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Abstract

We consider the perturbation properties of the eigensolution of Her-
mitian matrices. For the matrix entries and the eigenvalues we use the
realistic "floating-point” error measure |éa/a|. Recently, Demmel and
Veseli¢ considered the same problem for a positive definite matrix H
showing that the floating-point perturbation theory holds with con-
stants depending on the condition number of the matrix A = DHD,
where A;; = 1 and D is a diagonal scaling. We study the general
Hermitian case along the same lines thus obtaining new classes of well-
behaved matrices and matrix pairs. Our theory is applicable to the
already known class of scaled diagonally dominant matrices as well as
to matrices given by factors - like those in symmetric indefinite de-
compositions. We also obtain norm-estimates for the perturbations
of the eigenprojections, and show that some of our techniques extend
to non—hermitian matrices. However, unlike in the positive definite
case, we are still unable to simply describe the set of all well behaved
Hermitian matrices.
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1 Introduction and preliminaries

The standard perturbation result for the eigenvalue problem of a Hermitian
matrix H of order n, Hx = Az, reads [5]

63 < 167112 (1.1)
where

A< A<l <Ay,
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are the eigenvalues of H and H 4+ 6 H, respectively. The perturbation matrix
0 H is again Hermitian, and || - ||2 is the spectral norm. The backward error
analysis of various eigenvalue algorithms initiated by Wilkinson [11] follows
the same pattern, i.e. the round—off error estimates are given in terms of
norms. A more realistic perturbation theory starts from the fact that both
the input entries of the matrix H and the output eigenvalues are given in
the floating point form. Thus, a desirable estimate would read

7

, (1.2)
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where we define 0/0 = 0. Colloquially, "floating-point” perturbations are
those with |6H;;| < ¢|H;;|, ¢ small. Similarly, we call a matrix ”well-
behaved” if (1.2) holds with a ”reasonable” C', i.e. if the small relative
changes in the matrix elements cause small relative changes in the eigen-
values. Now (1.1) implies (1.2) with C' = n-x(H) = n - ||H|]2||H ]2, and
this bound is nearly attainable. This is illustrated by the positive definite

H:[1 1

matrix

Lo 14e | D<exl.

The small eigenvalue of H is very sensitive to small relative changes in the
matrix elements.

Our results generalize the results obtained in [3, 1, 4]. Demmel and
Veseli¢ [4] showed that for a positive definite matrix [ (1.2) holds with

¢= Ain(A)
where
A = (diag (H))™Y2H (diag (H))™*/? (1.3)

is the standard scaled matriz. The condition of A can be much smaller and
is never much larger than that of H. Indeed, since A;; = 1 it follows

1 n

- <
)‘mzn(A) - - )‘Tmn(A) 7
whereas van der Sluis [10] proved that

K(A)<n-k(H). (1.4)
Similar results hold for the singular value problem [4].

The aim of this paper is to extend the above result to general non-—
singular Hermitian matrices. The nature of the estimate (1.2) shows that
the non-singularity is a natural condition to require. We show (Th. 2.13)
that (1.2) holds for a non-singular Hermitian matrix H with

C = IAlf A7 2 -



where

H =DAD , A=D '|HD .

Here D is any scaling matriz, i.e. a positive definite diagonal matrix, and
| -], |-| denote the two kinds of absolute value functions, ”pointwise” and
Pspectral”:

|Ali; = [Aij] il =vH?,

respectively. Note that ||Allz < |||A]llz2 < v/n||A4]]z holds for any matrix
A. The scaling D is typically, but not necessarily of the standard form
D = (diag |H])'/?. This result is stated and proved in a more general setting,
namely that of a matrix pair H, K with K positive definite, thus properly
generalizing corresponding results of [1, 4]. Our eigenvector result, stated
in Subsect. 2.1, concerns the case of a single non—singular Hermitian matrix
and it essentially generalizes the norm—estimates from [1, 4]. An unpleasant
point of our theory is that the matrix ||, which has to be scaled, is not
easy to compute. Moreover, the set of well-behaved indefinite Hermitian
matrices is not scaling-invariant.
Barlow and Demmel [1] showed that for matrices of the type

H=D(E+N)D, (1.5)

where D, E are diagonal, £? = I, diag(N) = 0 and ||N|| < 1, (1.2) holds

with
n

L=Vl

The matrices (1.5) are called scaled diagonally dominant (s.d.d.). We show
that for a s.d.d. matrix

C (1.6)

L+ [[[V]1]2

AN A ]2 < n :
I

Although this does not reproduce the constant C'in (1.6) (there is an extra
factor 1 + ||| N]||2 < 14 +/n), we see that s.d.d. matrices are included in our
theory.

In the positive definite case the only well-behaved matrices are those
which can be well scaled, i.e. for which the scaled matrix A from (1.3) is
"reasonably” conditioned. More precisely, if (1.2) holds for sufficiently small
6H, then A (A) > 2/(1+C) for A from (1.3). This, rather sharp result is
proved in Lemma 2.20 and Cor. 2.23 below. It improves a related result of
[4] and also yields a slight improvement of the van der Sluis estimate (1.4).

In contrast to this, the choice of well-behaved indefinite matrices is, in
a sense, richer. Writing

H=GJ]G"

with G*G positive definite (G need not be square) and J non-singular, the
eigenvalue problem Haz = Az converts into the problem

Hy= X"y, H=G"G . (1.7)



In Sect. 3 we prove the estimate of the type (1.2) for the problem (1.7) under
the perturbations of the factor |6G/;;| < |Gy;|. The latter is a generalization
of the singular value problem known as hyperbolic singular value problem
[8]. The estimates again depend on the condition number of the matrix
obtained by scaling G*G. As an amazing application we obtain floating-
point perturbation estimates for matrices of the type

| Hin Hig
we [t e »

where H13 M7, is positive definite. Note that this I/ may be singular. As
could be expected, the only well-behaved singular matrices are those where
the rank defect can be read-off from the zero pattern.

Although our paper deals with Hermitian matrices, some of our tech-
niques can be used to investigate the eigenvalues of general matrices. As an
example we prove a floating—point version of the known Bauer—Fike theorem.

Another approach to the matrices of the type (1.8) is to convert the
problem Ha = Az into the quadratic eigenvalue problem

()\2] — )‘Hll - H12Hf2)$ =0

for which a good minimax theory is available [6]. As a consequence, in Sect.
4 we obtain a perturbation result which is different from that of Sect. 3. All
this shows that we are still not in a position to give a simple description of
the set of all "well-behaved” Hermitian matrices.

Similarly as in [1], [4] we note the remarkable fact that our eigenvalue
estimates are independent of the condition number of the corresponding
eigenvector matrices - in generalized Hermitian eigenvalue problems they
are not unitary and there is no upper bound for their condition. This phe-
nomenon seems to be typical for the "floating-point” perturbation theory.
Acknowledgement. We would like to thank k. Pietzsch, Hagen, and J.
Barlow, University Park, PA, for helpful discussions. We also thank the
referee for many detailed and valuable comments, and, in particular, for
correcting our proof of Lemma 2.43.
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2 Well-conditioned scalings

In this section we present perturbation results which are natural extensions
of those from [1] and [4]. We first give a general perturbation result for the
eigenvalues of the pair H, K with K positive definite. (An eigenvalue of the
pair H, K is a scalar A for which det (H — AK) = 0.) For this purpose we
introduce a new absolute value of H relative to K denoted by |H|,. We then
apply our general perturbation result to the floating—point perturbations of
the matrices H and K. Theorems 2.13 and 2.16 give two simplifications
of the perturbation bounds and Th. 2.17 gives bounds for another, more



general, type of perturbation where perturbing the zero elements is also
allowed. Our theory applied to a single positive definite matrix slightly
improves the corresponding results of [4]. It also improves the van der
Sluis estimate (1.4) in some cases. Then we apply our theory to a single
non—singular indefinite matrix. We prove that our theory includes scaled
diagonally dominant matrices [1]. We also characterize the class of matrices
with the best perturbation bounds. At the end we give some examples,
and also consider some singular matrices. In Subsect. 2.1 we consider the
perturbation of the eigenvectors of a single non—singular matrix H.

Theorem 2.1 Let H, K be Hermitian and K posilive definite. Set K =
27" and
171 A VAR | /e VAl (2.2)

|H|K is independent of the freedom of choice in Z.' Let $H, § K be Hermitian
perturbations such that for all v € C"

la*6Ha| < npa|H]w 2" K| < nga™Ka N, NK < 1
(2.3)
holds. Let A; and X, be the increasingly ordered eigenvalues of the matriz
pairs H, K and H' = H + 6H,K' = K + 0K, respectively. Then X. = 0 if
and only if A; = 0, and for non-vanishing A;’s we have

1- AL 1
oA + nH

1+ K i T l=—ng

!
T

(2.4)

Proor. Let K = ZZ* = FF*. Then Z = FU, where U is a unitary
matrix, and

Nz Hz 7z = U P HP U P = HlF HEP P

Thus, |H]; is independent of the freedom of choice in Z. From (2.3) it
follows

v (H = nulHl )
(1 —nr)a" Kz

e*(H 4+ 6H)z
(K 4+ 6K)z

o(H +nulfl)e . (25)
(1+ k)" Kz . (2.6)

IA A

<
<

Now note that the pair H £ 77H|H|K, K has the same eigenvectors as the pair
H, K with the (again increasingly ordered) eigenvalues A; + ng|A;|. Let Xi
be the increasingly ordered eigenvalues of the pair H’, K. The monotonicity
property of the eigenvalues together with (2.5) yields immediately

1—ny < <1+9y. (2.7)

>

1For H positive definite we obviously have IHIK = H.



It is also clear that H and H' have the same inertia.? The transition form
H', K to H', K'is similar. Note that both pairs have again the same inertia.
If e.g. A; <0, then A} <0 and (2.6) implies

2*H'z 2*H'z 2*H'z

min max ————— < min max — < minmax ————,
Si weSi (1 —ni)a*Ka o oweS; oK'y — 08 €S (1 + i) Ka

where 5; is any :—dimensional subspace of C". In other words,

Xi A
<< | (2.8)
L =K L+ nx
Similarly, if A > 0, then A% > 0, and we obtain
A N < A (2.9)
L+ L =K
Now (2.8) and (2.9) combined with (2.7) give (2.4). Q.E.D.

We now apply this result to the floating—point perturbations of matrix

entries. Set .
~ H
C(H,K)=sup 7|$|* | ]l2]
z#0 T IHIKQC

and

C(H)y=C(H,I).

Obviously, C(H, K) is defined and finite if and only if H is non-singular.
For every H, K with K positive definite, we have

CH,K)>1. (2.10)

Indeed, if é(H, K') were less than one, then the matrices H, K, ¢H = —H
and 6 K = 0 would satisfy the assumptions of Th. 2.1 and this would, in
turn, imply that H 4+ 6 H is non—singular — a contradiction.

Theorem 2.11 Let H, K be Hermitian matrices with H non—singular and
K positive definite. Let Hermitian perturbations 6 H and 6 K satisfy

|6Hij| < 5|Hij| R |6I(ij| < €|I(ij| R (2.12)

such that N N
ng=c¢C(H,K)<1, ng =eC(K)<1.

Then the assumption (2.3) of Th. 2.1 is fulfilled, hence its assertion holds.
Proor. We have

w8 Ha| < [o|T|6H||a| < ela||H|Jo| < <C(H, K)o |H]a

?In fact, H and H' have the same null-spaces.



and similarly B
|6 K| < eC(K)a"Kax .

Q.E.D.
Th. 2.1 is a significant improvement over Lemma 1 and Th. 4 from [1]
which require a more restrictive condition

|*6Hz| < nyl|a™Hzl

which has non—trivial applications only for positive definite H.

The values C'(H, K) and C(/') are not readily computable and we now
exhibit a chain of simpler upper bounds for them.

Theorem 2.13 Let H, K be as in Th. 2.11, and let A, A and B be defined
by

H=DAD , ldl, = DAD , K = D{BD; , (2.14)

where D and Dy are scaling matrices. Then
CUHLK) < [||A][|21 4712 = C(A, A)
C(E) < IBlll2[1B~ |2 = C(B) . (2.15)
and i = eC(A, A) < 1, g = eC(B) < 1 implies the assertion of Th. 2.1.
Proor. We have
2| H]|z| = []" DIAID]z| < [||All|22"D?a

C(A,A)2*DADz = C(A, A)a™|H|y 2

A

and similarly
|z|T|K||2| < C(B)2*DyBDyx = C(B)a* Kz .

Q.E.D.

The constant C(A,%I) cannot be uniformly improved. Indeed, take H
as diagonal with H? = I and let H' = H + 6H be obtained by setting to
zero any of the diagonal elements of H. Then the assertion of the above
theorem, applied to the pair H, K = I with 6 K = 0, is obviously not true
and we have ng = 1, ng = 0.

Of course, all this does not mean that Th. 2.13 covers all well behaved
matrices. Next sections will show the contrary.

The constants C(A, A), C'(B) are further estimated as follows:

Theorem 2.16 Let H, K be as in Th. 2.11, and let A, A and B be defined
by (2.14), where D, Dy are scalings. Then

C(AA) < Tr A A7 o C(B) <Tr BBz

and ny = Tr A||A~Y|y < 1, g = eTr B||BY||2 < 1 implies the assertion
of Th. 2.1.



ProoF. Let
ZYHZ7* = UAU*

be an eigenvalue decomposition of Z='H Z~* with U unitary and A diagonal.

Then |Z=*H Z=*| = U|A|U* and from (2.2) it follows
2l = zUIANU*Z" = GG~ ,
where G = ZU+/|A|. Furthermore,
H=2(Z""HZ 7" = ZUNU*Z* = GJG* ,

where .J is diagonal with £1’s on the diagonal. Setting F> = D~1G for some
positive definite diagonal D and using the obvious estimate

((FTE )il < \/(FP)(FE) 55
we obtain |A;;|* < %Li;ljj, and hence [||Al|]; < Tr A. Similarly, I1Bl[]2 <
Tr B, and the theorem now follows from the definitions of C'(A, A) and
c(B). Q.E.D.
For the standard scalings D = (diag |H],)"/?, D; = (diag K)'/?, Th.
2.16 yields
CAD<a A, CB) <allB s

In addition, the above upper bounds can accomodate another class of per-
turbations where perturbing the zero elements is also allowed.

Theorem 2.17 Let H, K be Hermitian matrices with H non—singular and
K positive definite. Let Hermitian perturbations 6 H and 6 K satisfy

|0H;;| <eDyDj; |0 K| < eDq4iDhjis (2.18)
such that
np =enf| AT < 1, nk = en||[B7Hp < 1.
Then the assumption (2.3) of Th. 2.1 is fulfilled, hence its assertion holds.
Proor. Let us define the matrix £ with F;; = 1. We have
le*6He| < |z|T|6H||z| < e|lz|T DED|z| < ¢||E|2* D%z < 5nH%I_1H2x*|H|Kx ,

and similarly
|e*6 K| < en||B™!||q2* K .

Q.E.D.



Remark 2.1 Note that for the standard scaling the bounds of Theorems
2.13 and 2.17 differ by at most a factor n. Therefore, the relative error
bounds which use C'(A, A) and C(B) actually allow both kinds of perturba-

tions, (2.12) and (2.18), which makes them inappropriate in some cases (see
Rem. 2.2 below).

We now apply our general theory to a single positive definite matrix H
(K =1). Th. 2.16 reproduces the main floating-point perturbation result of
Th. 2.3 from [4], while Th. 2.11 is even sharper. The perturbations allowed
by Th. 2.17 are of the form

|6Hij| S 8\/H“'H]‘]‘ . (2.19)

The following lemma and its corollary tell us that the only well-behaved
positive definite matrices are those which are well-scaled. A similar result
was proved in [4], but our constants are better.

Lemma 2.20 Let H be positive definite, and let p > 0 be such that for
every Hermitian perturbation 6 H with |6H;;| < p|H;;| the matriz H + 6H
s positive definite. Then p < 1 and for

A=D'HD™", D = (diag H)'/? (2.21)
we have 41
A7z < % : (2.22)
Proor. Set
Ay =14+ p)A—=2ul H,=DA,D=H+46H .

Then 6 H = p(H — 2D?), which implies |0 H;;| = p|H;;|. By the assumption
on H + ¢H we have u < 1 and A, is positive definite for every yu. Hence

Amin(Ap) = (1 + p)Amin(A) =2 >0,
and (2.22) follows. Q.E.D.

Corollary 2.23 Let H be positive definite, and let M > 0 be such that for
every ¢ < 1/M and every Hermitian perturbation 6 H with |6H;;| < e|H;]|
the eigenvalues A\; and X of H and H + 6 H, respectively, satisfy
pYA
1—5M§>\—f§1—|—5M. (2.24)

K3

Then the matriz A from (2.21) satisfies

1+ M

Jas < =

(2.25)

10



Lemma 2.20 and Cor. 2.23 hold for the perturbations of the type (2.12),
so they also hold for the more general perturbations of the type (2.19).

In Th. 2.11 we can take M as C'(H) and obtain a lower bound
C(H)>2|A™Y|2 - 1. (2.26)

Taking any positive definite diagonal matrix Dy and setting Hy = Dy A1 Dy
and D = D7'D, the estimates (2.26) and (2.15) yield

—14-1p-1
K(A) gty < LEIDIADIIDT AT D,

- > (2.27)

This is an estimate of the same type as the van der Sluis’ estimate (1.4).
These two estimates are generally incomparable. So, for A with non-negative
elements (A = |A]) we obtain

1+ k(DAD)

K(A) < nl| A7y < R

(2.28)

which is slightly sharper than (1.4).

We now turn to the case of the single non-singular indefinite matrix
H. We first prove that the class of matrices H with well-behaved C(A, ;1)
includes the already known class of scaled diagonally dominant matrices.

We have
Theorem 2.29 Let
H=DAD , A=E+ N,
with E = E* = E7', ED = DE, and ||[N|ly < 1. If A is defined by
|| = DAD, then

L+ [Vl

C(A,A) < n .
(A< T

(2.30)

ProoFr. Since D commutes with F, there exists a unitary matrix U which
simultaneously diagonalizes D and F, i.e.

U*DU = A, U*EU = diag (1) .

Since A is only a permuted version of the matrix D, there exists a permu-
tation matrix P such that A = PDPT. Setting V = UP, we have

V*DV =D , V*EV = E; ,

where Fj is diagonal with +1’s on the diagonal. Now perform the unitary
transformation

H,=V*HV = D(V*EV + V*NV)D = D(E, + N,)D .

Here we used the fact that D and V commute, and || N1||z = [|V]]2-

11



By Lemma 3 of [1] for any eigenpair A,y of H; we have
(L= IV IDylE < I3 < (1 + (INU12) (| Dyl - (2.31)

Note that formally [1] needs that Ny have a zero diagonal. It is easily seen
that this condition is not necessary. For any eigenpair A,y of H, (2.31)
implies

(L= [INlI)IDyl3 < Nlyllz < L+ ([N [[2)[[ Dyl - (2.32)

Now let H = YAY™*, Y*Y = I, A = diag (A1,---,A,), be an eigenvalue
decomposition of H. Then |H| = Y|A|Y* and

A~' = DJH|'D = DY |A|7V2 ATV 2D |
Therefore,

~ 1 n

A7Yly = |DY|A|"Y2))2 < nmax Dy} — < —— .
Here we have set Y = [y1,---,y,] and used (2.32) for every pair A;,y;. The
theorem now follows from?

ANz < 1+ N[l < T+ [I[N]]]2 -

Q.E.D.
The s.d.d. matrices are a special case of the matrices considered in Th.
2.29, i.e. we do not require the diagonality of /. Note that the argument
of [1] leading to the estimate (1.6) can be easily modified to hold under the
conditions of Th. 2.29 as well.
Even though we could only bound our measure C(A, A) by (2.30) which
is somewhat weaker than (1.6), we expect that C(A, A) is actually much
better. The following example illustrates the power of our theory. Set

R 1 09 09 1
A=109 1 09|, D= d , d>1.
0.9 09 1 d2

Then ||[A="||; = 10. For d = 10? the spectrum of |[H] = DAD is, properly
rounded, 1.47- 107", 1.90 - 103, 1.00 - 10%. Now H is obtained from |H| by
just turning the smallest eigenvalue into its negative. We obtain

0.705  9.00-10% 9.00-103
H=19.00-10" 1.00-10* 9.00-10°
9.00-10° 9.00-10° 1.00-10°%

®The case of the pair H, K of s.d.d. matrices is not covered by this result (cf. a
similar claim in [1]), although it seems highly probable that such a generalization

holds.

12



with

0.705 0.9 0.9
A=1] 09 1 09|, 1A < 3.
0.9 09 1

Thus, C(A, A) < 30 and H is far from being s.d.d.

A natural question is to ask which matrix pairs or single non-singular
matrices have the smallest iy, nx in Th. 2.13. Obviously, C(B) > 1 and
the equality is attained, if and only if K is diagonal. In this case we can
take K = I and the whole problem reduces to the case of the single matrix

.

We first derive some useful inequalities. Set @ = K~'/2y = D=1z, Then
" He| = |y K YV2HE Y2 < g K YV2HE Yy = e Hew . (2.33)

and thus

~

|z*Az| < 2 Az . (2.34)

Similarly, |z*H 12| < x*lHll_(lw, and
|7*A™ 2] < 2*A7 2 (2.35)

Now we have [|A=!|; < |[|A7!||,. and
COAA) > JAIRIA s > Al A > 1. (2.36)

Theorem 2.37 Let H = DAD be Hermitian and non-singular and let 2| =
DAD. Then R R
C(A, 4) = IA[ll2lA7H2 = 1 (2.38)

if and only if A is proportional to P diag (Aq, - -,Ap)PT, where each of the
blocks A; has one of the forms

0 e
17 _17 [e—i@ 0]7

A and D commute, and P is a permutation matrix.

ProoF. If H has the form described above, then |H| = D?A| = D2, i.e.
A = I and (2.38) holds.

Conversely, if (2.38) holds, then all inequalities in (2.36) go into equali-
ties. Without loss of generality we can assume that

A =1. (2.39)
Now the equality ||A[|2[|A7!|]z = 1 means that

A=cV, c>0, V=v1l=v*. (2.40)

13



From |H|2 = H? it follows that

AVDW = AD*A . (2.41)
This is equivalent to the unitarity of the matrix

W =¢eD'ATVD .

This, in turn, implies that W is similar to cA™12y A=1/2 Since the latter
matrix is also Hermitian, it must be unitary, i.e.

ATy ATy AT

This is equivalent to

v (@)_ V= A : (2.42)

C C

We now use [|A]|o]|A7l2 = [|(A/e)"Y|l; = 1 which, together with (2.42),
implies ||A/¢||; = 1. We conclude that A/ is unitary, which, together with
its hermiticity and positive definiteness, implies %I/c = [. Hence, (2.39)
implies A = I and ¢ = 1. Now we can write (2.41) as D?A = AD?, ie. A
and D commute. Finally, we use |||A[[|2][A™||2 = |||4][|]2 = 1. By ¢ = 1, the
relation (2.40) gives

A=A =A%,

Here we need the following

Lemma 2.43 Let U*U = I and |||U|||ls = 1. Then |U|T|U| = I, i.e. each
row of U contains at most one non-vanishing element. 1If, in addition,
U is square, then U is a (one sided) permutation of a diagonal matriz.
Conversely, |U|T|U| = I implies U*U = I and |||U]||s = 1.

Proor. From U*U = [ it follows (|U|T|U]); = 1. If a;; = (|UIT|U|)i; £ 0

for some pair ¢ # 7, then the submatrix

1 ay
a; 1

of [U|T|U| has an eigenvalue greater than one — a contradiction to the as-
sumption |||U]||z = 1. The rest of the assertion is trivial. Q.E.D.

To finish the proof of the theorem just use the lemma above and the
hermiticity of A. Thus, up to a simultaneous permutation of rows and
columns, A is a direct sum of

0 e .
Aie{lv_lvle—i@ 0 ]}7 2—17"'71)'
Q.E.D.

@ The simple upper bounds in Th. 2.16 take their minimum n on a
much larger class of matrices, namely those with A unitary and commuting
with D. Indeed, from the proof of Th. 2.37 we immediately obtain

14



Corollary 2.44 Let H, D, A, and A be as in Th. 2.37 such that A1; = 1.
Then the following assertions are equivalent:

(i) Tr AJA™ |2 = n,
(i) A =1,
(iii) A is unitary and commutes with D.

An example of such matrix is given by

s 0 dy
A = —C 0 5 D = dl ’
0 0 1 ds

where s? +¢? = 1 and dy,ds > 0. Note that Th. 2.29 concerns a certain sort
of small perturbations of such matrices. Also note that the only positive
definite matrices satisfying Cor. 2.44 are again diagonal ones.

The next natural question is: how good are the matrices H = DAD with
A unitary, but not necessarily commuting with D? As an example take the
matrix H = DAD with

1 -1 -1 -1 d
Ll-1 1 -1 -1 1
=3 a0 1 1 a | b= 1  (245)
-1 -1 -1 1 d

where d > 0. Here A is unitary, but it does not commute with D. The eigen-
values of H are \; = d?, Ay = d, A\3 = —d, A\y = 1, and the corresponding
eigenvectors are

V2 1/2 1/2 0
0 —1/2 1/2  1/V2
0 —1/2 1/2 —1/V2
—1/vV2  1/2 1/2 0

If we choose a relative perturbation of the form
§H = ed*ww’ | wz[l 0 0 1]T7
and set H' = H + 6 H, we have |0 H;;| < 2¢|H;;| and
d? 0 0
0 d+ed? ed?

0 ed? —d + ed?
0 0 0

UTH'U = diag (d*,d, —d, 1) +ed*UTwuwl U =

_ o o O
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Therefore, A, = d(ed + V1 + ¢2d?) and [6A2|/|X2] > ed, so H is not well-

behaved for large d. Since the matrix

d®>+d 0 0 —d*’+d
1 0 d+1 d—1 0
HA_§ 0 d—1 d+1 0

—d*’+d 0 0 d*> +d

is symmetric and positive definite, we conclude that |H| = HA. For z =
T
[1 0 0 1] we have
|«|" | H||z]

=d
i ’

and thus C~'(H) — o0 as d — oo. This example shows that the properties
of the matrix A alone are in general not enough for the good behaviour of
the indefinite matrix H = DAD. In other words, contrary to the positive
definite case, an additional scaling Hy = D1 H Dy of a well-behaved H need
not produce a well-behaved H;.

Remark 2.2 For the indefinite matrices we do not have the equivalent of
Lemma 2.20 telling us that the matrix behaves well under the perturbations
of the type (2.12) if and only if C(H) is small. Moreover, estimating C'(H)
with C'(A, %I) is in some cases not appropriate. For example, matrices of the
type (1.8) behave well under the perturbations of the type (2.12) (see the
following sections), but are very sensitive to the perturbations of the type
(2.18) for the standard scaling. Therefore, 5y from Th. 2.17 and then, in
turn, nzr from Th. 2.16 must neccessarily be large and some other kind of
analysis is required.

Remark 2.3 (Some singular matrices). Although Th. 2.1 does not require
the non—singularity of the unperturbed matrix H, the subsequent theory, as
it stands, cannot handle singular matrices. However, for a single matrix of
the type

H= [ Ig 8 ] ) H non-singular , (2.46)
the condition |6 H;;| < ¢|H;;| obviously preserves the zero structure and the
problem trivially reduces to the perturbation of H to which our theory can
be applied. For a pair H, K with H as above and K positive definite of the

N l Ky Ki ]

form

](1 2 ](2 2

we proceed as follows: from the proof of Th. 2.11 we see that the pertur-
bation on K does not need the non—singularity of H. Furthermore, the
non-zero eigenvalues of the pair H, K coincide with the eigenvalues of the
pair ﬁ, };’, where K = K — 1(12](2_211(1*2. Thus, in perturbing H the zero
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eigenvalues do not change and we can apply Th. 2.11 to the pair ﬁ, K. We
obtain the full assertion of Th. 2.11 with C'(H, K) instead of C(H, K).
Similarly, Th. 2.13 holds where A, A and B are obtained by scaling ﬁ,
|ﬁ|j; and K, respectively. If, in addition, H is positive semidefinite, then
|ﬁ|j; = H and Th. 2.13 and the subsequent theory hold with A = A and

B obtained by scaling H and K, respectively.

It is readily seen that (2.46) is the only form (up to a permutation)
of a positive semidefinite matrix whose eigenvalues behave well under the
floating—point perturbations. As we shall see later, the indefinite case is
more complicated in this aspect.

x

2.1 Perturbation of the eigenvectors

In this subsection we consider the behaviour of the eigenvectors under the
perturbations as in Th. 2.1. We consider the case of a single non—singular
Hermitian matrix H (i.e. K = I, 8K = 0). Like in [1, 4], this behaviour
is influenced by a relative gap between the neighbouring eigenvalues. Our
definition of relative gap is similar but not identical with the ones from [1, 4]
which makes an exact comparison of (actually similar) results difficult. Our
approach — in contrast to the one from [1, 4] — is that of [7] which deals
with the norm—estimates of the spectral projections and thus allows the
treatment of multiple and clustered eigenvalues. We also expect our bounds
to be better than those of [1, 4], since they do not depend on n.

We now define the relative gap, rg(A), for the possibly multiple eigen-
value A of H. To simplify the notation, as well as the statement and the
proof of the following theorem, we shall assume that A is positive. Negative
eigenvalues of H are considered as the positive eigenvalues of the matrix
—H. By Ar and Ap we denote the left and the right neighbour of A in the
spectrum o(H ) of H, respectively. We set

min{ﬁ_mm_ﬁ} if A, >0
rg(A) = va \ _\/AE (2.47)
min {2(\/5 - 1), )\g m )\} otherwise .

Theorem 2.48 Let A be a positive (possibly multiple) eigenvalue of a non-
stngular Hermitian matriz H, and let

1
P = /Rﬂd:u ’ RM = (:uI— H)_l ’ (249)
r

T 2ri

be the corresponding eigenprojection. Here 7 is a curve around A which
separates A from the rest of the spectrum. Let P + 6P be the corresponding
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spectral projection of the matriz H 4+ 6 H with |v*6 Hz| < na*|He. Then

1
/. i for Ap, > 0, 2VA — VAL < VAR,
rg(A) (1+ n
671, < T
. otherwise ,
rg(A) - 1
rg(A)
(2.50)

provided that the right hand side is positive.
Proor. By setting

—1/2 —1/2 1/2 1/2 1/2
A =[H] /5HlHI /7 ZM_RMIHI/ wMIIHI/ MIHI/
we obtain [|Al|z < 7 and
0P = Qm/z“AZ (w,A zud,u.
Choosing 7 as a circle around A with the radius r, we obtain
1P|z < vz
1—wn
with
2 = maXHz |5 = max max id
pel wel' veo(H) | — v|?
_ 4
w o = maXHwMHQ = max max
per nel veo(H) |pp —v| '
provided that n < 1/w. We obviously have
RS S VN Y I,
A=r=2)2"r2" (Ap — A —1)?
|ALl A AR }
= — . 2.51
v maX{A—r—)\L’r’)\R—)\—r (2:51)

We first consider the case A;, > 0. If 2V/A — /AL < v/ AR, then by setting
= VAWV = VL) (2.52)
we obtain

2 _ 1 VA
(VA= VAL? = Va- i

Here we used our assumption and the fact that both rightmost terms in
(2.51) are decreasing functions of Ag. Therefore,

[0P]]2 <



and (2.50) holds. Positivity of the right hand side of (2.50) justifies, in turn,
our choice of the same 7 in the definitions of P and P + 6 P as follows: the
perturbation theorem for the eigenvalues implies that Ay can increase to at
most Ar(1+ ), Ar can decrease to at least Ag(1 — 7), and the eigenvalues
of H + §H which correspond to A remain in the interval [A(1 — 7), A(1 +
n)]. Positivity of the right hand side of (2.50) always implies rg(A) > n.
This, together with our choice of r, implies that 7 contains no points of
the spectrum of H + 6 H and that the interior of 7 contains exactly those
eigenvalues of H + 6 H which correspond to A. This remark holds for the
subsequent cases, as well.

If 2/ A — /AL > VAR, then by setting
= VAWVAR — V)
we obtain
2_ b oo VAR
(VAR — V)2 VAR — VA

Here we used our assumption and the fact that both leftmost terms in the
right hand side of (2.51) are increasing functions of Az, > 0. Therefore,

VA 1
B

vl

and (2.50) holds. If X is the largest positive eigenvalue (i.e. Apr does not
exist), then by setting r as in (2.52) we obtain

S S, U
(VA= VA VA= VAL

and (2.50) holds again.
If A, < 0 orif Ay does not exist, we proceed as follows: if rg(A) =
2(v/2 — 1) (if Ag exists, this implies A(4yv/2 + 5) < Ag), then by setting

r=2(vV2-1)A

z

we obtain
9 1 1

T A2 - 120 STV
0 (2.50) holds. Finally, if r =(Ap — R+ then settin
(2.50) holds. Finally, if rg(A) = (Ar — A)/(Ar + A), then by setting

AR — A
=)
)\R—I—)\
we obtain
9 1 ()\R—I—)\)2 )\R—I—)\
= — , w=—:,
A\Ag = A AR — A
and (2.50) holds again. Q.E.D.
P
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3 Perturbations by factors

In this section we consider perturbations of the eigenvalues of a single Her-
mitian matrix H given in a factorized form

H=GJG", (3.1)

where GG need not to be square but must have full column rank, whereas J
is Hermitian and non-singular. A typical J is

lelé _OI] . (3.2)

Here the unit blocks need not have the same dimension and one of them
may be void. Such factorization is obtained e.g. by the indefinite symmetric
decomposition of H [2, 9]. We consider the change of the eigenvalues of
H under perturbation of G while J remains unchanged. Here it is natural
to use the one-sided scaling G = BD. The behaviour of the eigenvectors
does not seem to be as easy to follow as in Subsect. 2.1, and we have no
corresponding results as yet.

For J = I the problem reduces to considering singular values of G.
We reproduce the result of [4] with somewhat better constants. The same
technique allows an interesting floating—point estimate for the eigenvalues
of G' (which is non-Hermitian).

The section is organized as follows. Th. 3.3 gives a general perturbation
theory, while Th. 3.9 applies this theory to the floating—point perturbations.
In the following discussion we simplify the perturbation bounds analogously
to the previous section. As an application we derive floating—point perturba-
tion estimates for some classes of matrices not covered by Sect. 2. Finally,
Th. 3.16 and 3.17 show that good behaviour of the singular values often
implies the same for the eigenvalues, if the matrix is not positive definite,
or even non—hermitian. Th. 3.17 is in fact a "floating—point version” of the
known Bauer—Fike result.

Theorem 3.3 Let H = GJG* be as above and let H' = G'JG"™ with
G'=G+ 66, |6Gz|l2 < n||G|2 , (3.4)

for all x € C™ and some n < 1. Then H and H' have the same inertia and
their non—vanishing eigenvalues Ay, A, respectively, satisfy the inequalities
!

(- <3< (12 (3.5)
k

Proor. We first show that the non—vanishing eigenvalues of I coincide
with the eigenvalues of the pair G*G,J~!. Indeed, since G*G is positive
definite, there exists a non—singular F' such that

F*G*GF =~ (3.6)
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and

F*J ' = (3.7)

are diagonal matrices, and .J; is from (3.2). Then the eigenvalues of the pair
G*G,J~! are found on the diagonal of vJ; = J1y. Set U = GFy~'/2. By
(3.6) we have U*U = I (but not necessarily UU* = I). Using (3.6) and
(3.7) we obtain

HU = GJG*GFyY?=GJF*F*G*GFy~'/?
= GJF Y2 = GFF' JF~*!/?
= GF(F*J'F)y Y2 =0y .

Thus, the columns of U are eigenvectors of H and the eigenvalues of H
coincide with those of G*G, J~!. Furthermore, U*z = 0 implies Hz = 0, so
the eigenvalues of G*G, J~! are exactly all non—vanishing eigenvalues of H.
By (3.4) we have

(L =nlGzlla < |G"2]l2 < (L + n)l|Gallz (3.8)

so that everything said for H holds for H' as well. In particular, H and
H' have the same inertia. Now square (3.8), use the monotonicity property
from the proof of Th. 2.1 for the pairs J=,G*G and J~1, GG, and take
reciprocals in (2.8) and (2.9).

Q.E.D.

We now consider floating—point perturbations and scalings.

Theorem 3.9 Let H = GJG* be as in (3.1) and (3.2). Let H' = G'JG"™
where G' = G + 6G, and for all i, and some ¢ > 0 holds

|5G¢]‘| < €|G¢]‘| . (3.10)
Set
y = e[l B]ll2
N Umzn(B) ’

where B = GD™Y, D is diagonal and positive definite, and o ,;,(B) is the
smallest singular value of B. If n < 1 then the assumptions of Th. 3.3 are
fulfilled, hence its assertion holds.

Proor. For z € C™ we have

IN

oGl < ell|BID]zlll2 < e[|[Bl[|2[| Dz |2

el Blll2llBDxll2 _ e[l Bll2(lG]l

Umm(B) Umm(B)

IN

Q.E.D.
By I[Blll: > || Bll2 we have

1Bz o omee(B)
Umzn(B) - Umzn(B)

>1.
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Here both inequalities go over into equalities, if and only if B has the prop-
erty

BB =~°1, 7>0, 1Bz =7,
or, equivalently (Lemma 2.43), if and only if | B|T|B| = 42I. Similarly as in
Sect. 2 we can make a simplifying estimate

B2 _ (Tr (B"B))"/2
Omin(B) = Omin(B)

so that
(T (BB))?

again implies (3.4) and therefore (3.5). This yields a new ”condition num-
ber”

<1 (3.11)

(Tr (B*B))'/?
where the equality is attained if and only if B*B = ~2I. For the standard
scaling where (B*B);; = 1 the relation (3.5) is implied by

ev/n
Omin(B)

This is a slight improvement over [4] (our constant is \/n times better).

@ For J =1 (or J = —1) we can handle the matrix # = GG* in two
ways. If G has full column rank, then we apply our theory as described
in Theorems 3.3 and 3.9. If G* has full column rank, then we apply our
theory to the matrix H = GG, whose non—vanishing eigenvalues are the
eigenvalues of [/. In the indefinite case (J # £I) the situation is different.
The following simple example illustrates this important asymmetry. Take

>V,

n= <1. (3.12)

G =la,b], 0G = [ba, bb] .
Our theory cannot be applied to
H=GG = a)* + |b*,
but it works on
H=aG"G,

o~ T -

where G* = BD, B = [ 1/V2 1/V2 ] , D = (|a]? + [b]*)'/2, thus giving
1n = ¢ independently of @ and b. On the contrary, no theory can ”save” the
matrix

_ 1 0 * 2 2
H—G[O _1]G_|a| |b]
since

la + 6al* — |b + 6b)?
|a]? — [0
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cannot be made small uniformly in a, b if |6a/a| and |6b/b| are sufficiently
small.?

Similarly as in Th. 2.17 we can show that a perturbation result holds
under perturbations 6G defined by

|0G;| < eD; for all ¢, j,

where D is a scaling. The above type of perturbation is less restrictive than
(3.10), e.g. it allows us to change zero elements. We have

2
H(Squg = ZjlééjléG]kxk <n (€Z|D]‘$]‘|)

6,0,k J
2.2 (7|12
o< L
hence (3.5) is implied by
ne
=——<1. 3.13

Similarly one shows that the estimate (3.5) is obtained under the per-
turbation

16 B1l2
0G =0BD =—7"<1. 3.14

The following two examples show how Th. 3.9 can accomodate floating—
point perturbations of some matrices which, in spite of Rem. 2.1, cannot be

handled by the theory from Sect. 2. For the first example set

AP

where A is of order m and m < n — m. Then H = GJG* with

Lo 71 0 7
— 2 —

where the unit blocks have the order m. Now the perturbation ¢ H of H
with |H;;| < e|H;;| gives rise to a perturbation 6G' of G with |6G;| < ¢|Gy;],
and Th. 3.9 holds e.g. with

TA T || Do
—| 2
B = [ F 0 0o I’
where D is the standard scaling

13

1
D? = (ZAQ + FF)

*In the indefinite case the values p; = +/|\i|sign A. are called the hyperbolic

singular values [8].
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The requirement that GG have full column rank is equivalent to the same
requirement on F. Note that this allows singular matrices H.
An even simpler case is the one with A = 0. Then we can apply the

0 F 0 I 0 I 0 Fr
N | | e
as well as to

IR

In any case, the non—vanishing eigenvalues of H coincide with the singular
values of F' taken with both signs. Now |6G;| < ¢|Gy;| means |6F;;] < ¢|F};]
and we can apply our theory in two ways:

(i) take e.g. (3.15) and use Th. 3.9 to obtain (3.5) with

theory to

Bl
Umzn(B) ’

where B = FD™1 (B*B);; = 1, or
(77) apply Th. 3.9 to the factorized matrix F'F™* (with the same B) which
yields a slightly better estimate

!

(1=-m)? <35 <(+m)*,

>
)

B

In both cases the theory from Sect. 2 would require both BB* and B*B to
scale well, which is certainly a further unnecessary restriction.
As a second example set

a b c
H=]1b 0 0
c 0 o
We can e.g. decompose H as
a/2 1 0 0 10 a/2 b ¢
H = b 0 0 1 00 1 0 0
c 0 « 0 01 0 0

Now |6H;;| < e|H;;| again implies [6G;;| < ¢|Gy;] and we can apply our
theory as in the previous example. For e.g. ¢ = b = ¢ = 1 we obtain
I Bll2]l B~ ]2 = 2 + v/3, independently of a. Especially, if a is small then
even the absolutely smallest eigenvalue a?/2 + O(a*) is well defined by the
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matrix elements of H. On the other side, the theory from Sect. 2 applied to
H ., I gives nothing useful here. Indeed, as & — 0 we have

1
Iil= +0(0?).

— = Ot
N DN =
N DN =

so that C'(A, A) = O(1/a?). Moreover, numerical experiments show that

C(H)>1/]al.

The eigenvalues of a general Hermitian matrix coincide with the singular
values up to the signs. Thus, if H has well-behaved singular values the same
is expected for the eigenvalues. We have®

Theorem 3.16 Let H be Hermitian and non-singular and H = BD a scal-
ing. Let 6H be a Hermitian perturbation with |6H;;| < ¢|H;;| and

n=cC(B)<1.

Then the eigenvalues A, X, of H, H' = H + 6H satisfy

/

)\k
l-n<—=<1+n7.
Ak
Proor. Asin the proof of Th. 3.9 we obtain
|e*6 H*6 Hz| < n*a*Hx .
By the Lowner’s theorem ([7], Ch. V, §4.3) we have
le*6Hz| < 2 Hp < na*|H| .

Now apply Th. 2.1 with K = I, 6K = 0. Q.E.D.

The rule ”well-behaved singular values, well-behaved eigenvalues” ex-
tends to many non—hermitian matrices. We present a simple floating—point
version of the known Bauer—Fike theorem.

Theorem 3.17 Let G, S be non—singular matrices with
S7rGS = diag (A1,...,\)

and let 6G be a perturbation with ||6Gz||y < n||Gz||s. Then the eigenvalues
of G+ 6G lie in the union of disks

{N =N <m) s i = nA|k(S) , t=1,...,n.

®Although the two following theorems do not concern matrices in factorized
form, we present them here since they use results of this section.
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Proor. Let (G + 6G — M)z = 0. If X is an eigenvalue of G, then the
theorem is proved. Otherwise set z = (G — AI)"'az. Then z # 0 and

z= 6GG_1G()\I - G)_lz .
Hence

|)‘i0|
|)‘ - )‘i0|

[1]]2

2]l < nHSdiag (A iA) g1

) I2ll2 < ()
for some ig, and

|)‘ - )‘i0| < 77’{(5)|>‘20| :
Q.E.D.

Here, too, the number of the eigenvalues in any component of the union
equals to the number of disks in it.
Taking the perturbation |6G;| < ¢]|Gy;| Th. 3.9 gives the radii

ri = €| M| C(B)R(S)

with two condition numbers: C'(B) and x(.5). An eigenprojection estimate
similar to that in Subsect. 2.1 is possible here as well.
®

4 Quadratic pencil approach

In this section we consider once more Hermitian matrices of the type

H:[;‘ BO] (4.1)

Here we assume A, B* B as positive definite of order m with
m<n-—m. (4.2)

We develop a perturbation theory by reducing the eigenproblem for H to a
quadratic eigenvalue problem.

Proposition 4.3 A non-vanishing number X is an eigenvalue of H if and

only if
det(A\> —AA - B*B) =0 .

Proor. Let Hx = Az, @ # 0. With the corresponding partitioning « =

(1, 2337 this can be written as

A$1 + B*$2 = )\$1
B$1 = )\$2 .

If A #0, we have 23 = Bzy /A and

(M1 —XA— B*B)a; =0, (4.4)
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where A # 0 implies 21 # 0. Conversely, if (4.4) holds for some 21 # 0, then
A #0,and Ha = Az with 2 = (2, 27 B*/))T. Q.E.D.

Thus, the perturbations of H which have the same zero structure can be
reduced to the perturbations of the quadratic eigenvalue problem (4.4) for
which a satisfactory minimax theory is available. Set ' = B*B. Then the
eigenvalues of the problem

(NI -XA-C)z=0
can be written as
AL < <AL <0< A << (4.5)
Theorem 4.6 Let I be defined with (4.1) and (4.2). Let

lem 6B ]

0B 0
be a Hermitian perturbation with the same structure as H such that
%Az <Az, [6Bally < Bl (4.7)

holds for all x € C™ and some 1 < 1. Let )\;i be the non—vanishing eigen-
values of H' ordered as in (4.5). Then H and H' = H + 6 H have the same
inertia and for the non-vanishing eigenvalues of H' we have

Proor. Set A’ =A+6A, B'= B+ 6B. Then (4.7) implies

(1—n)z*Az <2*A'z < (1 +n)z* Az,
(1-n)%2"B*Bx < "B B2 < (1+n)*2"B Bz .
According to [6] the following minimax formula holds
IAF| = max min |ps(A4,C,2)|, (4.8)
R
Zl|2=

where

v Az £ /(2= Azx)? + 42*Ca
5 .

Here S} is any k—dimensional subspace of C™ and the maximum in (4.8) is
taken over all such subspaces. Note that

px(A,C ) = (4.9)

20*C'x
* Az + /(2*Az)? + 427Cx

p—(A,C,z)= (4.10)
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From (4.9) we have
(1 - n)p-l-(A?C?x) < p-l—(Alvclvx) < (1 + 77)P+(A70790) :

Now (4.8) implies

(L=mAF < NP < (L4 mAf . (4.11)
For p_ we have from (4.10)
L—-n 1+
——p_(A, C,2)| < [p_ (A, ' 2)| £ ——|p_(A,C
T3y PGl < p (AL )l < 7 Ip- (4, C )]
which implies
1- ' 1
IR < AT A (4.12)
147 1—7

The assertion of the theorem now follows from (4.11) and (4.12). Q.E.D.

Note that the positive eigenvalues enjoy better bounds. If A is negative
definite, then the roles of )\f’s change and A; ’s behave better. We can now
apply the estimates from Sections 2, 3. So, Th. 4.6 holds, if e.g. we take the
standard scalings A = DAgD, B = BgD, and require

ev/n
Umin(BS)
These conditions seem to be incomparable with the ones obtained in Sect.

3 for the same type of matrices.
®

enf|lA5' 2 <n< 1. <p<l.
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