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exactly n real eigenvalues, and the corresponding eigenvectors span the bases of then-dimensional space. More precisely, for a symmetric matrix H we haveQTHQ = �;where � = diag (�i) is a diagonal matrix with eigenvalues of H on the diagonal,and Q is orthogonal matrix whose columns are the corresponding eigenvectors. ForHermitian matrixH we have Q�HQ = �, where the eigenvector matrix Q is unitary.Similarly, the singular value problem for general matrix G 2 Cm�n reads [21]U�GV = �;where � = diag (�i), � 2 IRm�n, �i � 0, and the matrices U and V are unitary.The columns of the matrix U are the left singular vectors, and the columns of thematrix V are the right singular vectors. If, for example, m � n, then obviouslyV �G�GV = diag (�21; � � � ; �2n) 2 IRn�n ;U�GG�U = diag (�21; � � � ; �2n; 0; � � � ; 0) 2 IRm�m:We see that the eigenvalue and singular value problems are closely related, that is,the singular values of the matrix G can be obtained as the roots of the eigenvaluesof Hermitian matrices G�G and GG�.Solution of many problems in technical applications is reduced to solving eigen-value and singular value problems. Thus, these problems attract considerable atten-tion and represent one of the most important areas of numerical linear algebra. The�rst method for solving the eigenvalue problem for symmetric matrices is the Jacobimethod [23, 40, 27, 21] which dates back in 1846. The Jacobi method constructs asequence of matrices H1 = H; Hk+1 = RTkHkRk;which converges to the eigenvalue matrix �, while the sequence of products R1R2 � � �Rkconverges to the eigenvector matrix Q. Matrices Rk are the orthogonal plane rota-tion matrices chosen to annihilate one o�-diagonal element of the matrix Hk. Dueto the �nite arithmetic of the computer this in�nite iterative procedure stops aftera �nite number of steps.In 1950-ties and 60-ties the QR methods [40, 27, 21] are being developed bymany authors. These methods �rst reduce the symmetric matrix H to tridiagonalmatrix T by using orthogonal similarity transformations, and then use QR iterationsto solve the eigenvalue problems for the matrix T . Although both methods requireO(n3) oating-point operations, the QR methods are on sequential (single processor)computers about �ve times faster than Jacobi type methods. Other methods forsolving the eigenvalue problem [40, 27, 21] are LR methods, iterative methods likethe power method, the inverse iterations, the method of Krylov subspaces, theLanczos method, the subspace iteration method, and the bisection method and thedivide-and-conquer method which are particularly e�cient for tridiagonal matrices.Iterative methods are especially suitable for large matrices, sparse matrices, andwhen only some of the values or vectors are needed. The bisection locates aneigenvalue by using the Sturm sequence, and the corresponding eigenvectors canbe computed by inverse iteration. The divide-and-conquer method is very suitable2



for multi-processor computers. The method �rst partitions the staring matrix intoblocks, then solves the smaller eigenvalue problems, and �nally connect all the solu-tions. We conclude that the choice of the method depends upon the structure andthe size of the matrix, on the requirements for speed and accuracy, whether all orjust some values/vectors are required, and the available hardware.Using the computers in solving eigenvalue and singular value problems has leadto two aspects of research: speed and accuracy. Due to need to solve larger andlarger problems, the �rst aspect of research is �nding faster algorithms and theanalysis of their speed of convergence. This subject is beyond the scope of thisreview. Computers use a discrete subset of rational (real) numbers and every realnumber is represented by the closest approximation in that subset [40, 27, 21, 20].Numbers are usually represented with 8 (single precision) or 16 (double precision)signi�cant digits. The question of accuracy can be stated very simply: how manyaccurate digits does the computed eigenvalue have? In applications four kinds oferrors appear: errors of the model, since the chosen mathematical model may notcompletely describe the actual real world system; errors in data, since the data ismost often acquired by measurements which are not absolutely accurate; errors instoring the matrix into the computer due to previously mentioned approximations;and the errors generated by the computational method. Here we shall deal with thetwo latter sources of errors, although by using the perturbation theory, which wedescribe later, one may try to estimate the e�ect of the �rst two sources of erroron the �nal solution. When storing the matrix H into the computer, instead of theelement Hij we store the elementHij + �Hij ; j�Hij j � �jHij j;where � is the machine precision, � � 10�8 or � � 10�16. Therefore, the last storeddigit need not be correct and instead of H we store some H + �H . The conditionis de�ned as the number � which tells us how many times does the error in originaldata increase. If �i is the i-th largest eigenvalue of the matrix H , and �i+��i is thei-th largest computed eigenvalue, then the answer to the question about accuracygenerally has the form j��ij � �k�Hkj�ij:Here k � k represents some matrix norm or some other way of measuring the size ofthe perturbation which does not necessarily has to have all properties of the norm.The condition � depends on the matrix, but also on the computational methodwhich we use. From this exposition it follows that we shall obtain the answer tothe question of how many accurate digits does the computed value have when weanswer the following two questions:(A) Is the matrix \well behaved", that is, do small relative changes in matrixelements cause small relative changes in eigen/singular values?(B) If the matrix is well-behaved which algorithm computes eigen/singular valueswith this accuracy?In general, to answer the question (A) an appropriate perturbation theory for thegiven type of problem needs to be developed, while the answer to (B) is given by3



the numerical analysis of the algorithm. Many authors have noticed that for someproblems di�erent methods give answers with widely varying accuracy. For example,in 1968 Rosano� et al. [29] performed experimental analysis of many structuralmodels and noticed that the Jacobi method often computed tiny eigenvalues muchmore accurate than the QR method. The authors had many excellent observationsand gave interesting explanations for facts which were much later established withcomplete mathematical rigor. We also need to mention the important paper byKahan [24]. In 1980-ties many articles appear and the intensive research is still goingon. First Demmel and Kahan [9] analyzed the singular value problem for bidiagonalmatrices. Then the symmetric (Hermitian) eigenvalue problems was analyzed byBarlow and Demmel [3] for scaled diagonally dominant matrices, by Demmel andVeseli�c [10] for positive de�nite matrices, as well as the SVD, and by Veseli�c andSlapni�car [39, 33, 31] for inde�nite matrices. These works are followed by manyothers which we will describe in the �nal section.Symmetric eigenvalue problemThe classical answer to the question of how big are the relative changes in eigen-values of the non-singular symmetric matrixH when when its elements are relativelyperturbed, j�Hij j � �jHij j, follows from Weyl's theorem [40, 27, 21],j��ij � k�Hk2:From this it followsj��ij � �kjH jk2 j�ijj�ij � �pnkHk2kjH�1k2j�ij � �pn�2(H)j�ij:Here �2(H) � kHk2kjH�1k2 denotes the spectral condition of the matrix H . Wesee that tiny eigenvalues, which are the most important in many applications, arethe most sensitive. This bound is almost attainable, but it is also in many casesinappropriate. The two extreme cases are illustrated by the following examples:H = � 1 11 1 + 10�10� ; H + �H = � 1 11 1� ;where�min � 0:5 � 10�10; �min + ��min = 0; j��minjj�minj = 1; �2(H) � 4 � 1010;and H = � 1010 00 �1� ; H + �H = � 1010(1 + 10�10) 00 �1 + 10�10� ;where j��minjj�minj = 10�10; �2(H) = 1010:Both, QR and Jacobi method always compute the eigenvalues at least as accuratelyas predicted by the above perturbation bound [40, 21, 27]. However, as we have just4



seen there exist matrices where the above bounds are inappropriate, and there alsoexists matrices where not all methods attain the same accuracy.Barlow and Demmel [3] analyzed symmetric scaled diagonally dominant matricesof the form H = D(J +N)D;where D is diagonal positive de�nite matrix, J is diagonal matrix, Jii 2 f�1; 1g,and kNk2 < 1. They showed that symmetric relative perturbations j�Hij j � �jHij jimply j��ij � n2�1� kNk2 j�ij:It is important to notice that this bound depends upon kNk2 independently of thecondition �2(H). The authors also showed that a version of bisection on a fullmatrix, a time consuming algorithm which needs O(n4) oating-point operations,computes the eigenvalues with this accuracy, and that inverse iteration produceshighly accurate eigenvectors in a norm-wise sense.Demmel and Veseli�c [10] analyzed symmetric positive de�nite matrices. Let thescaled matrix A be de�ned as H = DAD, where D is diagonal positive de�nitematrix such that Aii = 1. Then relative perturbations of matrix elements implyj��ij � n��min(A) � n��2(A)�i:This bound is, of course, meaningful only if the quotient on the right hand side isless than one. According to the result by van der Sluis [37]�2(A) � nminD �2(DHD);where the minimum is taken over all diagonal positive de�nite matrices. Thus,�2(A) � n�2(H), so the above bound is never much worse than the classical bound.On the other side it is possible that �2(A)� �2(H) (the trivial example is when His diagonal) in which case is the above bound much better than the classical one.The authors showed that the Jacobi method computes the eigenvalues with thisaccuracy. The QR method can fail both in the tridiagonalization phase as well asduring QR iterations. Another algorithm which is also as accurate as predicted byperturbation bound consists of two steps:1. H is factorized by the Cholesky factorization [21]H = LLT ;where L is lower triangular matrix, or by the Cholesky factorization with di-agonal pivoting H = PLLTPT ;where L is lower triangular and P is a permutation matrix.2. One-sided implicit Jacobi method is applied from the right to the factor L orPL. 5



Let us explain the second step of this algorithm. First note that H and LTLhave identical eigenvalues and closely related eigenvectors: if UTLTLU = � isthe eigenvalue decomposition of the matrix LTL, then the orthogonal matrix Q =LU��1=2 is the eigenvector matrix of H , that is, QTHQ = �. Applying the Jacobimethod to the matrix LTL would yield the sequenceLTk+1Lk+1 = RTkLTk LkRk:In the implicit method we multiply by rotation matrices just the factor from theright, which creates the sequenceL1 = L; Lk+1 = LkRk:In order to do this, in each step three elements of the implicitly de�ned matrix LTk Lkwhich are needed to compute the rotation matrix Rk need to be computed. Onlyone scalar product su�ces since the diagonal of the sequence LTkLk can be updatedin a separate vector. (for details see [10]). From this we see that the convergenceof the implicitly de�ned sequence LTkLk to the eigenvalue matrix � is equivalentto the convergence of the sequence Lk to the matrix Q�1=2. Therefore, when thein�nite iterative process stops on some matrix LM due to the �nite precision of thecomputer, then the squares of the norms of the columns of LM are the computedeigenvalues of the matrix H and the normalized columns of LM are the computedcorresponding eigenvectors.Veseli�c and Slapni�car [39, 31] generalized the above results to inde�nite matri-ces. Their main result is the relative perturbation bound for generalized eigenvalueproblem Hx = �Kx;where H and K are Hermitian matrices and K is positive de�nite. By applyingthis result to single inde�nite Hermitian matrix H gives the following bound: letH = Q�Q� be the eigenvalue decomposition of H . the spectral absolute value of His de�ned as Hy = Qj�jQT = pH2:Let the matrix A be de�ned as Hy = DAD, where D is diagonal positive de�nitematrix such that Aii = 1. Then �-relative changes of the matrix elements implyj��ij � n��2(A)j�ij:Note that for a positive de�nite matrix Hy = H in which case this result reproducesthe bound by Demmel and Veseli�c. It was also shown that this bound reproducesthe bound by Barlow and Demmel for scaled diagonally dominant matrices.Veseli�c [38] proposed the following two step algorithm in analogy to the positivede�nite case:1. H is factorized by the symmetric inde�nite factorization with complete pivotingH = PGJGTPT ;where G is lower block-triangular matrix with 1� 1 and 2� 2 diagonal blocksand has full column rank (this algorithm works if H is singular, as well, butin this case the above perturbation bound does not hold), P is a permutationmatrix, and J is diagonal matrix, Jii 2 f�1; 1g.6



2. One-sided implicit J-orthogonal Jacobi method is applied to the pair (G; J)from the right.The above factorization is a modi�cation of the well-known method by Bunch andParlett [5]. If H is positive de�nite matrix, then this factorization becomes theCholesky factorization with diagonal pivoting. Error analysis of the factorization isgiven by Slapni�car [31, 32]. It was shown that the factors G and J computed inthe oating-point arithmetic with machine precision � are the exact factors of theperturbed matrix H + �H , wherej�H j � O(n)�(jH j+ P jGjjGT jPT ):Here jH j is de�ned by jH jij = jHij j. Note that the same type of bound holds forthe Cholesky factorization with or without pivoting as well as for LU factorization[21, 10]. The di�erence between the implicit Jacobi method and the implicit J-orthogonal Jacobi method is that the J-orthogonal method uses J-orthogonal planerotations for which RTk JRk = J . If Jii and Jjj have the same sign, where (i; j)is the pivot pair in the k-th step, then the matrix Rk performs the trigonometric(orthogonal) plane rotation as in the ordinary Jacobi method. If Jii and Jjj havedi�erent signs, then a hyperbolic rotation is performed. Implicit J-orthogonal Jacobimethod forms a sequence of matricesG1 = G; Gk+1 = GkRk;which converges to the matrix Qj�j1=2. Thus, is GM is the last matrix on whichthe algorithm has stopped, then kGM;:ik2Jii is the i-th computed eigenvalue andthe normalized i-th column is the corresponding eigenvector. The convergence ofthe method was proved by Veseli�c [38], and the quadratical convergence was provedby Drma�c and Hari [15]. Slapni�car [31] proved that this algorithm computes theeigenvalues as predicted by the perturbation theory. On the other side, QR methodand the standard two-sided Jacobi method sometimes do not achieve this accuracy.We shall illustrate this on the following example: letH = 0BB@ 1600 �300 14 300000�300 43:5 �4:75 �42321214 �4:75 0:1875 19800300000 �423212 19800 3207938 � 1031CCA :All elements are the sums of the powers of 2 and are exactly stored in the IEEEsingle precision [20], � � 10�8. Since�2(A) � 18; �2(H) � 1010;we expect 6-7 accurate digits from the above algorithm in single precision. Theeigenvalues of H are �1 = �54:043364�2 = �0:0283096849�3 = 1613:74866�4 = 3207938084:01057



Here the digits common to the above algorithm and the LAPACK QR routinedsyev.f [1] computed IEEE double precision , � � 10�16, are shown. Our algorithm,LAPACK QR algorithm ssyev.f and the two-sided Jacobi method computed thefollowing eigenvalues in single precision:Our alg. ssyev:f Jacobi�1 �54:043369 �55:990593 �54:043369�2 �0:02830968 �0:0326757 �0:02830995�3 1613:7487 1651:6652 1613:7486�4 3207938000 3207938000 3207938000We see that the above algorithm behaves as predicted, the QR method has com-pletely missed the tiniest eigenvalue and two more are insu�ciently accurate, whilethe Jacobi method is somewhat less accurate than the above algorithm.Let us now discuss perturbations of the eigenvectors. Let �i and �i + ��i besimple eigenvalues in the same order and let xi and xi + �xi be the correspondingeigenvectors, respectively. Then the classical perturbation theory applied to relativechanges of matrix elements gives [27]k�xik2 � n�kHk2minj 6=i j�i � �j j +O(�2):Therefore, the perturbation of the eigenvectors is proportional to the norm of theperturbation and inversely proportional to the distance between the eigenvaluesand the rest of the spectrum. For scaled diagonally dominant matrices Barlow andDemmel [3] proved the following result:k�xik2 � n�(1� kNk2)relgap(�i) + O(�2); relgap(�i) = minj 6=i j�i � �j jj�i�jj1=2 :Therefore, the perturbation of the eigenvector depends upon kNk2, the size of therelative perturbations of matrix elements and the relative distance between the eigen-value and the rest of the spectrum. As is the case with eigenvalues, this bound is insome cases much better than the classical bound. Demmel and Veseli�c [10] provedthe similar result for positive de�nite matrices:k�xik2 � pn��min(A)relgap(�i) +O(�2) � pn��2(A)relgap(�i) + O(�2):Veseli�c and Slapni�car [39, 31, 33] generalized these results to inde�nite matrices.Instead of analyzing perturbations of eigenvectors they stated their results in termsof perturbations of the eigenprojection Pi onto the invariant subspace which corre-sponds to the eigenvalue �i, thus making it possible to deal with multiple eigenvalues.Let Pi + �Pi be the spectral projection to the invariant subspace corresponding tothose eigenvalues of the matrix H + �H which correspond to �i. Let � = n��2(A).Thenk�Pik2 � �relgap(�i) � 11� �relgap(�i) ; relgap(�i) = min�j 6=�i jpj�ij �qj�jjjmaxfpj�ij;qj�j jg8



if the right hand side is positive. The described highly accurate algorithms computethe eigenvectors and eigenprojections according to these bounds.Singular value problemDemmel and Kahan [9] showed that bidiagonal matrices determine well theirsingular values in the sense that relative changes of matrix elements cause relativechanges of the same order in singular values independent of the magnitude of thematrix elements. They showed that the QR algorithm for bidiagonal matrices withzero-shift computes the singular values with almost complete relative accuracy. Sinceuse of the zero-shift can result in slow convergence, a hybrid algorithm was suggested.As long as there is no danger of generating large relative errors this algorithm usesthe standard QR method with shifts, and when the danger of making unrecoverableerrors appears then the algorithm switches to zero-shift. This algorithm is a part ofthe numerical linear algebra library LAPACK [1] as a subroutine dbdsqr.f. Anotheralgorithm which was shown to attain almost complete accuracy is the bisection.By using this result and the accuracy of the Cholesky factorization, Barlowand Demmel [3] proposed the following algorithm for highly accurate solution ofthe tridiagonal positive de�nite eigenvalue problem: (1) the matrix is factorized asH = LLT by Cholesky factorization; (2) the eigenvalue problem is solved by solvingthe bidiagonal singular value problem for the factor L by the highly accurate QRmethod for bidiagonal matrix. This class of matrices is very important since it arisesin many engineering applications.Demmel and Veseli�c [10] analyzed the singular value problem for general matrixG of full (column) rank. The results are similar to those for positive de�nite eigen-value problem. Let G = BD, where D is diagonal positive de�nite matrix such thatthe columns of B have unit norm. Then relative perturbations j�Gij j � �jGij j implyrelative changes in singular valuesj��ij � n��2(B)�i:It was also shown that the already described implicit Jacobi method applied to thematrix G from the right computes the singular values with this accuracy. On theother side, the QR method which �rst reduces G to bidiagonal matrix by usingorthogonal transformations and then solves the bidiagonal singular value problemoften does not attain the required accuracy. This is due to the fact that the bidiag-onal reduction can cause large errors. The relative bounds for the perturbations ofthe singular vectors ui and vi which correspond to a simple singular value are similarto the bounds in the positive de�nite case: norm of the perturbation is proportionalto the size of relative perturbations of matrix elements and the condition of thematrix B, and inversely proportional to the relative distance between the singularvalue and the rest of the spectrum:k�uik2; k�vik2 � pn��min(B)relgap(�i) + O(�2) � pn��2(B)relgap(�i) + O(�2);where relgap(�i) = minj 6=i j�i � �j j=(�i + �j).9



Veseli�c and Slapni�car [39, 31] showed that this bound for the perturbation ofsingular values also holds for the hyperbolic singular value problem for the pair(G; J), U�GV = �;where G is a complex matrix with full column rank, U is a unitary matrix, V isa J-unitary matrix, V �JV = J , � is a diagonal matrix with positive diagonal ele-ments, and J is a diagonal matrix, Jii 2 f�1; 1g. Slapni�car [31] proved that for thereal matrix G the implicit J-orthogonal Jacobi method described in previous sec-tion computes hyperbolic singular values with this accuracy. Slapni�car and Veseli�c[31, 33] also derived relative bounds for norm of perturbations of the orthogonalprojections to left invariant subspaces corresponding to possibly multiple singularvalues. It is interesting to note that J-orthogonal transformations are as stableas the orthogonal transformations. This appears to be contrary to the establishedopinion that hyperbolic transformations need to be avoided since the condition ofthe matrix Rk can be large. In [34] it is shown that �2(V ) � �2(B), which impliesthat in the k-t step �2(Rk) � �2(( (Bk):;i (Bk):;j )) � �2(Bk);where Gk = BkDK and Dk is a diagonal positive de�nite matrix such that Bk hascolumns of unit norm. Here (Bk):;i denotes the i-th column of the matrix Bk . Partialtheoretical bounds as well as overwhelming numerical evidence [10, 31] show thatthe growth of the condition �2(Bk) during Jacobi process is very small, thus we canclaim that for each k �2(Rk); �2(R1R2 � � �Rk) � �2(B):The stated perturbation results and the error analysis of implicit Jacobi typemethods are the essential components of the proof of the accuracy of the two-stepmethods. However, in practice it is also important to note thatin two-step algorithms the factorization with pivoting almost always re-sults in factors with very low �2(B). Thus, the main error comes fromfactorization while implicit Jacobi type method contribute practically noth-ing to the �nal error.Multiplicative relative perturbation theory by Eisenstat and Ipsen [17, 18] andlater Li [25, 26], where perturbations of matrix elements are given by congruences,G + �G = D1GD2, are bases for the recent research on highly accurate compu-tation of singular values by Demmel et al. [7]. The rank-revealing factorization,RRF, of the matrix G is de�ned as any factorization G = XDY , where X and Yare well-conditioned and D is diagonal. Some examples of RRF are the singularvalues decomposition itself and the LDU factorization (Gaussian elimination) withcomplete pivoting. If there exists a RRF which is accurately determined by thedata then so are the eigen/singular values, and if small relative changes in matrixelements cause large relative changes in D then eigen/singular values also undergolarge relative changes. Further, if there exists a RRF which is accurate in this sense,then the eigen/singular values can be computed to high relative accuracy.10



Some classes of matrices which have accurate RRF are already described in thisand the previous section. Further such classes which are described in [7] are: ma-trices which satis�es some analytic conditions, matrices which satisfy some sparsityand sign pattern conditions, some rationally structured matrices, and some �niteelement matrices. The �rst class includes well-scaled positive de�nite and inde�nitematrices and matrices of the form G = BD which are already described, matricesof the form G = D1BD2 where D1 and D2 are diagonal and non-singular and allminors of B are well conditioned, and matrices of the form G = D1BD2 where D1and D2 are diagonal and non-singular with (nearly) decreasing diagonal elementsand all leading minors of B are well conditioned. The second class includes bidiag-onal and acyclic matrices (sparsity conditions), and total sign compound matrices(sparsity and sign conditions). The third class includes Cauchy matrices, and thefourth class includes matrices which come from linear mass spring systems (see also[16]), two-dimensional trusses, and the Sturm-Liouville problem.Means of obtaining an accurate RRF for these classes of matrices are di�erent.Generally speaking one always computes some variant of Gaussian elimination withcomplete pivoting but the details vary. In the �nite element case the factors areobtained by using the natural factor formulation.Once an accurate RRF is obtained, its singular values can be found to highrelative accuracy by several algorithms. We mention two algorithms from [7]. The�rst algorithm uses J-orthogonal Jacobi method to compute the eigenvalues of thepair �� XD1=2 XD1=2Y TD1=2 �Y TD1=2� ;� I 00 �I �� :The positive eigenvalues of this pair are the singular values of the original matrix G.The second algorithm is based on the algorithm for product singular value decom-position by Drma�c [14]. The algorithm computes the singular value decompositionG � XDY T == U�V T as follows:1. perform QR factorization with pivoting to compute XD = QRP , where Q isorthogonal, R is upper triangular and P is a permutation matrix,2. compute a diagonal matrix D0 such that R = D0R0 and R0 is well-conditioned,3. compute the singular value decomposition D0Z = �U�V T by implicit Jacobimethod,4. multiply U = Q �U .The �rst algorithm computes the singular values with the relative error bounded byO(�maxf�(X); �(Y )g), and the second algorithm computes the singular values withthe relative error bounded by O(�maxf�(X); �(R0)�(Y )g), where � is machine pre-cision. The norm-wise error bounds for the computed singular vectors are obtainedby dividing these bounds by relative gaps, similarly as above.Concluding remarks11



Let us briey state some of the other results and research concerning relativeperturbation theory and highly accurate algorithms. Demmel and Gragg [8] gener-alized the results by Demmel and Kahan to acyclic matrices, that is, matrices whosebipartite graph possesses no cycles, and showed that the bisection computes the sin-gular values with almost complete accuracy. Pietzsch [28] developed an algorithmfor the skew-symmetric eigenvalues problem, and by applying the perturbation the-ory for symmetric matrices proved the accuracy of the algorithm. Singer [30] provedthe relative accuracy of the Jacobi method for Hermitian matrices. Deichm�oller [6]analyzed the implicit variant of the Falk-Langemeyer method for computing thegeneralized singular values. Drma�c [11, 12, 13] analyzed accurate computation ofsingular values and various generalized singular values, proved the relative pertur-bation bounds by using residuals, analyzed the accuracy of the QR factorizationwhich is used as a preprocessing step for the implicit Jacobi method in the casewhen the matrix G has much more rows than columns, and analyzed numericalaspects of accurate computing as overow/underow and the accuracy of variousimplementations of plane rotations. Fernando and Parlett [19] showed that variousvariants of the di�erential QD algorithm compute the singular values of bidiagonalmatrices to high relative accuracy, and that this algorithm has some better proper-ties than the zero-shift QR algorithm. Gu and Eisenstat [22] further extended therelative perturbation theory for singular values. Eisenstat and Ipsen [17, 18] and Li[25, 26] have given perturbation bounds for the perturbations which are given bycongruences. Truhar and Slapni�car [35, 36] generalized the perturbation bounds byVeseli�c and Slapni�car to the projection to invariant subspace which corresponds to aset of neighboring eigen/singular values. Barlow and Slapni�car [4] develop the localbounds for the relative perturbations of eigen/singular values. Namely, all boundsdescribed so far are global in the sense that one bound holds for all values/vectors.These bounds are attainable but only for some values and vectors, so the locally op-timal bounds for each value and vector are of great interest. Arbenz and Slapni�car[2] are among many authors who analyzed the implementation of Jacobi methodson multiprocessor computers. Due to their simplicity, the Jacobi type methods,and in particular implicit methods, are very suitable for such computers and at-tain almost optimal speedups. New generation of processors prefers block versionof matrix algorithms which can also be easily implemented for Jacobi methods. Ex-periments have shown that the Jacobi methods retain their high relative accuracywhen implemented on multiprocessor systems.Majority of the described theoretical results hold in the complex case as well,but, due to need in applications, mostly real versions of algorithms were analyzed sofar. The existing analysis of complex algorithms [30, 32] are very similar to analysisof their real counterparts, which also indicates that the algorithms for complexmatrices are as accurate as algorithms for real matrices.Let us conclude by saying that the research area of relative perturbation theoryand highly accurate algorithms is, due to its importance, very active. Some basic re-sults are simple but considerable improvements of the classical linear algebra resultsand throw a new light on the behavior of eigen/singular values and vectors underspecial types of perturbations of matrix elements which typycally occur in practice.Due to good theoretical and experimental results some algorithms are planned to beimplemented in LAPACK [1]. Most important open problems are: the problem of12
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