
Arbenz, P., Slapni�car, I.On an Implementation of a One-sided Block Jacobi Method on a DistributedMemory ComputerWe show that one-sided block Jacobi method for computing the singular value decomposition can be implementedon distributed memory computers with message passing communication model in a highly scalable manner. Thealgorithm is highly accurate and can also be used to compute the eigenvalue decomposition of a symmetric matrix.1. The one-sided block Jacobi methodThe SVD of a non-singular n� n matrix A is written as A = U�V T , where U and V are orthogonal matrices, and� is a diagonal matrix whose diagonal entries are the singular values of A. One-sided (implicit) Jacobi method [2]computes the singular values, and the corresponding left singular vectors (the matrix U ), by forming a sequence ofmatrices A0 = A, Ak+1 = AkRk, where Rk is a plane rotation chosen to annihilate the element (i; j), i < j, of theimplicitly de�ned Gram matrix Gk+1 � ATk+1Ak+1 = RTkATkAkRk. To determine Rk we need to know [Gk]ii, [Gk]jj,and [Gk]ij = [Ak]T:i [Ak]:j. The former two quantities are are kept and updated in a separate vector, the latter iscomputed by a scalar product. The sequence Ak converges to the matrix �A, where �ii = k �A:ik2 and U:i = �A:i �ii.Thus, the initial A is overwritten by singular vectors, which reduces the storage. We use the relative stoppingcriterion [2]: we rotate only if j[Gk]ijj > n �macheps �p[Gk]iip[Gk]jj, and we stop after an empty cycle.Since the rotations on non-overlapping index pairs are completely independent, they can be applied simulta-neously, so the method is ideal for parallel computation. Modern processors with pipelining features prefer blockalgorithms rich with matrix multiplications like the BLAS-3 routine dgemm. We illustrate the performance of dgemmfor (2048 � m) � (m � m) matrix multiplication on the Intel i860 RISC processor with peak performance of 50M
op/s: m 1 2 4 8 16 32 64 128 256 512M
op/s 11.7 14.8 26.6 34.5 40.5 43.0 44.7 45.3 45.8 45.7To exploit this property we use a block Jacobi method similar to the one from [1]: A is partitioned into 2p col-umn blocks A = � A(1) A(2) � � � A(2p) �. Two consecutive blocks are assigned to each processor i = 0; 1; : : : ; p�1,and denoted by AL and AR. Each processor forms the upper triangle of the Gram matrix of its block columns,G � � G11 G12GT12 G22 � = � ATLAL ATLARATRAL ATRAR � ;applies one sweep of the standard two-sided Jacobi method [5] to G accumulating the rotations in the matrixR, and,�nally, multiplies � AL AR �R. The last step and the forming of G12 are performed by dgemm. After computation,the blocks AR circulate along the processor ring according to the caterpillar parallel cyclic strategy [3]. This strategyrestores the original layout after every two cycles (4p stages). The algorithm is given in Algorithm 1. Only thosecolumns of U which correspond to non-zero singular values are computed. The convergence is guaranteed since thestopping criterion is at the same time a threshold [5, p. 278]. This criterion also implies high relative accuracy ofthe singular values computed by the non-blocked version of the algorithm [2]. Numerical tests indicate the sameproperty for our algorithm, although we have not yet a formal proof. The algorithm for an m � n, m � n matrixis similar. Since the SVD of A and the eigenvalue decomposition of ATA are simply related, the algorithm can beeasily used to compute the eigenvalue decomposition of a symmetric matrix A (see also [2]).2. The implementationIf the execution of one 
op takes �(n;m) �s, where m = n=(2p), and the transmission of k doubles (8k bytes) takes(� + �k) �s, where � is the startup time and 1=� is the bandwidth, then the cost of Algorithm 1 in �s isC(n; p) = (2m2 +m)(2n � 1)�(n;m) + 8 � 4p �6(2m)3�(m; 2) + n(2m)(4m � 1)�(n; 2m) (1)+m2(2n� 1)�(n;m) + 4� + 2�m(m + 1)=2 + 2�nm� :



A lg o r i t hm 1. (Block-Jacobi method.) Processor i executes the following program:G11 ATLAL, G22 ATRAR, G12  ATLAR.repeat until convergencefor j = 1; : : : ; 4pif (j � 1) mod 2p+ 1 6= 2p� 2(i� 1) thenapply one sweep of Jacobi to G and compute R.� AL AR � � AL AR �R.Send AR and G22 to next processor, and receive AR and G22 from previous processor.G12 ATLAR.elseSwap AL with AR, and G11 with G22.Send AR and G22 to next processor, and receive AR and G22 from previous processor.G12 ATLAR.end ifend forend repeatHere we have used the fact that for larger dimensions (n = 1000; 2000) the algorithm converges after approximately8 double sweeps. The speedup is de�ned as S(n; p) = C(n; 1)=C(n; p). The computational overhead (25 %) versusthe non-blocked version is more than compensated by using dgemm on larger matrices. If computation and commu-nication can be performed simultaneously (asynchronous communication), then the communication (except startup)can be overlapped by computation by modifying Algorithm 1 as follows: G22 is communicated while upper half of� AL AR � is multiplied by R; upper half of AR is communicated while lower half of � AL AR � is multiplied byR; lower half of AR is communicated while forming of the new G12 starts on the upper half of � AL AR �, etc. Inthis case the cost is given by the maximum between computation with startup and the � part of (1).We implemented our algorithms on the Intel Paragon with 96 nodes and the NX message passing system [4]located at ETH Z�urich. Each node consists of two i860 processors, the compute and the message processor, thusenabling asynchronous communication. The values for Paragon are � = 65, � = 1=8, while �(n;m) is computed fromthe table of Section 1. For n = 2048 the theoretical and measured speedups for Algorithm 1 and its asynchronousversion are as follows:Number of processors 4 8 16 32 64 96Theoretical { Asynchronous 4 8 16 32 63.8 95.3Theoretical { Synchronous 3.99 7.97 15.8 31.1 60.2 87.4Measured { Asynchronous 29.5 49.1 54.7Measured { Synchronous 28.4 47.5 52.3For orientation, the asynchronous version takes 630, 342, and 300 seconds for p = 32; 64; 96, respectively.As a conclusion, let us say that our theoretical considerations show that the one-sided block Jacobi methodattains nearly optimal speedups, and is therefore highly attractive for parallel computations. We suspect that therelative slowdown for the larger number of processors and the relatively low speedup obtained for the asynchronousversion are due to the facts that the NX message passing system is not yet optimally implemented, and the synchro-nization of the memory accesses of both compute and message processor working at full speed may cause problems.3. References1 Arbenz, P., Oettli, M.: Block implementations of the symmetric QR and Jacobi algorithms. Technical Report178. Institute for Scienti�c Computing, ETH Z�urich, 1992.2 Demmel, J. W., Veseli�c, K.: Jacobi's method is more accurate than QR. SIAM J. Matrix Anal. Appl. 13 (1992),1204{1243.3 Luk, F. T., Park, H.: On parallel Jacobi orderings. SIAM J. Sci. Statist. Comput. 10 (1989), 18{26.4 Pierce, P.: The NX message passing system. Parallel Computing 20 (1994), 463{480.5 Wilkinson, J. H.: The Algebraic Eigenvalue Problem. Oxford University Press, 1965.Addresses: Peter Arbenz, ETH Z�urich, Institut f�ur Wissenschaftiches Rechnen, 8092 Z�urich, SwitzerlandIvan Slapni�car, University of Split, Faculty of Electrical Engineering, Mechanical Engineering, andNaval Architecture, R. Bo�skovi�ca b.b., 58000 Split, Croatia


