
AN ANALYSIS OF PARALLEL IMPLEMENTATIONS OF THEBLOCK-JACOBI ALGORITHM FOR COMPUTING THE SVDPeter ArbenzInstitute for Scienti�c ComputingSwiss Federal Institute of Technology (ETH)8092 Zurich, Switzerlandarbenz@inf.ethz.chandIvan Slapni�car1Faculty of Electrical Engineering, MechanicalEngineering and Naval ArchitectureUniversity of SplitR. Bo�skovi�ca b.b.58000 Split, Croatiaivan.slapnicar@fesb.hrAbstractWe analyze message passing communication model of distributed memory comput-ers and show that, by using such model, we can implement one-sided block-Jacobimethod for computing the singular value decomposition in a highly scalable manner.Key words: distributed memory, singular values, block algorithms, Jacobi method1 IntroductionIn this paper we �rst analyze the requirements to a communication environment in order to makescalable implementations of algorithms in numerical linear algebra possible. As a typical example ofsuch an algorithm,we then investigate the behavior of the block-Jacobi algorithm for computing thesingular value decomposition (SVD) on parallel multicomputers [2], i.e. multiprocessor computerswith distributed memory supporting the message passing programming model. We introduce theprincipal issues in Section 2 by means of the easily understood matrix-matrix multiplication. InSection 3 we apply the same consideration to the Jacobi algorithm. To verify the theory, numericalexperiments have been performed on the Intel Paragon using the NX message passing interface [7].In Section 4 we draw our conclusions.2 Matrix multiplicationIn this section we introduce the principal ideas by means of matrix-matrix multiplication. LetA;B;C 2 IRn�n be real n-by-n matrices. Given A and B, we want to compute the matrix productC = A �Bon a p processor multicomputer. We consider the processors, numbered from 0 to p�1, to belogically arranged in a ring. This means that each processor communicates exactly with twoother processors. Processor i, say, can exchange messages with processor (i � 1) mod p and with(i + 1) mod p. We call these neighbor processors the previous and next processors. For simplicitywe assume that p divides n, n = mp.We split the matrix A in the formA = 264 A0...Ap�1375 ; Ai = [Ai;0; : : : ; Ai;p�1] 2 IRm�n; Ai;j 2 IRm�m; 0 � i; j < p;1Part of this work was done during this author's visit to the ETH Zurich. This author also acknowledges theGrant No. 1-01-252 from the Croatian Ministry of Science.

and likewise B and C. In our implementations we distribute the matrices in this block-row wisefashion. Initially, the ith block row of A, B, and C reside on processor i. With this storage schemeit is natural that processor i computes the block-row Ci according to the formulaCi = AiB = p�1Xj=0Ai;jBj ; 0 � i < p: (1)Notice that we could compute Ci without communication if we stored all of B on every processor.This storage scheme would however not be scalable. While Ai and Ci stay in the memory ofthe i-th processor, the rows of B move around the processor ring. A SPMD program is given inAlgorithm 1.Algorithm 1 (Synchronous matrix multiply) Processor i computes Ci. After execution, theblock-rows Ai, Bi, and Ci reside at their original places.Ci 0m;n:for j = 0; 1; : : : ; p� 1Ci Ci + Ai;i�jmodpBi�jmodp:Send Bi�jmodp to next processor.Receive Bi�(j�1)modp from previous processor.end forDuring the round-trip of the Bi each processor computes its part of C. Ci is computed in psteps according to (1). Each step costs 2nm2 oating point operations. After the update of Ci,the local block of B is forwarded to the next processor and replaced by the block of the previousprocessor. In order to avoid deadlocks a message passing bu�er of at least size 2nm doubles, i.e.twice the message length, has to be provided. We model the cost of the transmission of a messageof length n doubles (8 bytes) by � + �n. � denotes the startup time in �sec while 1=� is thebandwidth in doubles per �sec. If the execution of one op takes '(n;m) �sec, then the total costof Algorithm 1 is C1(n; p) = p (nm(2m � 1)'(n;m) + 2� + 2�nm) : (2)Speedup and e�ciency are given by [5, x3.1]S1(n; p) = C1(n; 1)=C1(n; p); E1(n; p) = S1(n; p)=p: (3)On the Intel Paragon, � = 65�sec and � = 1=8�sec, corresponding to a bandwidth of 65Mbyte/s= 65byte/�sec. Due to the complicated pipeline architecture in a RISC processor it is di�cultto assign a value to '. The Paragon, e.g., has a peak performance of 50Mop/s [4]. The mea-sured performances ranges from 10Mop/s for the Linpack benchmark [4] up to 46Mop/s for theBLAS-3 routine dgemm which incorporates matrix multiplication. Since we use dgemm as a majorcomputational routine to perform a (n�m) � (m �m) multiplication, we have measured its per-formance and de�ned ' as the function of the matrix sizes. For n = 512 the Mop/s rates aregiven in Table 1. The Mop/s rates for larger values of n are similar. The values of '(n;m) arethe inverses of the corresponding Mop/s rates.Table 1: Mop/s rate for dgemm for n = 512m � n=p 1 2 4 8 16 32 64 128 256 512Mop/s 11.7 14.8 26.6 34.5 40.5 43.0 44.7 45.3 45.8 45.7Modern massive parallel computers have hardware to relieve the CPU from dealing with theoverhead involved with message passing. The Intel Paragon, e.g., has a second Intel i860 RISCprocessor called message processor for that purpose. On such computers it is possible to overlapcomputation and communication by issuing asynchronous (non-blocking) send and receive prim-itives. A call to an asynchronous send or receive function initiates some action of the message

processor and then returns immediately. So the compute processor takes only the startup time;the actual transmission is handled by the message processor. In the asynchronous version of Algo-rithm 1, B is being prepared for communication at the same time the compute processor updatesC. In order not to send too early, processors are synchronized before the matrices are communi-cated which requires two additional messages (of zero length). This enables the message processorto store the arriving matrix directly in user space, thus avoiding a time consuming intermediatebu�ering.With the notations as in (2) the total cost of the asynchronous algorithm becomesC2 = pmaxfnm(2m � 1)'(n;m) + 4�; 2�nmg : (4)In Figure 1 theoretical and measured speedup and e�ciency of Algorithm 1 and its asynchronousversion are depicted. The theoretical considerations show a big advantage of asynchronous over
0

10

20

30

40

50

60

70

1 2 4 8 16 32 64 96

S
P

E
E

D
U

P

NUMBER OF PROCESSORS

line 1
line 2
line 3
line 4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1 2 4 8 16 32 64 96

E
F

F
IC

IE
N

C
Y

NUMBER OF PROCESSORS

line 1
line 2
line 3
line 4

Figure 1: Speedup and e�ciency of theoretical asynchronous (line 1) and synchronous (line 2), andmeasured asynchronous (line 3) and synchronous (line 4) for n = 576.synchronous version of Algorithm 1 in the range of a few to a medium number of processors. Inthis range, communication hiding makes possible close to optimal speedups. The theoretical gainin speedup and e�ciency through communication hiding can be up to 2. The gain is highestif computation and communication last equally long [8]. For high numbers of processors thecommunication overhead starts to dominate and the speedup curve starts to decrease; the problemis then getting too small for the number of processors used.Practical timings for larger numbers of processors are worse than predicted. The overheaddue to message passing is larger than our simple timing model suggests. We suspect that the NXmessage passing interface, in particular the asynchronous send/receive primitives, are not optimallyimplemented. Furthermore, the synchronization of the memory accesses of both compute andmessage processor working at full speed may cause problems.The timings are better for larger dimensions, as we shall see in next section. For orientation,the 576� 576 matrix multiplication takes 8.3 seconds on one processor, and 0.677n0.630 secondson 16 processors with the synchronousnasynchronous algorithm.3 The Jacobi algorithmThe SVD of a non-singular n� n matrix A is written asA = U�V T ; (5)where U and V are orthogonal matrices, and � is a diagonal matrix whose diagonal entries are thesingular values of A. One-sided (implicit) Jacobi method [3] computes the singular values, and thecorresponding left singular vectors (the matrix U), by forming a sequence of matricesA0 = A; Ak+1 = AkRk; (6)

where Rk is a plane rotation, i.e. the identity matrix except for the elements [Rk]ii = [Rk]jj = cos �and [Rk]ij = �[Rk]ji = sin�, where i < j. The angle � is chosen so that the element (i; j) of theimplicitly de�ned Gram matrix Gk+1 � ATk+1Ak+1 = RTkATkAkRk is annihilated,[Gk+1]ij = [Gk+1]ji = 0:To determine � we need to know [Gk]ii, [Gk]jj, and [Gk]ij = [Ak]T:i [Ak]:j . The �rst two quantitiesare kept and updated in a separate vector, so we just need to form one scalar product. Thesequence (6) converges to the matrix �A with orthogonal columns. The norms of the columns of �Aare the singular values of A, and the normalized columns of �A are the corresponding left singularvectors, �ii = k �A:ik2; U = �A[diag(k �A:ik2)]�1 = �A��1:Thus, the initial matrix is overwritten by the singular vectors, which halves the necessary storage.We use the relative stopping criterion [3]: the rotation is performed only ifj[Gk]ijj > tol �p[Gk]iiq[Gk]jj: (7)where tol is a user parameter, usually tol = n�, and � is the machine precision. The algorithmstops after n(n � 1)=2 successive rotations (one sweep) have been skipped. This criterion impliesthe high relative accuracy of the method (6) [3]. The algorithm for an m � n, m � n matrix issimilar, but in this case only the �rst n columns of U are computed. If A is singular, then thealgorithm computes only those columns of U which correspond to non-zero singular values.Since the rotations on non-overlapping index pairs are completely independent, they can beapplied simultaneously. This makes the one-sided Jacobi method ideal for parallel computation.Modern processors with pipelining features prefer block algorithms where the major computationale�ort is performed with matrix multiplications (BLAS-3). In order to exploit this property, we usea block-Jacobi method similar to the one used in [1] for shared memory machines: we partition Ainto column blocks A = � A(1) A(2) � � � A(2p) � (8)and assign two consecutive blocks to each processor. Assume for simplicity that all blocks havethe same number of columns m, n = 2mp. Denote the two blocks held by some processor by ALand AR. The idea is that each processor forms the Gram matrix of its block columns,G � � G11 G12GT12 G22 � = � ATLAL ATLARATRAL ATRAR � ;then applies one step of the standard two-sided Jacobi method [9] to G accumulating the rotationsin the matrix R, and, �nally multiplies � AL AR �R. The last step contains the major partof the computation and can in this manner be performed by the BLAS-3 routine dgemm. Aftercomputation, the blocks AR circulate along the processor ring according to the caterpillar parallelstrategy [6], so that each block of the global Gram matrix ATA is accessed exactly once in eachsweep. This strategy also restores the original layout (8) after every 2nd sweep (2p stages). Thealgorithm stops when all processors performed no rotations in two-sided Jacobi for more than onesweep. Note that only upper triangles of G11 and G22 are needed, since we can apply two-sidedJacobi only on the upper triangle of the symmetric G. The algorithm is given in Algorithm 2.Since the stopping criterion (7) is at the same time a threshold, Algorithm 2 always converges(see [9, p. 278]). The non-blocked algorithm (6) computes the singular values with high relativeaccuracy [3]. Numerical tests show that Algorithm 2 computes the singular values with the samehigh relative accuracy, although we have not yet a formal proof.Let us compute the cost. For larger dimensions (n = 1000; 2000), the algorithm takes about8 double sweeps to converge. The non-blocked algorithm requires 8n(n � 1)(2n � 1 + 6n) � 64n3operations. However, this algorithm uses only scalar products and (m�2)�(2�2) multiplications,so from Table 1 we see that the utilization of processors would be rather poor. The cost forAlgorithm 2 with synchronous communication isC3(n; p) = (2m2 +m)(2n � 1)'(n;m) + 8 � 4p �6(2m)3'(m; 2) + n(2m)(4m � 1)'(n; 2m)+m2(2n� 1)'(n;m) + 4� + 2� (m(m + 1)=2) + 2�nm� : (9)

Algorithm 2 (Block-Jacobi method) Processor i executes the following program:G11 ATLAL, G22 ATRAR, G12 ATLAR.repeat until convergencefor j = 1; : : : ; 4pif (j � 1) mod 2p+ 1 6= 2p� 2(i� 1) thenapply one sweep of Jacobi to G and compute R.� AL AR � � AL AR �R.Send AR and G22 to next processor.Receive AR and G22 from previous processor.G12 ATLAR.elseSwap AL with AR, and G11 with G22.Send AR and G22 to next processor.Receive AR and G22 from previous processor.G12 ATLAR.end ifend forend repeatThe speedup, S3(n; p), and e�ciency, E3(n; p), are obtained according to (3). The cost of theasynchronous version is obtained similarly as in (4).In Figure 2 theoretical and measured speedup and e�ciency of Algorithm2 and its asynchronousversion are depicted. For orientation, the asynchronous version takes 630, 342, and 300 seconds
50

100

150

200

250

4 8 16 32 64 96 128

S
P

E
E

D
U

P

NUMBER OF PROCESSORS

line 1
line 2
line 3
line 4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 8 16 32 64 96 128

E
F

F
IC

IE
N

C
Y

NUMBER OF PROCESSORS

line 1
line 2
line 3
line 4

Figure 2: Speedup and e�ciency of theoretical asynchronous (line 1) and synchronous (line 2), andmeasured asynchronous (line 3) and synchronous (line 4) for n = 2048.for p = 32; 64; 96, respectively.The superlinear speedups seen in Figure 2 can be explained as follows: the serial complexityof Algorithm 2, i.e. the cost of operations that each processor performs in each stage and also ineach sweep, decreases more than linearly as p increases. More precisely, by inserting m = n=(2p)into the part of (9) associated with the iterative part of Algorithm 2, we see that the operationcount is 32n3(6=(p2)+2:5=p). The quantities '(n; 2m) and '(n;m) decrease by at most the factor2 as p increases (see Table 1), which altogether results in the superlinear decrease of the cost. Thiscon�rms the statement that the block-Jacobi method is ideally suited for parallel computation.When the number of processors further increases, the communication cost starts to dominate, andthe e�ciency decreases again.We see that the block-Jacobi method has even better theoretical properties than matrix mul-

tiplication, since it allows speedups close to optimal. Also, the synchronous and asynchronousversion di�er theoretically as much as in matrix multiplication. Our implementations on IntelParagon behave similarly as predicted for p = 32; 64; the di�erence is due to the fact that actualimplementations have some extra operations not counted in (9), like computing the Jacobi rota-tion parameters. Such scalar operations are relatively slow on RISC architectures. Further, notethat, as in matrix multiplication, the synchronous and asynchronous implementations di�er onlyby little. Here send and receive also need some extra copying to/from bu�er, and the memorycopy takes approximately the same amount of time as inter-processor communication (without thestartup time). For p = 96 our implementations show a relative slowdown, which is due to thereasons explained in Section 2.Algorithm 2 can also be applied to compute the spectral decomposition of a symmetric positivede�nite matrix { eigenvalues are squared singular values, and eigenvectors are left singular vectors.If the matrix is inde�nite, then we get absolute values of the eigenvalues and the correspondingeigenvectors, and a small extra e�ort is needed to determine the signs of the eigenvalues.4 ConclusionsWe have shown by a simple model for synchronous and asynchronous message passing that theoverlapping of communication and computation can help to increase the scalability of algorithms.The concrete applications presented are matrix multiplication and one-sided block-Jacobi algo-rithm. Although the measurements we executed on the Intel Paragon did not precisely reect thetheoretical considerations, they con�rm the fact that considerable speedup and e�ciency increasescan be obtained by communication latency hiding. This technique makes it possible to increase thee�ciency with which an application runs on a certain number of processors, or, exploit a highernumber of processors given a desired e�ciency. The block-Jacobi method attains nearly optimalspeedups, which makes it very suitable for parallel computations, even though the method, asimplemented, makes no great use of communication latency hiding.References[1] P. Arbenz and M. Oettli (1992), Block implementations of the symmetric QR and Jacobialgorithms, Institute for Scienti�c Computing Technical Report 178, ETH, Z�urich.[2] G. Bell (1992), \Ultracomputers: A teraop before its time", Communications of the ACM,Vol. 35, pp. 27{47.[3] J. W. Demmel and K. Veseli�c (1992), \Jacobi's method is more accurate than QR", SIAM J.Matrix Anal. Appl., Vol. 13, pp. 1204{1243.[4] J. J. Dongarra (1995), Performance of various computers using standard linear equation soft-ware, Tech. Rep. CS-89-85, Univ. of Tennessee, Computer Science Dept., Knoxville, TN.[5] K. Hwang (1993), Advanced Computer Architecture: Parallelism, Scalability, Programmability,McGraw{Hill, New York.[6] F. T. Luk and H. Park (1989), \On parallel Jacobi orderings", SIAM J. Sci. Statist. Comput.,Vol. 10, pp. 18{26.[7] P. Pierce (1994), \The NX message passing system", Parallel Computing, Vol. 20, pp. 463{480.[8] V. Strumpen and T. L. Casavant (1994), \Exploiting communication latency hiding for parallelnetwork computing: Model and analysis", Proc. of the 1994 Int. Conf. on Parallel and DistributedSystems, Los Alamitos, CA, IEEE Computer Society Press, pp. 622{627.[9] J. H. Wilkinson (1965), The Algebraic Eigenvalue Problem, Oxford University Press.

