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Abstract

We give the review of recent results in relative perturbation theory for eigen-
value and singular value problems, and highly accurate algorithms which compute
eigenvalues and singular values to highest possible relative accuracy.
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Sazetak

Dan je pregled recentnih rezultata o relativnoj teoriji smetnje za probleme svo-
jstvenih i singularnih vrijednosti, te algoritama visoke tocnosti koji racunaju svo-
jstvene i singularne vrijednosti s najve¢om mogucéom relativnom tocnoscu.

Kljuéne rijeéi: simetriéni problem svojstvenih vrijednosti, problem singularnih
vrijednosti, teorija smetnje, terorija relativnih smetnji, relativna tocnost.

Introduction
The eigenvalue problem [40, 27, 21] reads
Hzx = Ax.

The scalar A is the eigenvalue, and the vector z is the corresponding eigenvector
of the matrix H. If H is symmetric or Hermitian matrix of order n, then H has



exactly n real eigenvalues, and the corresponding eigenvectors span the bases of the
n-dimensional space. More precisely, for a symmetric matrix H we have

QTHQ = A,

where A = diag (A;) is a diagonal matrix with eigenvalues of H on the diagonal,
and @ is orthogonal matrix whose columns are the corresponding eigenvectors. For
Hermitian matrix H we have Q*H() = A, where the eigenvector matrix ) is unitary.
Similarly, the singular value problem for general matrix G € €”"*" reads [21]

UGV =3,

where 3 = diag (0;), ¥ € R™*", 0; > 0, and the matrices U and V are unitary.
The columns of the matrix U are the left singular vectors, and the columns of the
matrix V are the right singular vectors. If, for example, m > n, then obviously

V*G*GV = d]ag ((7'127 e 0—2) € [ij,)(w,7
U*GG*U = d]ag ((7'127 S 0—27 , 70) € R™M™X™

We see that the eigenvalue and singular value problems are closely related, that is,
the singular values of the matrix (G can be obtained as the roots of the eigenvalues
of Hermitian matrices G*(G and GG*.

Solution of many problems in technical applications is reduced to solving eigen-
value and singular value problems. Thus, these problems attract considerable atten-
tion and represent one of the most important areas of numerical linear algebra. The
first method for solving the eigenvalue problem for symmetric matrices is the Jacobi
method [23, 40, 27, 21] which dates back in 1846. The Jacobi method constructs a
sequence of matrices

Hy=H,  Hyy =R H.Ry,

which converges to the eigenvalue matrix A, while the sequence of products Ry Ry - - - Ry,
converges to the eigenvector matrix ). Matrices Ry are the orthogonal plane rota-
tion matrices chosen to annihilate one off-diagonal element of the matrix Hy. Due
to the finite arithmetic of the computer this infinite iterative procedure stops after
a finite number of steps.

In 1950-ties and 60-ties the QR methods [40, 27, 21] are being developed by
many authors. These methods first reduce the symmetric matrix H to tridiagonal
matrix T by using orthogonal similarity transformations, and then use QR iterations
to solve the eigenvalue problems for the matrix T. Although both methods require
O(n?) floating-point operations, the QR methods are on sequential (single processor)
computers about five times faster than Jacobi type methods. Other methods for
solving the eigenvalue problem [40, 27, 21] are LR methods, iterative methods like
the power method, the inverse iterations, the method of Krylov subspaces, the
lLanczos method, the subspace iteration method, and the bisection method and the
divide-and-conquer method which are particularly efficient for tridiagonal matrices.

Iterative methods are especially suitable for large matrices, sparse matrices, and
when only some of the values or vectors are needed. The bisection locates an
eigenvalue by using the Sturm sequence, and the corresponding eigenvectors can
be computed by inverse iteration. The divide-and-conquer method is very suitable



for multi-processor computers. The method first partitions the staring matrix into
blocks, then solves the smaller eigenvalue problems, and finally connect all the solu-
tions. We conclude that the choice of the method depends upon the structure and
the size of the matrix, on the requirements for speed and accuracy, whether all or
just some values/vectors are required, and the available hardware.

Using the computers in solving eigenvalue and singular value problems has lead
to two aspects of research: speed and accuracy. Due to need to solve larger and
larger problems, the first aspect of research is finding faster algorithms and the
analysis of their speed of convergence. This subject is beyond the scope of this
review. Computers use a discrete subset of rational (real) numbers and every real
number is represented by the closest approximation in that subset [40, 27, 21, 20].
Numbers are usually represented with 8 (single precision) or 16 (double precision)
significant digits. The question of accuracy can be stated very simply: how many
accurate digits does the computed eigenvalue have? In applications four kinds of
errors appear: errors of the model, since the chosen mathematical model may not
completely describe the actual real world system; errors in data, since the data is
most often acquired by measurements which are not absolutely accurate; errors in
storing the matrix into the computer due to previously mentioned approximations;
and the errors generated by the computational method. Here we shall deal with the
two latter sources of errors, although by using the perturbation theory, which we
describe later, one may try to estimate the effect of the first two sources of error
on the final solution. When storing the matrix H into the computer, instead of the

element H;:. we store the element

1]
Hi;+0H;;, |6 H ;| < €| H;jl,

where € is the machine precision, € 2~ 1078 or € & 107 '%. Therefore, the last stored
digit need not be correct and instead of H we store some H + §H. The condition
is defined as the number x which tells us how many times does the error in original
data increase. If A; is the i-th largest eigenvalue of the matrix H, and A;+48A; is the
1-th largest computed eigenvalue, then the answer to the question about accuracy
generally has the form

XL < RISH]IA.

Here || - || represents some matrix norm or some other way of measuring the size of
the perturbation which does not necessarily has to have all properties of the norm.
The condition s depends on the matrix, but also on the computational method
which we use. From this exposition it follows that we shall obtain the answer to
the question of how many accurate digits does the computed value have when we
answer the following two questions:

(A) Ts the matrix “well behaved”, that is, do small relative changes in matrix
elements cause small relative changes in eigen/singular values?

(B) Tf the matrix is well-behaved which algorithm computes eigen/singular values
with this accuracy?

In general, to answer the question (A) an appropriate perturbation theory for the
given type of problem needs to be developed, while the answer to (B) is given by



the numerical analysis of the algorithm. Many authors have noticed that for some
problems different methods give answers with widely varying accuracy. For example,
in 1968 Rosanoff et al. [29] performed experimental analysis of many structural
models and noticed that the Jacobi method often computed tiny eigenvalues much
more accurate than the QR method. The authors had many excellent observations
and gave interesting explanations for facts which were much later established with
complete mathematical rigor. We also need to mention the important paper by
Kahan [24]. Tn 1980-ties many articles appear and the intensive research is still going
on. First Demmel and Kahan [9] analyzed the singular value problem for bidiagonal
matrices. Then the symmetric (Hermitian) eigenvalue problems was analyzed by
Barlow and Demmel [3] for scaled diagonally dominant matrices, by Demmel and
Veseli¢ [10] for positive definite matrices, as well as the SVD, and by Veseli¢ and
Slapnicar [39, 33, 31] for indefinite matrices. These works are followed by many
others which we will describe in the final section.

Symmetric eigenvalue problem

The classical answer to the question of how big are the relative changes in eigen-
values of the non-singular symmetric matrix H when when its elements are relatively
perturbed, |§H;;| < ¢|H;;|, follows from Weyl’s theorem [40, 27, 21],

0] < [|6H 2.

From this it follows

|\
| A

6N < elllH [l < eV/nllH M2l = ev/niz ().

Here ko(H) = ||H||2|||H "||2 denotes the spectral condition of the matrix H. We
see that tiny eigenvalues, which are the most important in many applications, are
the most sensitive. This bound is almost attainable, but it is also in many cases
inappropriate. The two extreme cases are illustrated by the following examples:

1 1 1 1
H—<] 1+m‘°)’ H—l—(SH—(] ]),
where
P [ e e
Ain =2 05107, Ain + 6A 00, = 0, o] =1, ko(H)=4-10",
and
10 0 1010(1 —I—]Ofm) 0
H( 0 1)’ H+5H< 0 1+10”’)’
where
|($Am7w| o

10710, Ko (H) =10".

|Am,7fn| N
Both, QR and Jacobi method always compute the eigenvalues at least as accurately
as predicted by the above perturbation bound [40, 21, 27]. However, as we have just,



seen there exist matrices where the above bounds are inappropriate, and there also
exists matrices where not all methods attain the same accuracy.

Barlow and Demmel [3] analyzed symmetric scaled diagonally dominant matrices
of the form

H=D(J]+ N)D,

where D is diagonal positive definite matrix, .J is diagonal matrix, .J; € {—1,1},
and || N||2 < 1. They showed that symmetric relative perturbations |§H;;| < €| H;]|

imply
n’e

0| < i
T[Nl

RYE
It is important to notice that this bound depends upon ||N||s independently of the
condition ko(H). The authors also showed that a version of bisection on a full
matrix, a time consuming algorithm which needs O(n*) floating-point operations,
computes the eigenvalues with this accuracy, and that inverse iteration produces
highly accurate eigenvectors in a norm-wise sense.

Demmel and Veseli¢ [10] analyzed symmetric positive definite matrices. Tet the
scaled matrix A be defined as H = DAD, where D is diagonal positive definite
matrix such that A,;; = 1. Then relative perturbations of matrix elements imply

ne

Amin (A)

This bound is, of course, meaningful only if the quotient on the right hand side is

|6A;] < < nerg(A)A;.

less than one. According to the result by van der Sluis [37]

ko(A) < nm}%n ko(DHD),

where the minimum is taken over all diagonal positive definite matrices. Thus,
ko(A) < nko(H), so the above bound is never much worse than the classical bound.
On the other side it is possible that ko (A) < ko(H) (the trivial example is when H
is diagonal) in which case is the above bound much better than the classical one.
The authors showed that the Jacobi method computes the eigenvalues with this
accuracy. The QR method can fail both in the tridiagonalization phase as well as
during QR iterations. Another algorithm which is also as accurate as predicted by
perturbation bound consists of two steps:

1. H is factorized by the Cholesky factorization [21]
H=rI",

where L is lower triangular matriz, or by the Cholesky factorization with di-
agonal pivoting
H=rrLL"P",

where I is lower triangular and P is a permutation matrix.

2. One-sided implicit Jacobi method is applied from the right to the factor I or
PL.



Let us explain the second step of this algorithm. TFirst note that H and LTI
have identical eigenvalues and closely related eigenvectors: if UTLTLU = A is
the eigenvalue decomposition of the matrix LT L, then the orthogonal matrix Q =
LUA"2 is the eigenvector matrix of H, that is, QT HQ = A. Applying the Jacobi
method to the matrix LTI would yield the sequence

Ll Lysr = RUL] Ly Ry.

In the implicit method we multiply by rotation matrices just the factor from the
right, which creates the sequence

In=1,  Lpy1 = LRy

In order to do this, in each step three elements of the implicitly defined matrix LZ Ly
which are needed to compute the rotation matrix Ry need to be computed. Only
one scalar product suffices since the diagonal of the sequence LZLk can be updated
in a separate vector. (for details see [10]). From this we see that the convergence
of the implicitly defined sequence LZLk to the eigenvalue matrix A is equivalent
to the convergence of the sequence Lj to the matrix QA'/2. Therefore, when the
infinite iterative process stops on some matrix Lps due to the finite precision of the
computer, then the squares of the norms of the columns of Lj; are the computed
eigenvalues of the matrix H and the normalized columns of Ljs are the computed
corresponding eigenvectors.

Veseli¢ and Slapnicar [39, 31] generalized the above results to indefinite matri-
ces. Their main result is the relative perturbation bound for generalized eigenvalue

problem
Hr = AKz,

where H and K are Hermitian matrices and K is positive definite. By applying
this result to single indefinite Hermitian matrix H gives the following bound: let
H = QAQ* be the eigenvalue decomposition of H. the spectral absolute value of H
is defined as

HT =QIAQ" = VH2,
Let the matrix A be defined as Ht = DAD, where D is diagonal positive definite
matrix such that A;; = 1. Then erelative changes of the matrix elements imply

|0X;| < mera(A)|A].

Note that for a positive definite matrix Ht = H in which case this result reproduces
the bound by Demmel and Veseli¢. It was also shown that this bound reproduces
the bound by Barlow and Demmel for scaled diagonally dominant matrices.

Veseli¢ [38] proposed the following two step algorithm in analogy to the positive
definite case:

1. H is factorized by the symmetric indefinite factorization with complete pivoting
= pPGJIGTPT,

where (7 is lower block-triangular matriz with 1 X 1 and 2 x 2 diagonal blocks
and has full column rank (this algorithm works if H is singular, as well, but
in this case the above perturbation bound does not hold), P is a permutation
matriz, and J is diagonal matriz, J; € {—1,1}.



2. One-sided implicit J-orthogonal Jacobi method is applied to the pair (G,.J)
from the right.

The above factorization is a modification of the well-known method by Bunch and
Parlett [5]. If H is positive definite matrix, then this factorization becomes the
Cholesky factorization with diagonal pivoting. Frror analysis of the factorization is
given by Slapnicar [31, 32]. Tt was shown that the factors G and .J computed in
the floating-point arithmetic with machine precision ¢ are the exact factors of the
perturbed matrix H 4+ dH, where

[6H| < O(n)e(IH| + PIGIIGTIPT).

Here |H| is defined by |H|;; = |H;;|. Note that the same type of bound holds for
the Cholesky factorization with or without pivoting as well as for LU factorization
[21, 10]. The difference between the implicit Jacobi method and the implicit .J-
orthogonal Jacobi method is that the J-orthogonal method uses .J-orthogonal plane
rotations for which RZJRk = J. If J;; and J;; have the same sign, where (i, j)
is the pivot pair in the k-th step, then the matrix R performs the trigonometric
(orthogonal) plane rotation as in the ordinary Jacobi method. If J;; and .J;; have
different signs, then a hyperbolic rotation is performed. Implicit .J-orthogonal Jacobi
method forms a sequence of matrices

G] = G, Gk+1 - GkRk7

which converges to the matrix Q|A|'/2. Thus, is Gas is the last matrix on which
the algorithm has stopped, then [|Gas||%J;i is the i-th computed eigenvalue and
the normalized ¢-th column is the corresponding eigenvector. The convergence of
the method was proved by Veseli¢ [38], and the quadratical convergence was proved
by Drmaé¢ and Hari [15]. Slapni¢ar [31] proved that this algorithm computes the
eigenvalues as predicted by the perturbation theory. On the other side, QR method
and the standard two-sided Jacobi method sometimes do not achieve this accuracy.
We shall illustrate this on the following example: let

1600 —300 14 300000
o —300 43.5 —4.75 —423212
a 14 —4.75  0.1875 19800

300000 —423212 19800 3207938 - 10°

All elements are the sums of the powers of 2 and are exactly stored in the TEEE
single precision [20], € &~ 107%. Since

Ko(A) ~ 18, ko (H) ~ 10",

we expect 6-7 accurate digits from the above algorithm in single precision. The
eigenvalues of H are

A = —54.043364

Ay = —0.0283096849
Az = 1613.74866

Ae = 3207938084.0105



Here the digits common to the above algorithm and the LAPACK QR routine
dsyev.f [1] computed TEEE double precision , € & 107'%, are shown. Qur algorithm,
LLAPACK QR algorithm ssyev.f and the two-sided Jacobi method computed the
following eigenvalues in single precision:

Our alg. ssyev.f Jacobi

A1 —54.043369 —55.990593  —54.043369
Ay —0.02830968 —0.0326757 —0.02830995
A3 1613.7487  1651.6652 1613.7486
Aq 3207938000 3207938000 3207938000

We see that the above algorithm behaves as predicted, the QR method has com-
pletely missed the tiniest eigenvalue and two more are insufficiently accurate, while
the Jacobi method is somewhat less accurate than the above algorithm.

l.et us now discuss perturbations of the eigenvectors. lLet A; and A; + dA; be
simple eigenvalues in the same order and let a; and z; + dx; be the corresponding
eigenvectors, respectively. Then the classical perturbation theory applied to relative
changes of matrix elements gives [27]

nel| H][2
minjzi [Ai = Aj|

ldla <

+ O(€%).

Therefore, the perturbation of the eigenvectors is proportional to the norm of the
perturbation and inversely proportional to the distance between the eigenvalues
and the rest of the spectrum. For scaled diagonally dominant matrices Barlow and
Demmel [3] proved the following result:

ne

(1= [[N]]2)relgap(Xs)

Therefore, the perturbation of the eigenvector depends upon ||N||2, the size of the

N — )
+O(*), relgap();) = min [ il

dz;lle < .
1621z < i S

relative perturbations of matrix elements and the relative distance between the eigen-
value and the rest of the spectrum. As is the case with eigenvalues, this bound is in
some cases much better than the classical bound. Demmel and Veseli¢ [10] proved
the similar result for positive definite matrices:

Ve 2 Vnera(A) 2
dx:lle < O <X — 22 Oe”).
oifla < Amin(A)relgap(X;) +0() < relgap(A;) +0(€)

Veseli¢ and Slapnicar [39, 31, 33] generalized these results to indefinite matrices.
Instead of analyzing perturbations of eigenvectors they stated their results in terms
of perturbations of the eigenprojection P; onto the invariant subspace which corre-
sponds to the eigenvalue A;, thus making it possible to deal with multiple eigenvalues.
let P, + 6 P; be the spectral projection to the invariant subspace corresponding to
those eigenvalues of the matrix H + d H which correspond to A;. Let n = nery(A).
Then

" 1 . VI =1

lgap(;) =
relgap(X;) 1 _ n ’ relgap(Ai) mn

MM max{VIAL /1A

16 P:l2 <




if the right hand side is positive. The described highly accurate algorithms compute
the eigenvectors and eigenprojections according to these bounds.

Singular value problem

Demmel and Kahan [9] showed that bidiagonal matrices determine well their
singular values in the sense that relative changes of matrix elements cause relative
changes of the same order in singular values independent of the magnitude of the
matrix elements. They showed that the QR algorithm for bidiagonal matrices with
zero-shift computes the singular values with almost complete relative accuracy. Since
use of the zero-shift can result in slow convergence, a hybrid algorithm was suggested.
As long as there is no danger of generating large relative errors this algorithm uses
the standard QR method with shifts, and when the danger of making unrecoverable
errors appears then the algorithm switches to zero-shift. This algorithm is a part of
the numerical linear algebra library LAPACK [1] as a subroutine dbdsqr.f. Another
algorithm which was shown to attain almost complete accuracy is the bisection.

By using this result and the accuracy of the Cholesky factorization, Barlow
and Demmel [3] proposed the following algorithm for highly accurate solution of
the tridiagonal positive definite eigenvalue problem: (1) the matriz is factorized as
H = LL" by Cholesky factorization; (2) the eigenvalue problem is solved by solving
the bidiagonal singular value problem for the factor I by the highly accurate QR
method for bidiagonal matriz. This class of matrices is very important since it arises
in many engineering applications.

Demmel and Veseli¢ [10] analyzed the singular value problem for general matrix
G of full (column) rank. The results are similar to those for positive definite eigen-
value problem. Let G = BD, where D is diagonal positive definite matrix such that
the columns of B have unit norm. Then relative perturbations |dG/;;| < €|G;;| imply
relative changes in singular values

|60;] < nekg(B)o;.

It was also shown that the already described implicit Jacobi method applied to the
matrix G from the right computes the singular values with this accuracy. On the
other side, the QR method which first reduces G to bidiagonal matrix by using
orthogonal transformations and then solves the bidiagonal singular value problem
often does not attain the required accuracy. This is due to the fact that the bidiag-
onal reduction can cause large errors. The relative bounds for the perturbations of
the singular vectors u; and v; which correspond to a simple singular value are similar
to the bounds in the positive definite case: norm of the perturbation is proportional
to the size of relative perturbations of matrix elements and the condition of the
matrix B, and inversely proportional to the relative distance between the singular
value and the rest of the spectrum:
N

Ve () < Y22 B) 4 )

(S 2112 (S 7 <
190ifl2, flovill> < Omin(B)relgap(o;) * ~ relgap(o;)

where relgap(o;) = min;4; |o; — o;]/(0; + 0;).



Veseli¢ and Slapnicar [39, 31] showed that this bound for the perturbation of
singular values also holds for the hyperbolic singular value problem for the pair
(Gv'])v

UGV =13,

where (7 is a complex matrix with full column rank, UU is a unitary matrix, V is
a J-unitary matrix, V*JV = .J, 3 is a diagonal matrix with positive diagonal ele-
ments, and .J is a diagonal matrix, .J;; € {—1,1}. Slapnicar [31] proved that for the
real matrix (¢ the implicit .J-orthogonal Jacobi method described in previous sec-
tion computes hyperbolic singular values with this accuracy. Slapnicar and Veseli¢
[31, 33] also derived relative bounds for norm of perturbations of the orthogonal
projections to left invariant subspaces corresponding to possibly multiple singular
values. It is interesting to note that J-orthogonal transformations are as stable
as the orthogonal transformations. This appears to be contrary to the established
opinion that hyperbolic transformations need to be avoided since the condition of
the matrix Ry can be large. Tn [34] it is shown that ko (V) < ka(B), which implies
that in the k-t step

ko (RE) < ka(((Br).i (Br).j)) < k2B,

where (G, = B Dg and Dy is a diagonal positive definite matrix such that By has
columns of unit norm. Here (Bj).; denotes the i-th column of the matrix By. Partial
theoretical bounds as well as overwhelming numerical evidence [10, 31] show that
the growth of the condition ky(By) during Jacobi process is very small; thus we can

claim that for each k&
K/Q(Rk), HQ(R]RQ - Bk) S K,Q(B).

The stated perturbation results and the error analysis of implicit Jacobi type
methods are the essential components of the proof of the accuracy of the two-step
methods. However, in practice it is also important to note that

in two-step algorithms the factorization with pivoting almost always re-
sults in factors with very low ko (B). Thus, the main error comes from
factorization while implicit Jacobi type method contribute practically noth-
ing to the final error.

Multiplicative relative perturbation theory by Fisenstat and Tpsen [17, 18] and
later Ti [25, 26], where perturbations of matrix elements are given by congruences,
G+ 8G = DG Dy, are bases for the recent research on highly accurate compu-
tation of singular values by Demmel et al. [7]. The rank-revealing factorization,
RRF, of the matrix (7 is defined as any factorization G = X DY, where X and YV
are well-conditioned and D is diagonal. Some examples of RRF are the singular
values decomposition itself and the I DU factorization (Gaussian elimination) with
complete pivoting. If there exists a RRF which is accurately determined by the
data then so are the eigen/singular values, and if small relative changes in matrix
elements cause large relative changes in D then eigen/singular values also undergo
large relative changes. Further, if there exists a RRF which is accurate in this sense,
then the eigen/singular values can be computed to high relative accuracy.

10



Some classes of matrices which have accurate RRF are already described in this
and the previous section. Further such classes which are described in [7] are: ma-
trices which satisfies some analytic conditions, matrices which satisfy some sparsity
and sign pattern conditions, some rationally structured matrices, and some finite
element matrices. The first class includes well-scaled positive definite and indefinite
matrices and matrices of the form G = B which are already described, matrices
of the form G = D{BDy where Dy and Dy are diagonal and non-singular and all
minors of B are well conditioned, and matrices of the form G = Dy BDy where D
and Dy are diagonal and non-singular with (nearly) decreasing diagonal elements
and all leading minors of B are well conditioned. The second class includes bidiag-
onal and acyclic matrices (sparsity conditions), and total sign compound matrices
(sparsity and sign conditions). The third class includes Cauchy matrices, and the
fourth class includes matrices which come from linear mass spring systems (see also
[16]), two-dimensional trusses, and the Sturm-Liouville problem.

Means of obtaining an accurate RRF for these classes of matrices are different.
Generally speaking one always computes some variant of (Gaussian elimination with
complete pivoting but the details vary. In the finite element case the factors are
obtained by using the natural factor formulation.

Once an accurate RRF is obtained, its singular values can be found to high
relative accuracy by several algorithms. We mention two algorithms from [7]. The
first algorithm uses J-orthogonal Jacobi method to compute the eigenvalues of the

X D'/? X D'/? 7 0
YTD1/2 7YTD1/2 R .

The positive eigenvalues of this pair are the singular values of the original matrix .

pair

The second algorithm is based on the algorithm for product singular value decom-
position by Drmagc [14]. The algorithm computes the singular value decomposition

G=XDYT == UxVT as follows:

1. perform QR factorization with pivoting to compute XD = QRP, where () is
orthogonal, R is upper triangular and P is a permutation matriz,

2. compute a diagonal matriz D' such that R = 'R’ and R’ is well-conditioned,

3. compute the singular value decomposition D'7Z = USVT by implicit Jacobi
method,

4. multiply U = QU.

The first algorithm computes the singular values with the relative error bounded by
O(emax{r(X),k(Y)}), and the second algorithm computes the singular values with
the relative error bounded by O(e max{x(X), x(R')x(Y)}), where ¢ is machine pre-
cision. The norm-wise error bounds for the computed singular vectors are obtained
by dividing these bounds by relative gaps, similarly as above.

Concluding remarks

11



l.et us briefly state some of the other results and research concerning relative
perturbation theory and highly accurate algorithms. Demmel and Gragg [8] gener-
alized the results by Demmel and Kahan to acyclic matrices, that is, matrices whose
bipartite graph possesses no cycles, and showed that the bisection computes the sin-
gular values with almost complete accuracy. Pietzsch [28] developed an algorithm
for the skew-symmetric eigenvalues problem, and by applying the perturbation the-
ory for symmetric matrices proved the accuracy of the algorithm. Singer [30] proved
the relative accuracy of the Jacobi method for Hermitian matrices. Deichmdller [6]
analyzed the implicit variant of the Falk-T.angemeyer method for computing the
generalized singular values. Drmac [11, 12, 13] analyzed accurate computation of
singular values and various generalized singular values, proved the relative pertur-
bation bounds by using residuals, analyzed the accuracy of the QR factorization
which is used as a preprocessing step for the implicit Jacobi method in the case
when the matrix G has much more rows than columns, and analyzed numerical
aspects of accurate computing as overflow/underflow and the accuracy of various
implementations of plane rotations. Fernando and Parlett [19] showed that various
variants of the differential QD algorithm compute the singular values of bidiagonal
matrices to high relative accuracy, and that this algorithm has some better proper-
ties than the zero-shift QR algorithm. Gu and FEisenstat [22] further extended the
relative perturbation theory for singular values. Fisenstat and Tpsen [17, 18] and Li
[25, 26] have given perturbation bounds for the perturbations which are given by
congruences. Truhar and Slapnicar [35, 36] generalized the perturbation bounds by
Veseli¢ and Slapnic¢ar to the projection to invariant subspace which corresponds to a
set of neighboring eigen/singular values. Barlow and Slapnicar [4] develop the local
bounds for the relative perturbations of eigen/singular values. Namely, all bounds
described so far are global in the sense that one bound holds for all values/vectors.
These bounds are attainable but only for some values and vectors, so the locally op-
timal bounds for each value and vector are of great interest. Arbenz and Slapnicar
[2] are among many authors who analyzed the implementation of Jacobi methods
on multiprocessor computers. Due to their simplicity, the Jacobi type methods,
and in particular implicit methods, are very suitable for such computers and at-
tain almost optimal speedups. New generation of processors prefers block version
of matrix algorithms which can also be easily implemented for Jacobi methods. Fx-
periments have shown that the Jacobi methods retain their high relative accuracy
when implemented on multiprocessor systems.

Majority of the described theoretical results hold in the complex case as well,
but, due to need in applications, mostly real versions of algorithms were analyzed so
far. The existing analysis of complex algorithms [30, 32] are very similar to analysis
of their real counterparts, which also indicates that the algorithms for complex
matrices are as accurate as algorithms for real matrices.

l.et us conclude by saying that the research area of relative perturbation theory
and highly accurate algorithms is, due to its importance, very active. Some basic re-
sults are simple but considerable improvements of the classical linear algebra results
and throw a new light on the behavior of eigen/singular values and vectors under
special types of perturbations of matrix elements which typycally occur in practice.
Due to good theoretical and experimental results some algorithms are planned to be
implemented in LAPACK [1]. Most important open problems are: the problem of

12



speed of the accurate algorithms since Jacobi methods are several times slower than

QR type methods, and further application of the results to problems and matrices

which appear in engineering applications.
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