.3)

/2 otherwise.

Therefore, we have

M1+ = (1 4ea)(1 4+ (C+20)(1 +e)) = (143142,
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where, by solving the above equation for &', and then bounding |¢'| from
above,

€] < 2lecl] + (lesl + 16 )C + [es] < (8a” + T)e < 4.3¢.

Further, the equality

T+ T+ = (1 +en)(IC+ecl+ (1 +es)(1+€/2)4/1+2)

= 1+ +1+)

holds for some || < Te, so that finally

=l (#ﬂ_@) =11+ ), 2| < 8e,

es = 1 (1/VTE12) = &5(1 + 0y), lees] < 11e,
sn =11 (1/V/TH12) = 50(1 + £5n), lean] < 11e.

Let,

(3.4)

a :ﬂ(H]1 — HQ]]L,) = 5(1 —|—6a), b = Al (H22+H2]f) = })(1 +Eb). (35)

Tf Hyqy = 0 and/or Hoy = 0 or sign (Hyy) # sign (Haa), then both a and b

are computed by adding numbers of the same sign, thus
eal, lesl < [o1] 4+ 22 < 10=. (3.6)

If Hi1v > Hay > 0 or 0 > Hgs > Hyq, then a is again computed by
adding numbers of the same sign, so |g,] < 10e. By using (3.2 3.4),
since |Has| < |Ha1t|, we have

b HQQ(]—|—69)—|—(1—|—6]0)(1+61])(1+6t)H2];EZ(1+65),
H 10| Hont] 11| Hont]
les] | 22|j— L < ~| 2] €= ype < 90e. (3.7)
| Hoit| — [Haol | Hoit| — | Hosl
Here
< 11 < 11
RIS & S R
1*m 1T —ala/24 /14 a?/4)

Similarly, if Has > Hqi1 > 0 or 0> Hyq > Has, then |gp| < 10g, and

" 10| H i 1]
[l + 0[] _ Yag < 90e. (3.8)
|Hort| — | H1

lea] <



Thus, we conclude that in any case
|611|7 |Eb| < ma’X{1077077f)}6 < 90e. (39)

This, for example, implies

Gor = fl(=sn/la]) = Gor (1 + ),
leal < esnl| =+ leal/2 + 28 < 58e, (3.10)
so we have _ _
G=G+6G, 0G| <58|Gle. (3.11)
Therefore,
GIGT = (G+6G)I(G+6G)" = H+ E,
El < 2-58|GIG|Te + 0(?) = 116]G|G| e + O(£?), (3.12)

and the theorem holds.

The induction step must also be analyzed separately for 1 x 1 and 2 x 2
pivot. We assume without loss of generality that the permutation matrix
P from (2.1) and (2.3) is the identity. Let us first consider a 1 x 1 pivot!,
that is k = 1. Then (2.3) holds with

B=AflI(|Hn|"?) = |Hn|'"? + 6B,
|0B] < |H11|' %,
7 =f1(C1/B)=CJL|Hn| 1?4467,

3.13
570 < 221 g |17 1
H=f( - 7257"=Y - 217" + F,
|Fl<2e(IY |+ 1Z112]7).
By assumption the computed factors G and J of H satisfy
GIGT = H+F, E| < 91(n—k)e(|H|+ |GIGT). (3.14)
B 0
By setting G = [ 7 O ], we have
J B.J, BT B, 7"
G boaET= * T Tk A7 AT (3.15)
J 2B 77 +GIG

tThe analysis of the 1 X 1 case is similar to the one of [30, Theorem 2.1.1], although
here the matrix H need not be positive definite.



By sefting J = J; @& J and using (3.13), we obtain

21Hn| 310"

3] |E+F)|°

GIGT =H+ E,

< (3.16)

From (3.13) it also follows that
[ < (14 20) (1Y +12012]T).

By inserting this into (3.14), and adding the bound for |F| from (3.13), we
have

B+ FL< (910 — 1)+ 2) (V[ + 120127 +1G1GIT ). (3.17)

By inserting the above inequality into (3.16) we finally obtain

Bl < (91(n— 1)+ 3)(1H] +1G11G] )z,

and the theorem holds.

Let 1s now consider a 2 x 2 pivot, that is, £ = 2. Let H be partitioned
as in (2.3). Let Q" XQ = D be the exact spectral factorization of X, and
let. Q and ) be the computed matrices é and /3, respectively. The analysis
for n = 2 also applies to @ and D, that is, (3.4) and (3.9) imply that

Q = Q+6Q,  3QI<11Q,
D = D+6D, |6D] < 90| De. (3.18)

Similarly to the 1 x 1 case, from (3.11) and (3.18) we conclude that (2.3)
holds with

B = f1(Q|D|'/?) = Q|D|'/? + 4B,
6B] < 58]QI| D]/,
7 =f1(CQ|D|"21) = CQ|D| 12T, + 67,

- - (3.19)
67 < 60[CIIQIIDI~ e,
H=(Y ~ 72,27y =Y — 27" + F,
[P < 3e(IY]+12112]T).
The induction assumption (3.14), (3.15), and (3.19) imply that
GIGT = [ ? (;T ] [ (;? Ff(fF ] =H4F, (3.20)

where

§C =621, D|'*QT + CQ|D| 1?16 BT . (3.21)



From (3.12) it follows directly that,
|6X| < 116|B||B| . (3.22)
Further, as in the proof of (3.17), we have

B+ Fl< (11000 —2) +3) (VI + 12127 + |GG, (3.23)

so it remains to bound |§C| in terms of |Z||B|” and |C]. From (3.21) and
(3.19) we have

6C1 < NSICIANGI™e < 118(1C1+ 265051 [ Gl [Cal DNe, (3.24)
where (; denotes the j—th column of ', and
ZBIT > 17B7] > 1COLAT] - TSICIGIGNT + 0. (3.25)

Tn both cases, Jo = diag (1, —1) or Jy = diag (—1, 1), we have

ICQLQT . = (8% — sn))Cyy — 265500
|ICQIQ ., = | —26s5nCly — (657 — 5n°)Clal.
Therefore,
1CQLQT| > 2es[5m| [ |Clo|  [Ca] ] = (é5% — 50”)[C. (3.26)

Now (3.3) implies [f] > 1/(o + V1 + a2) which, in turn, implies

0<és’—an < = < 0.539. (3.27)

V14 a

By inserting this, (3.26), and (3.25) into (3.24), and ignoring terms of order
0(g?), we obtain

|6C| 18 (|C]+12]|BI" + 0.539|C]) e

182(1C1 + 17| BT )e. (3.28)

IN A

The theorem now follows by inserting this, (3.22), and (3.23) into (3.20).
|

Note that the theorem also holds if H is singular, that 1s, if Algorithm
2.1 encounters a zero submatrix at some step. In that case the error matrix
F from the induction step of the proof equals zero at some stage of the
factorization.

We can further reduce the bound of Theorem 3.1 as follows: for each
2 x 2 step, instead of using the worst-case bounds, we can compute the
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actual values of v from (3.9), and cs? — s’ from (3.27). The fact that
these quantities are computed by using  instead of 7 is not important since
this only contributes an error of O(¢?). By inserting these quantities into
the rest of the proof we have

60| < e0 = ((1%+%) -2+2) (1+ 6% — 52%)e,

and the theorem holds with 91 replaced by max{e/2}, where maximum is
taken over all 2 x 2 steps. In numerical experiments this procedure usually
reduces the constant 91 by four times.

3.1.  Other Pivoting Strategies

We can easily obtain bounds for some o other than the one defined in
(2.4). For example, if we set &« = 1/2, then Theorem 3.1 holds with 91
replaced by 41.

Theorem 3.1 holds for any pivoting strategy for which (3.3) holds when
we apply a 2x 2 step. Moreover, Theorem 3.1 holds for any pivoting strategy
for which the tangents in the 2 x 2 steps can be accurately computed, al-
though with different constants. In particular, we shall show that the the-
orem holds for the partial pivoting strategy used in the Bunch Kaufman
method [6, 7] which is implemented in the TAPACK routine dsytf2.f [1].
This strategy is of interest since it requires only O(n?) search, contrary
to the unequilibrated diagonal pivoting that we use which requires O(n?)
search. We have chosen the unequilibrated diagonal pivoting since (as
already mentioned) it has better bounds for the element, growth, and (2.6)
makes it possible to bound the scaled condition in Section 6.

Let us now prove the backward error bound for the Bunch Kaufman
partial pivoting strategy. We first describe the pivoting strategy. Let A be
the absolute value of the absolutely largest off-diagonal element in the first
column,

A = max|Hi,
i>2

and let s be the least integer such that A = |Hy;|. Further, let. & be the
absolute value of the absolutely largest off-diagonal element in the s-th
column,
o = max |Hjs|.
iF£s

We have the following algorithm:
ALGORITHM 3.1 (PARTIAL PIVOTING) We describe only the first step

of the pivoting strateqy. The complete algorithm is obtained by combining
this algorithm with Algorithm 2.1.



determine A
ifA=0
go to the next step
else
if |H1 1 | Z a
perform 1 x 1 pivot
else
determine s and o
if|H]]|0’ Z OMAQ
perform 1 x 1 pivot
else if |Hss| > ao
interchange rows and columns 1 with s
perform 1 x 1 pivot
else
winterchange rows and columns 2 with s
perform 2 X 2 pivot
end
end
go to the next step
end

THEOREM 3.2. Let G and J be the factors of a real symmetric matriz
H computed by symmetric indefinite decomposition with partial pivoting of
Algorithm 3.1 in floating-point arithmetic with precision €. Then Theorem
3.1 holds.

Proof.  'The induction for 1 x 1 pivots is proved as in Theorem 3.1. Tet
us assume that we are performing 2 x 2 step. The conditions from Algorithm

3.1 imply
|Hoa| = A,
/\2
|H11| < O/—SO/A,
o
|H22| < g,
|Hii||Hasl <oA% (3.29)
fn =2 then

A=o0=|Hxnl|, [Hil [Haa| <al,

and the start of the induction is proved as in Theorem 3.1. T.et us now
assume that n > 3. Tf, in addition to (3.29), |[Ha2| < @A, then the induction
step 1s proved as in Theorem 3.1. Tet

/\2
|H11| < O/: < O/AS |H22| < ao.
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We consider two cases. _

Case 1. If sign (H11) # sign (Ha2), then ¢ = ((1 +¢¢), where [g¢] < 3¢,
thus the relations (3.4), (3.5), and (3.6) hold. We proceed as in the proof of
Theorem 3.1, with the exception that (3.27) is replaced by the trivial bound
st —sn” < 1. We finally obtain that (3.28) holds with 76 instead of 182,
which completes the proof of this case.

Case 2. Tet sign (Hyy) = sign (Ha2). Then

-~ |H22| xa
< —.
Ic< 20 72X

We consider two sub-cases. _

Case 2A4. Tf o/X < 2, then || < « and (3.4) holds. Tn (3.5), b is
computed by adding numbers of the same sign, thus |g,| < 10e. Further, &,
is bounded by (3.8), where

< 11 < 11
e o 1— |H1~1| o aA ao ac\?
Al — 2 VT (53)
11
< 90. (3.30)

@ A2 a?
1“(5"’\/0_2"'7)
The rest. of the proof is the same as the proof of Theorem 3.1.

Case 2B. Tf o /A > 2, then |Hy1|/|Ha2| < 1/2, and { = { + ¢, where

Haos| + |H 1 ~ ~
lecl < (2+M-—) Cle < 51d]e.

2) €]

Therefore, { = 5(1 +e¢), where |e¢| < be, and the relations (3.4) hold again.
As above, |g,| < 10g, and by inserting A/o < 1/2 into (3.30), we obtain
leal < vae < 27e. The rest of the proof is as in the proof of Theorem 3.1,
with the exception that again (3.27) is replaced by cs?—sn’ < 1. We obtain
that (3.28) holds with 110 instead of 182, which completes the proof of the
theorem. [ ]

Several pivoting strategies which ensure the normwise stability of the
method (see Section 3.3) have recently been derived by Ashcraft, Grimes
and Tewis in [3]. These strategies perform the number of searches for the
pivot element that lies between complete pivoting of Algorithm 2.1 and
partial pivoting of Algorithm 3.1. By combining Theorems 3.1 and 3.2 we
see that our bound holds for these strategies, as well.

3.2.  Different Implementations

In the case of 2 x 2 pivots, ¢s, sn, @ and b can be computed by different,
formulas than those used in Algorithm 2.1. One can, for example, use the
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formulas which are used in the LAPACK auxiliary routine dlaev2.f which
solves the 2 x 2 symmetric eigenvalue problem. Also, in the case of 2 x 2
pivots, the Schur complement H from (2.3) can be computed by using one
symmetric rank two update

H=cx 'C7,

instead of using two rank one updates H =V — Z.J, 77 as in Algorithm
2.1. These modifications only slightly change the error analysis, so Theor-
ems 3.1 and 3.2 still hold, but with slightly different constants. However,
as noficed in [3], the use of two rank one updates can in real computations
lead to unnecessary errors in some cases (see the illustrative example in
[3]). Similarly, sometimes it is better to compute X ' by using the direct
1 Xaz  — X2
det(X) | —X70 Xy
wise more accurate than the approach via the eigenvalue decomposition.

inversion formula, X~ = , which is component-

We have chosen to use the rank one updates, which are also used by the
current, LAPACK implementation of the Bunch Kaufman method dsytf2.f.
This is due to the fact that BLAS [1] does not, implement a symmetric rank
two update yet. This will be cured in the next version of BLAS [12].

3.3.  Normuwise Stability

The standard definition of normwise stability is the following: factoriz-
ation is considered normwise stable if the computed factorization is equal
E|l/|H]| is small in
some norm. Such bounds have been proved for the Bunch Parlett factor-

to the exact factorization of some matrix H + F and |

ization with complete and partial pivoting. Bunch [5] proved that for the
Bunch Parlett method (1.3) with complete pivoting

where the M-norm is defined by ||H||ar = max; ; |Hi;|, and py, is the growth

Elli < 011507 pu || H || ar, (3.31)

factor. The growth factor is defined by p, — maxy ||I'-T(k)H;V,'/HFfHM7 where
H ) ig the Schur complement arising in the k-th stage of the factorization.
The a priori upper bound for the element growth in this case is [5]

log n

[[F= <180 (3.32)
k=2

pu < 30TV — 1)"¥0f(n),  J(n) =

The analogous bound for the Bunch Kaufman factorization (1.3) ([6],
see also Section 7) with partial pivoting of Algorithm 3.1 has recently been
proved by Higham [21]. He proved that

LTI ar < 36np0] [ H |,

7|
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which, in turn, 1mplies the normwise stability. For the partial pivoting
the element growth is a priori bounded by p, < 2.57"7' [6]. However,
such large element growth is very rare in practice, and in [6] a simple and
mexpensive algorithm for monitoring element growth is given.

Another possibility to ensure the normwise stability and have less search
for pivot elements than complete pivoting, 1s to use some pivoting strategy
which ensures that the elements of the matrix I from (1.3) are bounded.
Namely, for complete pivoting (2.6) holds, but it is possible to have bounds
similar to (2.6) without complete pivoting, as well. Such approach is used
in [3] and in [14] for sparse matrices.

We shall now analyze normwise stability of the symmetric indefinite
decompositions of Algorithms 2.1 and 3.1. We shall use the technique from
[21]. Tet us first analyze Algorithm 2.1. For simplicity, we assume that ¢
and J are the exact factors of H, since by Theorem 3.1 this contributes

only O(e?) term in the final bound for || F||. Tet
T
Bl 0 Bl 0
Gl = [ ¢ A
1Z] 1G] 1zl 1G]
S T,
ZIBI" 12121 + GG

where B and 7 are defined by (2.2) and (2.3), and H = GJG is the fac-
torization of the Schur complement H. Tf the first pivot is 1 x 1, then
vo/vr1 < 1/a and

BB e = 11Xl < 1A,
NBIZ e = 1ICH < 1 F .
2127 < IENDI 1
1
< Il < 20l (3.33)

In the last inequality we have used the fact that |7D| = vy. Tf the first pivot
is 2 x 2, then |Ha1| = vg and

BB v < NQIPIQI I < max{|Di1], | Daol}
< XTI < 21 H lar,
IBNZ e < QUEITICHI < 20 H A,
2121 e < HICNRNPIIRITICT (3.34)

Tt is easy to see that

1

2172 < ———— [ w
[| || |]7 = |D11||D22|[ 0

v |- (3.35)



19

(382|D22| + 877,2|D1] | 144} 144)
144} (382|D1] | —|— 877,2|D22| 144}
2
0
———— Qv+ | D |+ | D < 11||H||ps- 3.36
Bl v+ 1Dul #1020 < 1A (3.36)

The last inequality follows from
D1 Doy = HytHay — 1, |H1|[Hao| < oy,
which combined gives v2/(|D11]|D22]) < 1/(1 — o?).

By applying the above bounds recursively to G and H and by noting
that every Schur complement H satisfies ||H||pr < pn||H||ar, where p, is
the growth factor, we conclude that |||G||G|"|lsr < 11np,||H||ar- By using

Theorem 3.1 and |H| < |G||G|", we finally have

where p,, is bounded by (3.32). Note that this bound is of the same order
as (3.31).

et us now analyze Algorithm 3.1. Tf the first pivot is 1 x 1, then (3.33)
holds, with the exception that now

Ellw <182 - 110ep, || H||m,

2171 v < » < 4 <2||H]|
A max A

M |H]]| 070 M
if |Hi1| > aX or [Hiqlo > aA?, and

0_2

| H sl

2121 v < = < = < 20| H
if |Hss| > ao. Therefore, we conclude that the method of Algorithm 3.1 is
normwise stable if only 1 x 1 pivots are used. This includes some important,
classes of matrices which are described in Section 3.4.

However, if 2 x 2 pivots are used, the method of Algorithm 3.1 is not
as stable as Algorithm 2.1 or the Bunch Kaufman method. Namely, (3.34)
holds, but with the exception that now

1
272 < ————[ X o ]-
[| || |]7 — |D11||D22|[ ]
(382|D22|—|—S7'I,2|D]]| A A
A es?| Dy | + sn?| Dy o
1
m((AQ—Fﬂ'Q)mH,X{“)]]L|D22|}—|—20’A2)7

and even though A?/(|D11]|D22|) < 1/(1 — a?), the bound such as (3.35)
does not exist. The examples when such worst case is attained can be easily
constructed by taking o large enough.
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3.4.  Lower Triangular Factor

In the proof of Theorem 3.1 we see that 2 x 2 steps contribute much
more to the error bound than 1 x 1 steps. If only 1 x 1 steps are performed,
that is, if the factor PG from (2.5) is lower triangular, then the bound of
Theorem 3.1 reduces to

Bl < 3n(|H] + |GI1G[T)e. (3.37)

Indeed, if only 1 x 1 steps are performed, then the constant 91 from the
induction assumption (3.14) can be changed to 3, which combined with
(3.17) gives (3.37). Also note that (3.37) holds always when only 1 x 1
pivots are used, even without pivoting, so long as the algorithm does not
break down. Such factorization may, however, lead to large element growth,
which will then be included in the |G||G|" term.

Two important classes of matrices which can be decomposed by per-
forming only 1 x 1 steps without pivoting are positive definite matrices and
scaled diagonally dominant matrices [4].

If H is positive definite, then Algorithm 2.1 reduces to the Cholesky
factorization with diagonal pivoting, and only 1 x 1 steps are performed,
so (3.37) holds. From the proof we see that (3.37) holds even if we do
not use pivoting, in which case it closely resembles the results by Sun
[30, Section 2]. Even more, by analyzing the proofs, we see that these
results by Sun, which are slightly stronger than (3.37), hold for all indefinite
matrices which can be decomposed by using only 1x 1 pivots. Further, since
|H|+ |GG < 2/H;; H;;, which holds with the relative error of O(g), we
have
Fijl < 6n(HiiH ;) 7.

This is similar to the result by Demmel [11]. There the constant 6n is
replaced by (n 4+ 1)/(1 — (n 4 1)e), which is slightly better. Note, however,
that the above bound holds for the outer product version of the Cholesky
factorization [19, Algorithm 4.2.2] with or without diagonal pivoting, while
Demmel analyzed the Gaxpy version [19, Algorithm 4.2.1].

Scaled diagonally dominant matrix is defined as H = D(J+N)D, where
D is diagonal positive definite, .J = diag (+1), and N has zero diagonal with
[| V]l < 1 [4]. We shall now show that such matrix can be decomposed by
performing only 1 x 1 steps both with or without pivoting, so that (3.37)
holds. Tndeed, the form of A implies that Hqiy # 0, thus we can start by
performing a 1 x 1 step. Therefore, (2.3) implies

T
3 [B 0 Ji 0 B 0 i eperen
A TIer CN | ER | ERNC e

Also, sign (H;;) = sign (ﬁ”) for 1 = 1 this is obvious; for i = 2,--- ., n we
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have _

Hii = DipJii — Njy DT = D (Jii — Ny Jn), (3.38)
and the statement, follows from the fact that |N;1| < 1. Thus, we can write
H = /3(] + /V)ﬁ, where D is diagonal positive definite, and N has zero
diagonal. Since J+ N a,n~d J+ N are congruent, they have the same inertia,
and we conclude that ||N||oa < 1. Therefore, H and, consequently, H are
scaled diagonally dominant matrices, and by induction we conclude that
the factorization can be continued by performing only 1 x 1 steps without
pivoting.

Similar problem of performing LU factorization without pivoting was
analyzed by Funderlic, Neumann and Plemmons in [15]. They showed that
the Gaussian elimination can be performed without pivoting for generalized
diagonally dominant matrices, that is, the matrices which can be row scaled
to be diagonally dominant. By definition, H is such matrix if there exists
a vector y such that

y>0, " (|diag (F)| — |H — diag (H)]) > 0, (3.39)

where the last two inequalities are interpreted componentwise. We shall
restrict ourselves to strictly generalized diagonally dominant matrices, that
is to the case where “>” in (3.39) is replaced by “>”. Tet now H =
D(J + N)D | be a scaled diagonally dominant matrix. Then (3.39) (with
“>” instead of “>") is equivalent to

y>0, y (I—INJ)>0.

Notice that such y exists if and only if 7 — |N|is an M-matrix [23, p. 114].
This implies that if H is strictly generalized diagonally dominant, then
[lIN]]]2 < 1, which, in turn, implies that. H is scaled diagonally dominant.
The converse is not true, that is, there exist scaled diagonally dominant
matrices which are not (strictly) generalized diagonally dominant. Tndeed,

let,
0 04 —04 —04

0.4 0 0.4 —0.4
—0.4 0.4 0 0
—04 —-04 0 0

Then ||N||2 = 0.8 and |||N]||o > 1. We have therefore enlarged the class
of symmetric matrices from [15] for which the Gaussian elimination can be

H=DI+N)D, N-=

performed without pivoting.

4. FORWARD ERROR BOUND

Forward error is defined as the matrix §G = G — é, where GG and G are
the exact and the computed factors of a given matrix H, respectively. In
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this section we shall derive the componentwise forward perturbation bound,
and then combine 1t with Theorem 3.1 to obtain the componentwise forward
error bound. An example is given in Section 8.

Since the decomposition (1.1) and Algorithm 2.1 require pivoting, small
relative componentwise perturbations of H can cause different permutations
and different choices of 1 x 1 and 2 x 2 pivots. This implies that it is not,
in general, possible to obtain useful bounds for d(G. We illustrate this
by a simple example: let H = [ ; ? ] and H = [ 1 ;6 ? ] Then
N 0.70711  1.22474 1.22474  —0.70711
T —0.707111.22474 1.22474  0.70711

that even J need not remain the same. Tt 1s also easy to construct examples,

]and(}m[

] , and we see

where 1 x 1 pivots are used, but the permutation sequence changes, or where
the inertia changes.

Our results are generalizations of the results by Sun [30, Sections 2.2
and 2.3] to indefinite matrices. Tn order to prove the following theorems
we need some additional assumptions. These assumptions are the weakest
possible, and our results apply to large class of matrices which includes e.g.
scaled diagonally dominant matrices. We shall first prove the perturbation
theorem:

THrROREM 4.1. et H rind~H + F be non-singular matrices with tll,e
same inerhia, and let H = GIGT and H+ F = GJGT. Set 6G =G — @G.
If the permutation sequences are in both decompositions the same, and if
both matrices PG and PG from (2.5) are lower triangular, then

E

16G| < |Gt (|(;*1| (?*1|T) : (4.1)

Here tril (A) denotes the lower triangle of the matriz A. Moreover, if
€= ,T)ﬂeig||(D(~?)71||2||(DG)71||2||DED||F <1, (4.2)

where D is the set of all n x n diagonal positive definite mairices, then

6G] < |Gl (|G| F
Gl (JG

G71 |T>

EllG oG F

Gy, @)
where ®;; = 1/(1 — €?).

Proof. Our proof is very similar to the proof by Sun [30, Theorem
2.2.1]. Matrices PG and PG are by assumption lower triangular, which
implies that only 1 x 1 pivots have been used in both decompositions.
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From Algorithm 2.1 we see that both matrices have all positive diagonal
elements. From

PEPT = (PSGY.J(PG)T + (PG)J(PSG)T
we have
(PG "PEPT(PG) T = (PG) " (PSG)T + J(PSG)T (PG)~T.

Further, (PG)~"(P4G)J is lower triangular, J(P(YG)T(P(?)*T is upper

triangular, and
sign ([(PG)~ ' (P6G)T)is) = sign ([J(PSG)T(PG) 1is).
This implies that
(PG~ (PSG)| < tril (|(/D(;)*1 PEPT(P(?)*TD . (4.4)

Finally, (4.1) follows by inserting this into [dG| < |G||GT'dG.
The inequality (4.4) also implies that for any D € D

656G < NG BG Tlle < I(DG) " DED(DG) |k
(DG (PG Tl [|DE D] -

A

The assumption (4.2) gives ||G7'dG||r < ¢ < 1, which implies that the
matrix 7 = T — |G7'3G] is invertible. The rest of the proof is as in [30,
Theorem 2.2.1]. ]

As in [30, Section 2.3], the componentwise forward error bound is now
obtained by inserting (3.37) into Theorem 4.1:

THROREM 4.2. Let H = GJGT be the decomposition of H computed
by Algorithm 2.1 in exact arithmetic. Let G and J be the factors of H
computed by Algorithm 2.1 in floating-point arithmetic with precision €.

Set dG =G —G. Ifé and (G satisfy the assumptions of Theorem 4.1, and
if )

Bne min [|(DG) [ I(PG) L IDAH T+ IGNGT) DIl < 1,
then

1661 < 3nldtril (16 |(1H] + GGG ) & + OE).

5. HERMITTAN CASE

In this section we consider the decomposition of a Hermitian matrix H

H=GIG", (5.1)
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where (G has full column rank and .J = diag (+1). We derive the algorithm,
and show that all results from previous sections hold here, as well.

The description of the algorithm is as in Section 2, except that the
transposed matrices C7, Q7 and Z7 are replaced by conjugate transposed
matrices C*, @Q*, and 7*, respectively. Also, the matrix @ from (2.2) is
now

—8n S

Q= [ S ] ' es” 4 |snl” =1 (5.2)

The elements of @ and D are computed similarly as in the auxiliary routine
claev2.f, which is used in the Hermitian implementation of the Bunch-
Parlett, method (1.3) in the Lapack routine chetf2.f [1]. Since in Matlah
H' = A7 if H is real, and H' = H* if H is complex, the only parts in
Algorithm 2.1 which change are the computation of ), a, and b.

AT.GORITHM 5.1 (HERMITIAN INDEFINITE DECOMPOSITION) On entry
array H contains an n X n compler Hermitian matriz. On exit the first
r =rank (H) columns of the array H are overwritten by the factor matriz
(. Vector J contains the diagonal of the matriz J. Vector P describes the
pivoting. Only part which differs from Algorithm 2.1 1s displayed.

/* Compute the 2 x 2 orthogonal matriz Q. */
phi= H(i+1,i)/abs(H (i +1,1))
zeta = (H(@+1,i+ 1) — H(i,1))/(2 * abs(H (i 4+ 1,1)))
if z==10
t=1
else
t = sign(zeta)/(abs(zeta) + sqrt(zeta2 + 1))
end
h =sqrt(l + 7‘,2)
es=1/h
sn =1t x*phi/h
Q = [es conj(sn); —sn es]
/¥ Update H. */
a= H(i,i) —abs(H({i+ 1,1)) x 1
b=H(i+1,i+1)+abs(H(i+1,1)) x1

All comments about Algorithm 2.1 hold here, as well.

In order to prove error bounds, we first need to describe complex finite
precision floating-point arithmetic. All subscribed and superscribed ¢’s
denote complex numbers, € denotes the machine precision, and we assume
that |g;| < e for all 4. Tt is easy to see that for v € R and a,b € € the real
model (3.1) implies

Mlaxs) = (ax3)(+e)



fl(a/y) = (a/7)(0 +&2)
flla+bd) = a(l+e3)Eb(1+eq)
flaxb) = (axb)(1+ 2e5)

The backward error bound is given by the following theorem.

THEOREM bh.1. Let G and J be the factors of a Hermitian matriz H
computed by Algorithm 5.1 in floating-point arithmetic with precision €.
Then, with the relative error of order O(e),

GIG*=H+F E| < 126n(|H|+ |Gl|G[")e .

Proof.  'The proof is very similar to the proof of Theorem 3.1, so we state
only parts where the proofs differ. First, all transposed matrices should be
replaced by conjugate transposed matrices, where applicable.

Tet

Hoy = |Hanlé = /[Re(H )12 + [Tm(Ha )]

Then
I Hl) = [Hal(1 +e1m,,), lerrra | < 2e,
o) = 0 () =30+, leal <3
This, (3.2), and (3.3) imply that
=1l (%) =Chec, el <Bae,

which further implies |¢'] < (120 + 1)e and |¢”| < 9¢. Thus, we conclude
that (3.4) holds with

let] < 10, lees| < 13e, lesn] < 132+ |eg| + 2 < 17e.
Tf Hiy =0 and/or Has = 0 or sign (Hq1) # sign (Has), then

a ="l (H1]7|H21|7‘,) = H(]—FEG), b ="l (H22—|—|H2]|f) = })(1—|—65)7 (53)

holds with |e,|, |es| < |et| + |y, (| + 26 < T14e. I Hyy > Hay > 0 or
0> Hyy > Hyy, then (5.3) holds with
|Hao| + 14 Hon |]1]

lea] < T4e, len] < =
| Hot|[t] — [Haol

e < 122,

and if Hyy > Hyy > 0 or 0> Hyy > Has, then (5.3) holds with

|H i | 4 14] Hoq|1]
| Hoql[t] — [H11]

|en] < 14e, |eal < < 122
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Therefore, (3.11) holds with
6G] < (lesn] + max{leal, [es]}/2 + 26)|G] < 80| e,
and (3.12) holds with

of the induction.

E

< 160|G||G|"e +0O(e?), which completes the start

The proof of the induction step for a 1 x 1 pivot 1s as in Theorem 3.1,
except that now (3.13) holds with |F| < 3e(|V| + |Z[|17Z]").

The proof of the induction step for a 2 x 2 pivot 1s as in Theorem 3.1
with the following changes: (3.19) holds with

6B < B0|QIID[' e, 167 < 83|CIIQIDI™ 7, [FI < ae(IY[+12117]7),
and (3.26) and (3.27) hold with sn” replaced by [sn]2, so that finally
|6C] < 163(1 4 0.539)(|C| + |Z]|B|T)e < 251(|C| + |Z[|B]T)e.  m

The computational effort in searching for vy = max;»; |Hi;| can be
reduced by using 1-norm instead of 2-norm. That is, we can set vy =
max;»; (|Re(Hi;)|+Tm(H;;)|). Such approach isused in the Lapack routine
chetf2.f Since the two norms differ by at most factor /2, Theorem 5.1 also
holds for the above choice of vy, but with slightly larger constant.

All comments from Sections 3.1, 3.2, 3.3 and 3.4 apply to Theorem
5.1, as well. From the proof we see that if the matrix is decomposed by
using only 1 x 1 pivots, then the elements of F are again bounded by
(3.37). Tn particular (3.37) bounds the componentwise backward error for
the Cholesky decomposition of a Hermitian semi-definite matrix. Also,
scaled diagonally dominant Hermitian matrix can be decomposed by using
only 1 x 1 steps with or without pivoting. The proof of this fact is as
in Section 3.4, with the exception that in (3.38) the term N2 should be
substituted by |N; |2

Finally, let us consider forward error bounds. From the proof of The-
orem 4.1 we see that the forward componentwise perturbation bounds (4.1)
and (4.3) hold for the Hermitian decomposition (5.1). By combining (4.3)
with (3.37), we see that the Theorem 4.2 also holds for the Hermitian de-
composition. For example, these results hold for the Hermitian Cholesky
decomposition and scaled diagonally dominant Hermitian matrices.

6. BOUNDS FOR THE SCALED CONDITION

Let H = GJGT be the factorization of a real symmetric n x n matrix
H, where GG has full column rank and .J = diag (1), and let us define the
matrix scal (G) by

G = scal (G)D, D” = ||(;7||27 D77 = 07 for 1 75 7 (61)
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The matrix scal (() is the scaled matrix of the matrix (7, and its condition
k(scal () = [|scal (G)||2]|(scal (G))~'||2 is the scaled condition of the mat-
rix (7. Note that the columns of scal () have unit norms. According to the
result, by van der Sluis [29, Theorem 4.1], such scaling is almost the best
possible over all diagonal scalings, that 1s,

k(scal () < \/ﬁAmin k(GA). (6.2)

=diag

Demmel and Veselié¢ [13] proved a remarkable fact that if H is positive
semi-definite and the factorization H = GG7 is obtained by the Cholesky
decomposition with complete pivoting, (scal (()) is bounded by a func-
tion of n irrespective of the condition or even singularity of H. However,
their bound is, as they stated, a large overestimate. Here we show that a
much better bound from [25, (6.13)], which is essentially almost attainable,
readily applies here, and extend the result to indefinite, possibly singular,
matrices. By combining these results, numerical evidence, and the perturb-
ation results of [13] and [32], we show that the indefinite decomposition
usually has diagonalization effect and rank revealing property. All results
also hold for Hermitian matrices.
In the positive semi-definite case we have the bound

vn
3

k(scal (G)) < (42—|—6n— 1)71/2. (6.3)
which follows from [25, (6.13)]. Tndeed, if H in positive definite, then the
fact that we are performing Cholesky decomposition with complete pivoting
implies that the matrix P( is such that

]~

(PGS > Y [PGYG, =1, n—1, j>i (6.4)

13

x
Il

Therefore, scal (P(F) is equal to both matrices A and R from [25, (6.13)],
SO

1
[(scal (PG)) " lo < 5 (47 4+ 6m — 1)~"/2.

Here we have also used the fact that [scal (PG)],, = 1. Combining the
above inequality with ||scal (PG)||2 < /n gives (6.3).

By inspecting the proof of [25, (6.13)] it can be seen that the proof also
applies to singular H, and the bounds are even better since some summa-
tions have fewer terms. The full proof of this result is in [27]. Similar proof
was also used by Higham [20] in a different context.

The bound (6.3) is almost attained, as we see in the following example
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due to Kahan [25]: let H = L7 where

1 1
—c 1 s

L=| —©¢ —¢c |1 s” Ll s =1
—c —c -+ —c 1 s(n=1)

Then I is itself the Cholesky factor with complete pivoting of /7, and when
c— 1, then x(H) — oo, while (scal (1)) ™" tends to the matrix DT, from the
proof of the theorem. The examples like this are, however, very rare, and
k(scal () is usually much smaller, typically O(n). Even the above example
can be improved: if we apply Algorithm 2.1 to the permuted matrix PH PT
where P swaps the first and the last row and column, we get k(scal (G)) < n
see also the related result of Hong and Pan [22].

Demmel and Veseli¢ [13, Proposition 2.10] proved the following result
for a positive definite matrix H: if H = DAD, where 1) is diagonal such
that A;; = 1, then

Y
ATTHW(A) S h_ S A777,(1,.’L‘(A)7

where A; are the eigenvalues of H and h; are the diagonal entries of H,
both sorted in the ascending order.

If H is positive semi-definite, then matrices H = GG and G7 G have
the same nonzero eigenvalues. By applying the above inequality to the
matrix G7 G, we obtain
A

< (seal (@), (6.5)

o-gq,in (

scal (7)) <

where 0,,in and 0,4, are the minimal and the maximal elements from the
spectrum of scal (), A; are the nonzero eigenvalues of H, and h; are the
diagonal entries of 7' (i (squares of the norms of the columns of (), both
sorted in ascending order. The above relation holds, of course, for any factor
(7. Tf (G 1s obtained by the Cholesky decomposition with complete pivoting,
then, by combining the above relation with (6.3) and the fact mentioned
above that k(scal (()) is usually very small (even if H is singular), we
conclude that the decomposition with complete pivoting usually has strong
diagonalization effect. Also, by looking only at the small eigenvalues, we
conclude that such decomposition usually has rank reveling property. This
property is similar to the one of QR factorization with complete column
pivoting as described by Chan [10] and Hong and Pan [22]. From the pre-
vious example we also conclude that in some cases the complete diagonal
pivoting does not produce good results. This, too, corresponds to the res-
ults from [10, 22], where rank revealing QR. factorization requires some
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additional information about singular vectors of small singular values in
order to find satisfactory pivoting sequence.
Let us now turn to the indefinite case.

THEOREM 6.1. et H = GJGT be the decomposition of a symmetric
matriz H obtained by Algorithm 2.1 in exact arithmetic. Then

k(scal (G)) < /n+ 15n?3.781". (6.6)

Proof. Assume that H is non-singular. From (1.4) we see that the
matrix PG = LU|A|'/? is lower block triangular with 1 x 1 and 2 x 2
diagonal blocks. Here U 1s orthogonal and block diagonal, and I is unit
lower triangular. According to (2.6), the under diagonal elements of . are

bounded by

Li;| < 2.781 = u. By using the monotonicity property of the

2-norm,
|Aij] < Bij = [|All2 < || B|2,
we have
GD™) o = (PGPl < IDIU[T L2 < |IDT]]
where
1, =7,
Lij = p(VHp) =7 0>,
0, 1< j,
T +u, =1,
A B ICE D U ) R S }
T .
17 7’*.7717
07 7<77‘I7

and D is diagonal with Dy = /1 + 2(n — 1)p?. Therefore,

||(GD’1)” |2 < trace(DLLT D)

7

{1 +(14p) +Z( (1+u)" 1'“(2+u))2} (1+2(n —i)”)

3

S [1 @4 m (O w0 D] (14 20n )

< (14 20°)(1 4 )™

and the theorem follows by using this and [|[GD™"||a < \/n. Tt is easy to
see that the theorem holds for singular H, as well. [ ]
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Note that the optimal value of o in (2.6) is 1/2, in which case the theorem
holds with 3.781 replaced by 3. As in the positive definite case, numerical
experiments show that x(scal ((F) is usually very small, typically O(n).

We shall generalize (6.5) to the indefinite case.

THEOREM 6.2. et H = GJGT be the decomposition of a symmetric
matriz H obtained by Algorithm 2.1 in exact arithmetic. Then (6.5) holds,
where now X; are the nonzero eigenvalues of H, and h; are the diagonal
elements of GT G.J, both sorted in ascending order.

Proof. Tet r =rank(H), and let
A <A < KA <0< A <0

be the nonzero eigenvalues of H. TLet A; < 0, and let us without loss
of generality assume that the columns of G are permuted such that J =
—TIe & 1., and

1 1 1

- < — <e< :
[GTGl — [GTGlaa — =[G

Let B = scal ((7). Since the nonzero eigenvalues of H are the inverses of the
eigenvalues of the pair (J, G7 (), by applying the Courant Fischer Minimax
Theorem we have
1 . T Iz < 2T Jx

min max ————— max ——————.
X dim(S)=k—i+10£zeS 2T GTGr — ogreso xT DBTBDx
Here Sy is spanned by the first & — i + 1 standard basis vectors, and ) and
B are defined by (6.1). By setting y = Dz we have

1
1 y " DDy TG ki

1
— < max = hi
Ai —ozyese  yTBTBy T max,=1 27 BTBz  A\pan(BTB)’

which proves the right hand side of (6.5). Further,

: W yTDVID Ty A

Ao dim,(fg?jf—k+i ogres 2TGTGr = ofyesa  y BT By = Amin (BT B)
where Sy 1s spanned by the last » — &k + 7 standard basis vectors. Thus, the
theorem is proved for A; < 0. For A; > 0 consider the matrix —H . ]

If (G is obtained by Algorithm 2.1, then by combining the above relation
with Theorem 6.1 and the fact that x(scal (7)) is usually very small, we
conclude that such decomposition usually has strong diagonalization effect
and rank revealing property.

Finally, note that, since both key properties (6.4) and (2.6) hold for
Hermitian matrices (for the latter see [8]), the results of this section also
hold for the Hermitian decomposition from Section 5.
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7. ANALYSIS OF THE BUNCH PARLETT METHOD

In this section we prove results similar to the results of Sections 3, 4,
and 5 for the Bunch Parlett method. By combining (2.1-2.3) with (1.4) we
see that one step of the decomposition (1.3) is given by

oer [ X CT] [k 0 X 0 . 77
PP [(7 Y | | 72 Ty 0 H 0 Iy | D
where

W=cQ, H=Y-wbD "W, z=wpn'qQ",

and X = QNDQT is the eigenvalue decomposition of X. These formulas are
used in the Lapack implementation of the method, dsytf2.f, and are formally
slightly different from the original formulas from [8] or [19, Section 4.4.4].
The remarks from Section 3.2 hold here, as well.

Let us begin by the backward error analysis.

THEOREM 7.1. Let I and T be the factors of a real symmetric mat-
rx H computed by the Bunch Parlett method with unequilibrated diagonal
pivoting from Section 2 in floating-point arithmetic with precision . Then,
with the relative error of order O(e),

Lri” = PHPT + E, E| < 5148n(P|H|P” + |LIUANUT| T e,

where UAUT is the computed eigenvalue decomposition of T.

Proof. We are using the notation from the proof of Theorem 3.1. The
theorem holds for n = 1, and for n = 2 for a 2 x 2 pivot since in both cases
F=0.

We must analyze the induction step separately for 1 x 1 and 2 x 2 pivot.
We assume without loss of generality that the permutation matrices P from
(7.1) and P from (1.3) are the identity matrices.

Let us first consider a 1 x 1 pivot, that is, k = 1, W = C, @ = 1,
and X = Hyy. The analysis is similar to the one of [30, Theorem 3.1.1],
although here the matrix H need not be positive definite. We have

H = iy —cx'¢"y=v-cx'¢"+F,

7 = fIwx HY=0x""467, (7.2)
where A

[F] <3e(IVI+[ClIX MO, ez <elclx ).

The induction assumption is

ITILT =0+ R, E| < 5148(n — k)e(|H|+ | U ANTT LT, (7-3)
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where UAUT is the computed eigenvalue decomposition of T. By setting

e 0 X
S R |
we have
X Xz 0 ()"
LTI = ep | =H+E E =
[ 7X Zx7Z" +LTL” ] + [ 5C Y
(7.4)
From (7.2) we have C'= (7 — §7)X and
6C] = §7X] < £|CIIX|IX| = <[C. (7.5)
From (7.2) and (7.3), by ignoring the terms of O(g?), we have
6| = |F+F+4+z2x7"7 —ox— 07
< B8 — Ne([Y |+ X e” + |LITIANTT 1T
H3(IY[+]CIX MO + 2¢ ) x O
< (5148(n — 1)+ )Y |+ IZIXIZIT + [EITIANDTT |7 e 6)
The theorem now follows by inserting this and (7.5) into (7.4) and setting
1 X
= - A= <
A S

Let us now consider a 2 x 2 pivot, that 1s, k = 2. Tet X = éﬁéT and
QDQ" be the exact and the computed eigenvalue decompositions of X
respectively. The relationship between these two decompositions is given

by (3.18). Now (7.1) holds with

W= fI(CQ)=CQ+ W,
H = iy -wnD "W =y -cQD'Q"c" + F,
7z = fwn'Q"y=cQh Q" +67, (7.7)
where
|| 131C|Qle,

<
1FL< 1200+ [CQIDIRITIC e,
6zl < nTiclID QI ..

Therefore, (7.4) holds with

6C1 = 162QDQ"| < NTICHQID QI IQIIDIQI e, (7.8)
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and we have to bound the right hand side in terms of |C] and |Z]|Q||D||Q|"-

After a tedious computation we obtain

S U . b
BN BTGNP = (1 T 2 ?<'m' + |' '|>) ]+

+253‘|§ﬁ|[ (14—('92" ||+s‘ 2|b|) |C.o] <1+('92||b||—|— s lal ') |C |]

and

CGn ' QIoIPNa > (1 + Wﬂ% + % + 1)) ]+

+(E§|§ﬁ|[ (1 —|—('92|| || +5 ?"7') |Cls] (1 +é 92||b|| +~?'|b|') |C | ]

By combining these two relations and using cslsn’ < 1/4, we get,
icrUp-RIMenpIRI"™ < 210D QMNP

3 [l bl
+ (4+ 2(|b| + Ial)) [C]. (7.9)

Further, (3.2-3.5) imply that,

b 1]
AL <Mt o T an) 11 <2071,
B 1al f = il

for sign (Hy1) = —sign (H22), and

b 1l 20
X{II || ||}<|~|m+w<1+ 2o <1532
[b] [tlvo — vy IETSY e

otherwise, so that

[l | bl
L4 < 15.387.
|| lal

By inserting this and (7.7) into (7.9), we have
ICNRUDTIRQIMIQUPIRIT < 21Z11QIPIQIT + 27.081|C[+ O(e). (7.10)
By inserting this into (7.8) and ignoring the Q(g?) term, we finally have

0C] < 3168.5(121QIDIQIT + 1) (7.11)
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To complete the proof it remains to bound |[§Y| from (7.4) in terms of
|| and | Z]|Q||D]1Q|"|7Z|". Tndeed, (7.3) and (7.7) imply that

6V = |E4+F+2x7" —cx'c7|
< [El+IFI+ 821101 + Cll6 7] + O(e)
< 5148(n — 2)e(|H| + |LITIANTT LT
+120e|V |+ (120 + 2 - 11 T)e|C|QI D 1QIT|C|". (7.12)
Since A A
H=Y - 7QDQ" 7" + F + O(¢),
we have

A< V14 1ZIUDlIRIM 2T + ). (713)
Further, (7.10) and (7.7) imply that

QDRI < 1D QI IRNPIRIIQD ' Q" |
< IZIIQINIQI +27.081|(Z — §7)QDQTNIQD ' QT CT|
< 20.0811Z1QN PRI 7" + Ofe).

By inserting this and (7.13) into (7.12) and ignoring the O(g?) term we have

0Y] < (5148(n—2)+10296) (1Y |-+ ZI1QUPIQIT 12| + LI AlI0| | L)

The theorem now follows by inserting this and (7.11) into (7.4) and setting

S R YA

Fven though the constant of the theorem is larger than the constant from
Theorem 3.1, numerical experiments show that the entire factor O(n) is
usually an overestimate. All remarks from Sections 3.1, 3.2 and 3.4 hold
here, as well. In particular, if the matrix T from the theorem is diagonal,
then (7.6) implies that the error is bounded by

E| <5(PIH|PT + |L||T||IT|")e. (7.14)

7|

This bound holds e.g. for positive definite and scaled diagonally dominant
matrices. For positive definite matrices this bound is slightly worse than the
bound of [30, Theorem 3.1.1]. Further, by inspecting its proof, we see that
this theorem gives the backward error for the Bunch Parlett decomposition,
too, if T" is diagonal. The only exception is that the matrix D from [30,
(3.1.4)] should be replaced by |D].
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Normwise stability has been proved by Bunch [5] for the Bunch Parlett
method with complete pivoting, and recently by Higham [21] for the Bunch
Kaufman method with partial pivoting (see also Section 3.3).

Let us now consider forward error. Let us make assumptions similar to
the ones 1n Section 4: non-singular unperturbed and perturbed problems are
decomposed by using the same permutation sequence, resulting in matrices
T from (1.3) being diagonal and having the corresponding diagonal elements
of the same sign. Then we see that the componentwise forward perturbation
and error bounds are given by [30, Theorem 3.2.1] and [30, Theorem 3.3.1],
respectively. Here, too, in the statements of the theorems the matrices 1)
and D should be replaced by |D| and ||, respectively.

Similarly as in Section 5 we conclude that all above results hold for
Hermitian matrices, with the exception that the constant in Theorem 7.1 18
slightly larger due to the complex arithmetic.

Finally, in view of Section 3.1, all results of this section hold for the
Lapack implementations of the real symmetric and Hermitian versions of

the Bunch Kaufmann Parlett, method [6, 7], dsytf2.f and chetf2.f.

8. CONCLUDING REMARKS

In this section we summarize our contributions, describe results of nu-
merical experiments, and compare our results with the existing analysis by
Bunch [5]. We also illustrate our results by a small example.

We have proved componentwise backward error bounds for two versions
of the real symmetric and Hermitian decomposition, the H = GJGT de-
composition and the Bunch Parlett decomposition PHPT = ITTI7. The
bounds hold for the outer product version of the algorithms. The bounds
are easy to compute, and simple to use in further applications. Numerical
experiments show that the bounds reveal well the structure of actual er-
rors, and that the factors of order O(n) are usually an overestimate. More
precisely, the bounds of Theorems 3.1 and 5.1 can usually be replaced by
the simpler bound |F| < |G]|G|"e, and the bound of Theorem 7.1 can be
El < |LNUNANUT|L| ..

For non-singular real or Hermitian matrices which have lower triangular

replaced by

factor (G or diagonal factor T, we proved componentwise forward error
bound, that is, we are able to estimate the precision of the computed factors.
Our results extend the results by Sun [30] by enlarging the class of
matrices to indefinite matrices and by including the Hermitian case.
We proved attainable bounds for the scaled condition of the matrix (7,
and showed that the decomposition H = GJG7T usually has non-trivial
diagonalization effect and rank revealing property.
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Tt 18 inferesting to compare our result with the analysis of the Bunch
Parlett, decomposition (1.3). Bunch [5, (2.3.4)] showed that the factors
and T computed with the unequilibrated diagonal pivoting in floating-point
arithmetic with precision ¢ satisfy LTLT = PHPT + E, where elements of
the backward error matrix F are bounded in terms of absolutely maximal
elements of the reduced matrices:

Fjkl = [Frjl < Ciwe,  for j >k, (8.1)
=1 k ' y(()k) if pp =1
Cie =571 v +31.65 > v+ { 137 if = 2

1375 it pe=0

p’,y:1 p’,:?

Here I/(()i) denotes the value of vy 1n the ith step of Algorithm 2.1. Tf in the

step i — 1 a 2 x 2 pivot was chosen, then I/(()i) = (0. The quantities p; have
the following meaning: p; = 1 if in the ith step a 1 x 1 pivot was chosen,;
p; = 2 1f in the ith step a 2 x 2 pivot was chosen; and p; = 0 if in the step
i— 1 a2 x 2 pivot was chosen (in this case I/(()i) does not exist). Although
Bunch [5] gives no explicit error bound for the Hermitian version of the
Bunch Parlett decomposition, the nature of his proof 1s such that it holds
for the Hermitian version, as well.
Our bounds and (8.2) are all a posteriori bounds since they are computed
after the decomposition is completed. The bounds for maximal elements,
® LU ANUL|E

vy, are implicitly included in the |G||G|" or 7 terms of
our bounds. Note that our bounds are more convenient for further applica-

tions such as in [27]. The comparison of the bound (8.2), our bounds; and
actual errors 1s as follows: the maximal elementwise bounds are almost the
same; our bounds often reveal better the actual error structure (note that
in (8.2) all elements Fj, j > k, have the same bound, and the bound grows
with k); bounds for particular elements of E can vary by even several or-
ders of magnitude, although our bounds are on average better; for smaller
dimensions all bounds approximate actual errors well, for larger dimensions
all bounds overestimate actual errors by a factor of order O(n).

We conclude the paper by illustrating our results with the following
example: let

3207938000 300000 —423212 19800

H— 300000 1600 —300 14
o —423212 —300 43.5 —4.75
19800 14 —4.75 0.1875

Note that H is stored exactly on machines with base 2 [18]. The decom-
position (1.1) computed by Algorithm 2.1 in single precision, € & 107%,



|' 56638.662
5.2967353
—7.4721398
0.34958453

G =

with J = diag (—1,1,1,
GJGT — His

3.32e 4+ 01
3.60e — 04
—5.49¢ — 04
3.51e — 05

F =

0
39.6477567
—6.568393
0.30640682

3.60e — 04
4.00e — 05
3.81e — 06
—1.37e — 07

0
0
7.4482656
0.01681668

—5.49 — 04
3.81e — 06
—6.55e — 07
9.13e — 09

and its elements are bounded by (3.37) as follows:

7.70e 4+ 02
7.20e — 02
Fl < 1.02e — 01
4.75¢ — 03

7.20e — 02
3.84e — 04
7.20e — 05
3.36e — 06

1.02e — 01
7.20e — 05
2.38¢ — 05
1.14e — 06

o ]

0 )
0.16826074

—1) and P = I. The backward error matrix F =

3.51e — 05
—1.37¢e — 07

9.13e —09 |’

5.61e — 09

4.75¢ — 03
3.36e — 06
1.14e — 06
5.19¢ — 08

Further, we assume that the factor G computed by Algorithm 2.1 in double
precision, € & 10716 is exact. The forward error matrix G = G — G is

2.93e — 04

—2.10e — 08

0G = 2.89%9 — 08
—1.19¢ — 09

0

5.07e — 07
1.72¢ — 07
—7.03e — 09

0

0

—1.37¢e — 07
1.49e¢ — 08

0

0

0 )
—3.34e — 08

and its elements are bounded by Theorem 4.2 as follows:

|' 1.36e — 02
3.81e — 06
|($G| < 5.80e — 06

2.88e — 07

0
1.02e — 05
5.80e — 06
2.89%9 — 07

0
0
1.28e — 05
6.58¢ — 07

0 |

0

o |-
1.36e — 06

This also illustrates the perturbation bound of Theorem 4.2. Finally, note

that o2

min

(scal () = 0.83628307, o

maxr

(scal () = 1.1635069, while the

eigenvalues of H, the diagonal elements of the matrix G7G.J, and their
respective quotients from (6.5) are

Y

—54.043364, —0.028309685, 1613.7487, 3207938084
—55.476945, —0.028311688, 1615.1823, 3207938040
0.97415898, 0.99992925, 0.99911242, 1

This illustrates Theorem 6.2, and diagonalization effect and rank revealing
property of the symmetric indefinite decomposition.
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The Bunch Parlett decomposition defined by (1.3) and (7.1) computed
in single precision is

1 0 0 0

I — 9.3518017e — 05 1 0 0
T —1.3192649%¢ — 04 —0.16566872 1 0 |’

6.1721891e — 06 7.7282259e — 03  2.257798e — 03 1

T = diag (3207938000, 1571.9446, —55.476663, —0.02831168),

and P = I. The backward error matrix £ = LTLT — H is
0.00e 4 00 419 — 04 —4.78 — 04 —4.29¢ — 05
= 4.19 — 04 5.14e — 06 3.15e — 06 —2.96e — 07
t —4.78¢ — 04 3.15e — 06 —1.60e — 06 —2.52e¢ — 08 ’
—4.29¢ —05 —296e — 07 —2.52¢—08  1.99¢ — 09
and its elements are bounded by (7.14) as follows
[ 1.28¢ 4+03 1.20e —01 1.69¢ —01 7.92¢ —03 7
Bl < 1.20e — 01 6.40e —04 1.20e — 04 5.60e — 06
= 1.69 — 01 1.20e —04 3.96e —05 1.90e — 06
| 7.92¢ —03 5.60e —06 1.90e —06 &.64e —08 |
On the other hand, the bound by Bunch (8.2) is
[ 4.23¢ — 03 4.23¢ —03 4.23¢ — 03 4.23¢ — 03 |
Bl < 4.23e — 03 2.42¢ — 02 2.42¢e — 02 2.42e — 02
= 4.23e — 03 2.42¢ — 02 4.42¢ — 02 2.42e — 02 ’
L 4.23e — 03 2.42¢ — 02 2.42e — 02 4.42¢ —02 |

and we see that in this example both our bounds reveal the error structure

much better.

Further, we assume that the factors T and T computed in

double precision are exact. The forward error matrices 7. = . — I, and
0T =T — T are
0 0 0 0
ST — 1.31e — 13 0 0 0
T —1.49e — 13 2.60e — 09 0o o |’
—1.34e — 14 —2.12e—10 1.93e —09 0

8T = diag (0, 5.06-107% —5.12-1077, 7.87-1077),

and their elements are bounded by [30, Theorem 3.3.1] (modified as de-
scribed in Section 7) as follows:

|' 0 0 0 0 '|
5.0he — 0 0 0
|6L 7.68e 1.10e — 07 0 0 )
3.81e — 12 5.47¢ — 09 6.62e — 08 0
|67 < diag (577, 3.03-10"* 7.13-107", 1.71-1077).



This also illustrates the perturbation bound of [30, Theorem 3.2.1].
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