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Abstract

The Falk Tangemeyer method for solving a real definite general-
ized eigenvalue problem, Az = ABxz, x # 0, is proved to be quadrati-
cally convergent under arbitrary cyclic pivot strategy if the eigenval-
ues of the problem are simple. The term “quadratically convergent”
roughly means that the sum of squares of the off diagonal elements of
matrices from the sequence of matrix pairs generated by the method
tends to zero quadratically per cycle.

Key words: generalized eigenvalue problem, Jacobi method,
quadratic convergence, asymptotic convergence

AMS(MOS) subject classification. 65F15, 65F30

*Department of Mathematics, Faculty of FElectrical Engineering, Mechanical Engi-
neering and Naval Architecture, University of Split, R. Boskovica b.b., YU-58000 Split,
Yugoslavia

"Department. of Mathematics, University of Zagreb, pp.187, YU-41000 Zagreb,
Yugoslavia



1 Introduction

In this paper we study the asymptotic convergence of the method established
in 1960 by S. Falk and P. Langemeyer in [2]. Their method solves generalized
eigenvalue problem

Ar = ABzx | x#£0, (1)

where A and B are real symmetric matrices of order n such that the pair
(A, B) is definite. By definition the pair (A, B) is definite if the matrices A
and B are hermitian or real symmetric and there exist real constants « and
b such that the matrix a A + b B is positive definite.

The Falk Langemeyer method is the most commonly used Jacobi type
method for solving problem (1). Tts advantages over other methods of solving
problem (1) are that it applies to problem (1) for the widest class of starting
pairs. Although it is not, in general, the fastest method for solving the given
problem, in some cases it is the most appropriate. The QR method [11] is
usually several times faster, at least on conventional computers, but it solves
problem (1) only if matrix B is positive definite (or positive definitizing shift
for the pair is known in advance) and if matrix B is well conditioned for
Cholesky decomposition. The Falk Langemeyer method is superior to the
QR method in terms of numerical stability if matrix B is badly conditioned
for Cholesky decomposition. It is also superior to the QR method if ap-
proximate eigenvectors are known, i.e. if the matrices A and B are almost
diagonal. This happens in the course of modeling the parameters of a system
where a sequence of matrix pairs differing only slightly from each other has to
be reduced. This also happens in various subspace iteration techniques (see
[11]). Another reason why Jacobi type methods have attracted attention
recently is that they are adaptable for parallel processing (see [12], [10]).

The Jacobi type method for solving problem (1) recently proposed by
Veseli¢ in [15] is somewhere in between previously mentioned methods in
both, speed and requirements. Although Veseli¢’s method works for defi-
nite matrix pairs, a linear combination pA — AB which is reasonably well
conditioned for J symmetric Cholesky decomposition must be known in ad-
vance. This method is one of the implicit methods, i.e. it works only on the
eigenvectors matrix, and is therefore approximately two times faster than the
Falk Tangemeyer method.

The Jacobi type method considered by Zimmerman in [19] is closely re-



lated to the Falk Langemeyer method (this is briefly described in Section
3) but requires positive definite matrix B. In [19] the convergence of this
method is proved under the assumption that the starting matrices are al-
most diagonal. The same conclusion holds for the Falk Langemeyer method
as we shall show in this paper.

In [4] Hari studied the asymptotic convergence of complex extension of
Zimmerman’s method (also for positive definite B). He showed that his
method converges quadratically under the cyclic pivot strategies if the eigen-
values of the problem are simple, while in the case of multiple eigenvalues
the method can be modified so that the quadratic convergence persists. We
are interested only in cyclic pivot strategies since some of them are amenable
for parallel processing.

These results, the informal analysis of the convergence properties of the
Falk Langemeyer method performed by Hari in [7], and the numerical inves-
tigation suggested that the Falk Langemeyer method behaves in the similar
fashion. In this paper we prove that the Falk Langemeyer method is quadrat-
ically convergent if the eigenvalues of the problem are simple and the pivot
strategy is cyclic. The technique of the proof, originally established by the
late J. H. Wilkinson in [16] (cf. [6]), is similar to that used in [4] .

Two main problems that had to be solved are that neither of the matrices
A and B has to be positive definite and that the transformation matrices are
not orthogonal and therefore difficult to estimate. Both problems were solved
using the results about almost diagonal definite matrix pairs from [7].

The paper is organized as follows. In Section 2 we state the known re-
sults about almost diagonal definite matrix pairs from [7] to the extent nec-
essary for understanding the rest of the paper. In Section 3 we describe
the Falk Langemeyer method, show that it always works for definite ma-
trix pairs (without use of definitizing shifts), and give its algorithm. We
also briefly describe Zimmerman method from [19] and [4] and relate it to
the Falk Langemeyer method. Section 4 is the central section of the paper.
We first state the known result about the quadratic convergence of Zimmer-
man method from [4] and show to what extent can this result be applied to
the Falk Langemeyer method. We introduce measure &, which we use for
defining and proving quadratic convergence. Then we prove the quadratic
convergence of the Falk Langemeyer method under the assumptions that the
eigenvalues of the problem are simple, the pivot strategy is arbitrary cyclic
and the matrices A and B are almost diagonal. At the end we show that the



quadratic convergence implies the convergence of Falk Langemeyer method.
In Section 5 we give the quadratic convergence results for parallel and serial
strategies, briefly explain the possible modification of the Falk Langemeyer
method in case of multiple eigenvalues, and briefly discuss numerical exper-
iments.

Most of the results presented in the paper are part of an M. S. thesis [13]
done under the supervision of professor V. Hari.

We would like to thank professor K. Veseli¢ from Fernuniversitat Hagen
for his helpful suggestions. We would also like to thank both reviewers for
their comments which helped us clarify some important parts of the paper.

2 Almost Diagonal Definite Matrix Pairs

Here we consider the structure of almost diagonal definite matrix pair. We
first state some properties of definite matrix pairs. Then we introduce chordal
metric for measuring distance between eigenvalues of definite matrix pairs.
We define the measures for the almost diagonality of the square matrix and of
the pair of square matrices. At the end we state an important theorem from
[7]. The theorem and its corollary reveal the structure of almost diagonal
definite matrix pairs. All results are given for the general case of hermitian
matrices even though in the rest of the paper we shall consider only the case
of real symmetric matrices.

Definite matrix pair (A, B) has some important properties:
a) There exists a nonsingular matrix /' such that

F*AF = diag(as,...,a,) = Dy
FBE = diag (by,....b,) = Dg. (2)

The ratios a;/b; ,2 = 1,...,n, of real numbers a;, b; are the eigenvalues of the
pair (A, B) and are unique to the ordering. If [f1, ..., f.] denotes the partition
by columns of I, vectors f;, 1 =1,...,n, are the corresponding eigenvectors.
Matrices D4 and Dg are not uniquely determined by the pair (A, B). In the
real symmetric case F* can he changed to F'7 in the relation (2).

b) The Crawford constant ¢(A, B),

(A B) = inf{|#*(A+iB)a | 2 € C" |l = = 1} (3)
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is positive. Therefore, A and B share no common nul subspace and |a;| +
|b;| > 0,72=1,...,n, independently of the choice of F'. Note that the choice
x = ¢; (the i-th coordinate vector) in the relation (3) for s = 1,....n implies

di = 4((],7j7j>2—|—(b7j7j>2 > 07 7::]7...777/7 (4)
where A = (a;;) and B = (b;;). Hence the matrix

1 1
D=dag(—,...,—), 5
£ ) )
is positive definite. In the real symmetric case for n # 2 only real vectors x
can be taken in the relation (3).
¢) There exists a real number , such that the matrix B, from the pair

(Ags Be),

A, = Acosp — Bsing
B, = Asing + Bcosy, (6)

is positive definite. The matrices A and B can be simultaneously diagonal-
ized if and only if the same holds for the matrices A, and B,,.

The proofs of the above properties are simple (see [14]). If some f; is
a vector from the nul subspace of B, the eigenvalue ); is infinite. Such
eigenvalues are not badly posed because they are zero eigenvalues of the pair
(B, A) counting their multiplicities. Hence, it is better to define eigenvalues
as pairs of numbers A; = [a;,b;], 72 = 1,....n. It is also necessary to choose
a finite metric for measuring the distance between eigenvalues. Such is the
chordal metric.

lLet R® = R x R and R3 = R?\ {[0,0]}, where R is the set of real
numbers. We say that the pairs [a, b], [c,d] € R2 are equivalent if ad —be = 0
and write [a,b] ple,d]. Tt is easily seen that p is an equivalence relation on
R2. Tet RZ |, be the set of equivalence classes. Let A\, u € RZ2 |, and let
[a,b], [c,d] be their representatives, respectively. Chordal distance between

[a,b] and [¢,d] is defined with the formula

(lo-b]. e ) = |+“Z2\/b;|+ = .



It is easily seen that yx is constant when [a,b] and [¢,d] vary over A and
u, respectively. This defines metric ¥ : R3 [, xR |,— R by Y(A\pu) =
x([a,b], [¢,d]) where [a,b] and [e,d] are any representatives of A and p, re-
spectively. However, for the sake of simplicity we shall use y for the both
functions y and Y. We see that y(X, ) <1 for all A,u € R2|,. The proof of
these and some other properties of the chordal metric can be found in [11],

[14] and [13].

From now on, let n denote the order of the matrices A and B and let

p denote the number of distinct eigenvalues of the pair (A, B). We assume
that

n>3, p>2.
and that the pair (A, B) is definite. Note that if p = 1 then A = AB, so
A=Ay =--- =X, = X and all vectors are eigenvectors of the pair (A, B).

The off norm of the square matriz A is the quantity

T

S(A) = Z |aij |° =[] A—diag(A) ||,
17,77;71
where || - || denotes the Fuclidean matrix norm.
The off norm of the pair (A, B) is the quantity
(A, B) =/S%(A) + 5%(B) . (7)
Where no misunderstanding can arise, € shall be used instead of ¢(A, B). Let
)\1 - ---:)\t1 ) )‘t1+1 :...:)\t27... 5 )\tp7'|+1 - ...:)\75177 (8)
where

A, = [si, 6], sl =1, 1=1,...,p, (9)

be all eigenvalues of the pair (A, B). Thus, we assume that the pair (A, B)
has p distinct eigenvalues A, ,..., A, with the appropriate multiplicities

ni:ti*ti717 7::]7"'7737 tO:O? (]0)

and the representatives which behave as sine and cosine are chosen. Since
p > 2 we can define quantities

[ .
57: B a_ 1@7];119)(()\”7 )\t]) ’ 0= 1@77?7? 57: ) (] ])

P



Note that § > 0.

In the analysis we shall need matrices A and B defined as
A=DAD, B=DRBD, (12)

where matrix D is defined with relations (5) and (4). Since D is positive
definite, the matrices A and B are congruent to the matrices A and B,
respectively. Let us partition the matrices A and B,

Ay - A, B - B,
A= S B=| : (13)

where /ZYM and IA?JM are diagonal blocks of order n; , 1 =1,....p, and n;’s are
defined with relation (10). The relation (13) shall be written as A= (%TM)
a,nd lt} = (IE}”)

Let the matrices A and B be partitioned according to the relation (13).
Departure from the block diagonal form of the pair (A, B) is the quantity

(A, B) = \JT2(A) + 7(B)
where
) P P . . P P .
T(A) = ZZH A I* T(B) = ZZH Bi |I* .
¥ ¥

THEOREM 1 Let (A, B) be a definite pair and let the matrices A and B be
defined by the relations (12), (5) and (4). If

(A By <4, (14)

then there exisls a permutation malriz P such that for matrices A= PTAP
and B' = PTBP, partitioned according to the relation (13), holds

- _ 12 _ o
|| CiA:ji — SiB:j || S 5—2 || CiAIi]‘ — SiB::j || , 1= ]7. P (]5)
[
it
On the both sides of the inequalities (15) the Fuclidean matriz norm can be
substituted with the spectral norm.



PROOF: The proof of this theorem is found in [7]. Q.E.D.

COROLLARY 2 Let the relation (14) hold for the definite pair (A, B). Then
there exists a permultation matriz P such thal for the matrices A’ = PTAP =
(@), B =PTBP = (b.,), A = PTAP = (a},) and B' = PTBP = (b.,),
partztmnw] according to ﬂlf’ relation (13), holds

oo A, B
AL s BLE < (A B 16
;H G 2 Si 2 || — 252 ? ( )
P t; P t _
Yoo > Xlshalla by = > >0 adl; —sib |
=1 j=t;—1+1 =1 j=t;_1+1
(A1, B)
< T (17)
~ 7 7—2(277 ,'E}Jl)
X([si, il [aln’bln]) = | Cia’,lij - ‘9’76.17'.7 | < 957

] = ti,1 —I—L...ﬂfi ) = ]7...7]? . (]8)
PROOF: By Theorem 1 there exists a permutation matrix P such that the re-
lation (15) holds for the matrices A" and B’. The Cauchy Schwarz inequality
implies
lesAl —siBL 1P < (e lll Al L+ [silll B D2
< |l Ay ||2+||B I” 1# 7 (19)

From the relations (15) and (19), the definition of 7'(/4’7 ’Bu’) , and the sym-
metry of matrices A’ and B’ follows

le:Al —siBL |l < —ZIIA 1+ 11 B3 11

< —TQ(A',B'), 1=1,....p. (20)

Finally, the relations (15), (19) and (20) and the definition of 7'(’AT’7 ’Bu’)
imply
1

P . . . P .
Yol Al —siBi |IP < 27 ZZ (AL 1>+ 1 B5 1)
=1 j=1

it

=1 7



IA

!
5577 A B,
which completes the proof of the relation (16).

The equalities in the relations (17) and (18) follow from the definition of
the chordal metric and the fact that it does not depend upon the choice of
the representatives. Inequality in the relation (17) now follows from the re-
lation (16) and inequality in the relation (18) from the relation (20). Q.E.D.

Theorem 1 and Corollary 2 reveal the structure of almost diagonal definite
matrix pairs in both the hermitian and the real symmetric case. The relation
(18) implies that for 7 = 1,...,p, pairs [a’, b..], 7 € {f; 1 + ],...7751} ap-
proximate the eigenvalues A;; with an error of order of magnitude 7 (A, B
in the chordal metric. The relation (16) implies that the blocks A'» and B

217
r=1,...

also with the error of order 7 (A'7 B’ ). This proportionality becomes appar-

,p, are proportional with the proportionality constants being A,

ent when 7'(/2{' ﬁ') is small enough compared to 4. Note that the relations
(15) and (18) do not imply that the off-diagonal elements of blocks Al and
B! tend to zero together with 7(A’, B’). The relation (15) shows that for
fixed i the proportionality of the blocks A;i and BM depends on the local
separation §; of the eigenvalue X;, from other eigenvalues and on quantities
I Al = siBG 1P G =1, p, G F 0.

&

3 The Falk—Langemeyer method

In this section we define the Falk Langemeyer method, show that it always
works for definite matrix pairs, and give its algorithm. At the end of the sec-
tion we briefly describe the method of Zimmermann from [4] and [19], because
it is closely related with the Falk TLangemeyer method. This relationship is
also described.

The Falk Langemeyer method solves problem (1) by constructing a se-
quence of “congruent” matrix pairs

B@)y, ... (21)

where



AGFD) T AR B*+) = pTRM) E>1. (22)

Note that the transformation (22) with nonsingular matrix F. preserves the
eigenvalues of the pair (A®), B This is a Jacobi type method, hence the
transformation matrices are chosen as nonsingular elementary plane matrices.
An elementary plane matriz I/ = (f;;) differs from the identity matrix only
at the positions (1,1), (I,m), (m,l) and (m,m), where 1 <! < m <n. The

matrix
. fll flm

is called (I,m) restriction of the square matrix F' = (f;;).
For each k£ > 1, the (I,m) restriction of the matrix F}. has the form

-~ 1 (873
I, = ' 2
L] )
where real parameters ay and (G are chosen to satisfy the condition

alft = | BT — (24)

"Im, Im

Here A) = ((](k)) and B = (bff)) Indices [ and m are called pivot indices

i 3
and the pair (I,m) is called pivotl pair. As k varies the pivot pair also varies,

hence [ = (k) and m = m(k). The transition from the pair (A®) BE) to
the pair (AG+D BEHDY s called the k th step of the method. The manner
in which we choose elements which are to be annihilated in the & th step (or
just the indices (I,m) of these elements) is called pivot strategy. The pivot
strategy is cyclic if every sequence of N = n(n — 1)/2 successive pairs (I, m)
contains all pairs (7,7),1 < i < 7 < n. A sequence of N successive steps
is referred to as a cycle. Two most common cyclic pivot strategies are the
column cyclic strategy and the row ecyclic strateqy. The former is defined by
the sequence of pairs

(1,2),(1,3),(2,3),(1,4),(2,4),(3,4),...,(1,n),(2,n),...,(n — 1,n),

and the latt er by the sequence of pairs

(1,2),(1,3), o~ o, (1,0),(2,3),(2,4), .- (2,0), (3,4), ., (0 — 1,n).

These two strategies are also called serial strategies. Parallel cyclic strategies
are cyclic strategies which enable simultaneous execution of approximately

10



n/2 steps on parallel computers. These strategies have recently attracted
considerable attention (see [12], [10]). We state the quadratic convergence
results for serial and parallel strategies in Section 5.

Note that if the eigenvectors are needed, we must calculate the sequence
of matrices F(V, F®) . where

FO =T, Y — pOp E>1. (25)
From the relations (22) and (25) we obtain for k > 2

2L R Fy- - Fo

We shall now derive one step of the algorithm. Note that only (I, m)
restrictions of the involved matrices are needed. Since (22) is the congruence
transformation, the pairs (A®) B®) are definite for every & > 1 and the
pairs of the corresponding (I, m) restrictions are definite as well.

Let (index k is omitted for the sake of simplicity)

FTAF = A, F'TBF =B

or respectively
1 —p ag Ay I« ay  ap,
(87 1 Alm  Qmm 76 1 (];m (];nm ’
1T —p bu b, I« _ by b,

Condition (24) now reads aj,, = bj,, = 0. From the relation (26) the system
in unknowns « and 3 is obtained

Ay, = oag+ (1 —af)ay, — Bap, =0,

Eliminating nonlinear terms in both equations we obtain
7 (28)

11



where v is solution of the equation

V2 - S\S‘]mV - E\S‘]S\S‘m =0 (29)
and
Cx —
5 = allblm, - bllalm )
Cx —
~Sm = Omm blm, - bm,m,(]’lm, )
Cx —
~Sim = (]’llbm,m, — (]’m,m,bll . (30)
Defining
2
S = (Si)? 4435 (31)
we obtain

1
ve = sgn (S0)(] S | £VS).

The algorithm is more stable if @ and § are smaller in modulus, so we take

1
v=uvy = 5 sgn (S (| S | —I—\/§) (32)

From the above fromula we see that the necessary condition for carrying out
this step is & > 0. Let us show that this condition is fulfilled in each step
due to the definitness of the pairs ((A® ))& >1).

PROPOSITION 3 Let the pair (A, B) be definite. Then the following holds:
(1) >0,
(11) The following statments are equivalent:

(a) =0,
(b) S =31 =S, =0,

(¢) There exist real constants s and t, |s| + |t| > 0, such that
sA + tB=0 .

PROOF: The proof can be found in [4] and [13] but for the completeness of
exposition we present it below.

12



Using the relation (6) we can define the pair (A, B,) such that the matrix
B, is positive definite. Let us calculate the quantities (Sun)e, (1) (Sm)o
and (3), from the pair (A, B,) using the relations (30) and (31). It is easy
to verify that

1= (S\”)W S\Ym:(gm)wa
S = (Bu)e 5= (9),

Therefore, without loss of generality, we can assume that the matrix B from
the pair (A, B) is positive definite. The statement (¢) is now equivalent to
the statement A = cﬁ?, ceR.

(i) With the notation

/ bmm bll blm,
xr = a I = mmA\| 77— 2= T
" bll ’ Y bmm V bllbm,m,

the following identity holds:

S = bubmm (2 — y)2 + Moz — am)(yz — am)]-

Since the right side of the above relation is the square polynomial in ay,, we
have

I = bllbm,m, PQ((]’lm,) 2 bllbm,m, P2 (T ;_ UZ)

b2
= bubym (v — y)Q(] — 22) = 5\9,27)7 (] " ém ) >0. (33)
HPmm,

In the last inequality we have used the assumption that the matrix B, and
therefore the matrix @7 is positive definite.

(i1) Let (a) hold. The relation (33) implies that 3y, = 0. Matrix B is
by the assumption positive definite. Therefore b; > 0,b,,,, > 0, and the
equality &, = 0 can be written as

bmma a
[l = Umm,-
bu
Using this relation we can write
3 b b b b b bmm o
S = OmmOlm — Omm A, = b ((]’ll Im llalm,) - b =57,
I I

13



or by, = bym 31, From the definition of &, since 3y, = 0, we conclude that
37 =S, = 0. This gives (b).
Let (b) hold. Then

ay ay
Amm, — bmm ) Ay = b/m_
bu bu
Therefore, A = ¢B, where
- ajp G,
L= T = )
bll bmm

and (c) holds.

Let (¢) hold. Then obviously (b) holds, and if (b) holds, then (a) holds.

Q.E.D.

Now we see that the Falk lLangemeyer method can be applied to all def-
inite matrix pairs. Note that definitizing shifts are not used and need not to
be known.

We have two special cases in the algorithm. If & = 0, then the matrices
A and B are proportional as shown in Proposition 3. Therefore, the two
equations in the system (27) are linearly dependent and the system has a
parametric solution in one of the following forms:

Cbm,m, - bm Clpmm — Aim
(08) = () (e = (Bt
bll Cblm, aj Clm,
-b bim > I,
(0.5) — (“z:”#) | (a, m_(cjw)

mm + Cblm, Uomm, + Clm,

where ¢ is real. For every ¢ at least one of the quotients is well defined due
to the definiteness of the pair (A B) It is best to set ¢ = () to ensure that
oy, and B, tend to zero together with e(A®) B®)) as k — oo (see step (5a)
in Algorithm 4). Setting ¢ = 0 also reduces the operation count. This choice
yields four possibilities for (a, 3):

blm, Alm,
( b 0) ’ (* ’ 0) ’ (34>
11 ar
blm, Alm,

14



Due to the definiteness of the pair (A, B), we have
|aii| 4 [bii] >0, r=1,....m, (36)

so at least one quotient is defined in each of the relations (34) and (35). In
order to obtain better condition of the transformation matrix, we choose the
relation in which the defined quotient has smaller absolute value. TIf both
quotients in the chosen relation are defined, then they are equal, and for
numerical reasons it is better to choose one in which the sum of squares of
the numerator and the denominator is greater.

The second special case is when & > 0 and 3, = 0. This means that
diagonals of the matrices A and B are proportional, while the matrices
themselves are not. Then sgn (3y,,) is not defined. Since S5, > 0, we
have sgn (39) = sgn (S,,) . Substituting  sgn (3y,) with sgn (3) in the

equation (32) gives
v = sgn (3)/ S, -

Inserting this in the equation (28) gives, after simple calculation,

bmm, NN, ]
o=z L B=—. (37)
bll ap 0%

The relation (36) implies that at least one of the quotients b,,., /by and

Amm /a1 defined and different from zero. If both quotients are defined then
they are equal and it is better to choose one in which the sum of squares of
the numerator and the denominator is greater.

We can now define an algorithm of the method:

ALGORITHM 4 Definite matrix pair (A, B) is given.

(1) Set k=1, AW = A B = B FO = [ and choose the pivot
strategy.

(2) Choose the pivot pair (I,m) = (I(k),m(k)) according to the strategy.

() 1f ol =6 =0, then set k =k +1, AG+) = 40 pl+D) — BH)

Im

FOFD) — P and go to step (2). Otherwise go to step (4).

b

15



(4) Calculate the quantities E\f,m (k) S\fgk) and S®) from formulas

? bm,

37 = ap ) bPal) I = Al ) b aln)
3 = e, —al b 30 = ()7 + 4373

(5)

(a) Tf S =0 perform the following steps: If | b;f) | > | af) |
then set aj = —bfql;)/b;f) ;

b

(%)

: k
otherwise set ay, = —agm?/al,

If | bg)f)w | > | 0552)7 | , then set (), = b,m /b

mm’

otherwise set (3 = 052)/0575)77 .

Finally, if | ax | > | Bx | , then set ap = 0 ; otherwise set
Br=0.

(b) Tf ™) > 0 perform the following steps:
(i) If \9] 7é 0, then calculate

1

v = sn (SUE)(1 S | +VSP),
(k) 1
ap = m 7 6[4 — !
14% 14%

(i) If S\fgfn) =0, then, according to the relation (37), calculate

b | abh 1
oL = = s ﬁk: —_—.
J b J aff! L

If both quotients for a4, are defined, then choose one in which
the sum of squares of the numarator and the denominator is
greater.

16



(6) Perform the transformation

A — T AR B+ — pTRM (38)
FO) — P p, (39)
(7) Set k=Fk+1 and move to step (2). [ |

Since matrices AW, BF) - AGF+) and B are symmetric, it is enongh

to store and to transform only upper triangles. In the transformation (38)
only I—th and m—th row and column of the matrices A® and B®) are
changed and in the transformation (39) only {—th and m—th columns of the
matrix  F*) are changed. Note that the eigenvalues can be found without
calculating the matrices F) | k> 1 and therefore the trasformation (39)
can be omitted. This reduces the operational count about fifty percent.

Stopping criteria of the infinite iterative procedure defined with this al-
gorithm are described in Section 5.

From now on, the term “Falk Langemeyer method” denotes the method

described by Algorithm 4.

The Zimmerman method. We shall now relate the Falk Langemeyer
method with another method for solving the generalized eigenvalue problem.
This method is due to K. Zimmermann who roughly described it in her the-
sis [19]. Later on, in his thesis [4], Hari derived its algorithm and proved its
quadratic convergence.

The Zimmermann method is defined for symmetric matrix pairs (A, B)
where matrix B is positive definite. We shall denote this fact as B > 0. At
the beginning of the iterative procedure the initial pair (A, B) is normalized
such that

A = DAD | B = DBD |

where

1 1
\/6117...7 \/bnn

D = diag ( ).

Therefore, bg;) = 1,2 = 1,...,n. The Zimmerman method constructs a
sequence of pairs ((A® BW) k> 1) by the rule

Ak+1) _ Z,?A(k)zk : B+ _ ZZB(k)Zk \ E>1.

17



The nonsingular matrices 7 are chosen to preserve the units on the diagonal

of B+ (antomatic normalization at each step) and to annihilate the pivot
elements. In [4] it is shown that for & > 1 holds

~ 1 COS @ SN @
Iy = —F——e . ,
2 | —sinYy cosy

where

cosp = cosby + E(sinfy — npcosby)
sinp, = sinf, — &(cos by + nsin Oy

(
costpp = cos B — &(sin Oy + ny cos O

b

)
)
)
)

siny = sinfg + &(cos b — npsinO) |

e
% = T Ol
VIR CEvVITE

b(k)

Im,

. = s
(1 + /1 +6)0 + /1 -8

20" (a4 ) )

tan Q'Qk — Im. [ "mm. /Y m 7
k k k
(alin — a1 — (b))
T <0, < T
4 4

If (];fn) = b;ql;) = 0 we set 0, = 0. If the (I,m) vestrictions of A®) and B(k)

are proportional and (];fn) and b;ql;) are not both equal to zero, we set 0 = 7.

If the matrix B is not positive definite but the pair (A, B) is, then there
exists a definitizing shift y such that the matrix A — uB is positive definite.
If this shift is known in advance, then the Zimmermann method can be
applied to the pair (A, B) in the sense that each 7 is computed from the
pair (B®), A®) B,

Although the Zimmermann method seems quite different from the Falk
[Langemeyer method, the two methods are closely related. The following

theorem gives precise formulation of this relationship. For this occasion only

18



we assume that in step (5a) of Algorithm 4 (that is when $%) = 0), parame-
ters ap and By are computed according to the formulae (37). For this version
of the Falk TLangemeyer method holds:

THEOREM 5 Let A and B be symmetric matrices of ordern and let B be pos-
itive definite. Let the sequences (AP, BF) k> 1) and ((A(]“)I7 B(k)l)7 k>1)
be generated from the starting pair (A, B) with the Falk Langemeyer and the
Zimmermann method, respectively. If the corresponding pivol strategies are
the same, then

AB — o) 40 pk), B® — ph) gk pk) k>1,
where | |
D™ = diag ( —, ... ), k> 1
bgi) o)
PROOF: The proof of this theorem is found in [4] Section 2.3. Q.E.D.

Let us suppose again that the matrix B is not positive definite while
the pair (A, B) is, and that a positive definitizing shift p is known in ad-
vance. Let us apply to the pair (A, B) the Zimmermann method in the sence
mentioned above and the version of the Falk Langemeyer method which
we used in Theorem 5. [t is easy to see that the parameters a; and [
from the Falk Langemeyer method are invariant under the transformations
(A, B) = (B, A — uB). Therefore, Theorem 5 holds in this case, as well,
with

1 1
ayy — by . — o

We can conclude that if the starting pair is positive definite or the defini-

D®) = diag (

tizing shift is known in advance, then the Falk Langemmeyer (Zimmermann,)
method is the fast scaled (normalized) version of the Zimmermann (Falk
Langemmeyer) method.

19



4 Quadratic convergence

In this section we prove that the Falk Langemeyer method is quadratically
convergent if the starting definite pair has simple eigenvalues and the pivot
strategy is cyclic. Definitizing shifts are not used and need not to be known.
We first state the result about the quadratic convergence of the Zimmer-
mann’s method, and show to what extent can this result be applied to the
Falk Tangemeyer method if the matrix B is positive definite. Then we define
the quadratic convergence for the Falk Langemeyer method. In Subsection
4.1 we prove preliminary results which we use in the proof of the quadratic
convergence of the Falk Langemeyer method in Subsection 4.2.

The result about the quadratic convergence of Zimmermann method can
he summarized as follows. Let the sequence ((A®), B") k> 1) be generated
by the Zimmerman method from the pair (A, B), B > 0, and let ¢, =
(AW BW) where ¢ is defined with the relation (7). Note that £ is natural
measure for convergence of the Zimmerman method since each matrix B®*)
has units along the diagonal.

We say that the Zimmerman method is quadratically convergent on the
pair (A, B) if ez — 0 as k — oo and there exist a constant ¢5 > 0 and an
integer rq such that for r > rq holds

2
E(r4+1)N+1 < COEL N1 -

Hence of special importance are conditions under which the above relation
holds for r = 1. We call them asymptotic assumptions. et

[
o = spr(A.B) = max [\, 0= gminfh- X
THEOREM 6 Let the sequence ((A®), B®) k> 1) be generated by the Zim-
merman method from the starting pair (A, B), B > 0, and let the asymptotic

assumptions

S’(B(U)SW N 2\/]+0'2€1 <($7 (40)

hold. If the eigenvalues of the pair (A, B) are simple and the pivot strateqy

is cyclie, then
2
1

e
EN+1 S N(]—|—0'2) 5

(41)
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PROOF: The proof of this theorem is found in [4] Section 3.3. Q.E.D.

In Theorem 6 the term o appears in the assumption (40) and in the
assertion (41) because matrix B is not diagonal and matrix A is not normal-
ized. From Theorem 5 we see that Theorem 6 holds for the Falk Langemeyer
method provided that the step (5a) of Algorithm 4 is appropriately changed,
the matrix B is positive definite, and the pairs (A®) B®)) generated by the

Falk Tangemeyer method are normalized so that bff) =ly=1...n, k>1.

In the rest of this section we prove that the Falk Langemeyer method
defined with Algorithm 4 is quadratically convergent on definite matrix pairs
with simple eigenvalues if the pivot strategy is cyclic. We first have to define
the measure for the quadratic convergence.

Let (A, B) be a definite pair. We shall use the measure & = (A, B)
defined by

(A, B) ==(A, B),
where A and B are given by the relations (12),(5) and (4). The measure &
enables us to use results of Corollary 2 and it takes into account the diagonal
elements of matrices A and B. Note that the measure e(A, B) is generally
not the proper measure for almost diagonality of the pair (A, B) since it takes
no account of the diagonals of matrices A and B.
et the sequence of pairs

(A(1)7 B(1))7(A(2)7 B(Q))7"' (42)

be generated by the Falk Langemeyer method from the starting definite pair
(A, B). For k> 1 we set

g = AW, BWY = (A®) Ky (43)

AR = D AWD, B® = n.BWD, (44)
1 1

Dy = diag(— , ..., —), 45
G ) 45)

i = By e i1 (46)

From the relations (44), (45) and (46) we see that the pairs (/ZW“)7 Bk

are normalized in the sence that

(a(k))g i (g(k))z =1, r=1,....n. (47)

" i
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DEFINITION T The Falk-Langemeyer method is quadratically convergent on
the pair (A, B) if &, — 0 as k — oo and there exist a constant ¢ > 0 and
an integer ro such that for r > rq holds

EranyN+1 < Cogfzwr (48)

From Definition 7 we see that ultimately &, decreases quadratically per
cycle. At the end of Subsection 4.2 we shall show that the quadratic con-
vergence implies the convergence of the sequence (42) towards the pair of
diagonal matrices (D4, Dg), where

D4 = diag (a1, ..., a,), Dg = diag (b,....b,) . (49)

Here X; = [a;, b;],1 = 1,...,n, are the eigenvalues of the pair (A, B). Finally,
we shall show that ultimately the quadratic reduction of &,x41 implies the
quadratic reduction of £.nx,; and vice versa'.

In order to be able to observe the measure & we must solve one more
problem. The transformation matrices F} are calculated from unnormalized
pairs (A®) B#)) and are therefore difficult to estimate. To solve this problem
we shall observe the sequence obtained from the pair (A, B) with following

Process:

normalization, step of the method, normalization, step of the
method,...

This sequence reads

(AL B ), A B, A B ), (A B, (AT B ), (50)
where )
AV B = (am, oy, (51)
and for &£ > 1 holds
. =T ~(k)~= _ ~T~(k)y~
FU I i oy 2 g YE, (52)

"Here g5 measures off diagonal elements of the pairs from sequence (42) and should
not be confused with the quantity used in connection with Zimmerman method.
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=) () =) (b

A — D AT B =D B D, (53)

_ 1 1

Dip = diag (=75 >+ =gomy) (54)
7

qon y(agf“))u(zﬁf“))a i=1,....n. (55)

Of course, the sequences (42) and (50) are generated using the same pivot

strategy. The matrices %k are calculated according to Algorithm 4, but
~(k) =(k) = (k) =(k)
from the pairs (A B ). Since in the transition from (A B ) to

(Z(M—]) ﬁ(kH)) of all diagonal elements only those at positions (I,1) and

(m,m) are being changed, we conclude that

20— @ty g G = Y@l GO = 1 i =1 i # L.

(56)

We will now show that the operations of normalization and of carrying

out one step of the algorithm commute. This is equivalent to showing that
Z(k) — A®) and ﬁ(k) — B® for k > 1.

Let Fy be the transformation matrices obtained according to Algorithm

4 from the pairs (/ZW“)7 ﬁ(k))7 k > 1. The following proposition shows that

the matrices F, and F, are simply related.
PROPOSITION 8 For k> 1 holds F, = D;'FyD,.

PROOF: Because of the relations (44), (45) and (46) we have

) (*) p(5) p(5)

a

11 Pim 1 Im.
- (k) > aal) < (k) (@2 AP el
A= 7 B - . (57
o ol b b(E),
d;k)dgj) (dgj))Q d;k)dgj) (dﬁ,’j))Q

The assertion is now obtained by simply using the relation (57) in Algorithm
4 and calculating the matrix Fj. Q.E.D.

PROPOSITION 9 For k> 1 the following holds:

(i) (A B ) = (AW, Bt



(77) Dk - D]ﬁgﬁg“‘ﬁk -

PROOF: The proof is by induction in respect to k.
(1) For k=1 the assertion holds due to the relation (51). Suppose that
the assertion holds for some £ > 1. This means that
=k - =(k) = = ~
A =AW B = B® Fro=1F. (58)

. ~ T~ (k)=
From the relation (52) it follows that AT _ F,A Fy,which, because

of the relation (58), implies that A _ FTA® - Since the relation (44)
and Proposition 8 imply

—(k o _
AR D FTD D AR D DI D, = Dy FT AW D,
= DAY DL (59)

we conclude that normalizations of the matrices A+ and A*Y give the

;(k+1) ~
same matrix. Now we use the same argument to show that B = R+

for k> 1 and to prove (7).
(17) For k=1 the assertion is trivially fulfilled. Let the assertion hold
for some k > 1. From the relations (59), (53) and the assertion (i) we obtain

Dt DRARIDDL L = D A D, =
;(k—l—]) ~
= AT 2 Am oAk,
It is obvious that Dy.; = D;Dyyq and inserting the induction assumption
we conclude that (i7) holds. Q.E.D.

From Proposition 9 we see that the relations (50), (52) and (53) can be
written as

(A, BOY, (A, (A0, BO), (A7 B, (A0, B, (60)
T+ _ ﬁ,fg(’“) B, B _ ﬁ]fﬁ(k) . (61)
A1) — ﬁk+1z(k+1)ﬁk+1 7 B+ — ﬁk+1§(k+1)ﬁk+1 . (62)

The relations (60), (61), (62), (54) and (55) define the normalized Falk
[Langemeyer method. We use the normalized method only as an aid to obtain
information about the quantity &;. &
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4.1 Preliminaries

Here we define asymptotic assumptions and prove several lemmas which are
used later in the proof of the quadratic convergence of the Falk Langemeyer
method. The quadratic convergence proof is based on the idea of Wilkinson
(see [18]) which consists in estimating the growth of already annihilated ele-
ments in the current cycle. To this end we must estimate the transformation
parametars a5 and 3, and also the growth of all off-diagonal elements in the
current cycle. These two tasks are solved in Lemma 11, Lemma 13, Lemma
14 and Lemma 15. Lemma 10 gives us two numeric relations which are used
in the proof. LLemma 11 and Lemma 12 estimate the transformation param-
etars ay and Blﬁ and the measure &; in one step. Lemma 13, Lemma 14 and
LLemma 15 estimate the growth of &y, Bk and &5, during N consecutive steps.
Lemma 15 is the most important for the proof of the quadratic convergence.
In this subsection we do not assume that the pivot strategy is cyclic. There-
fore the results of this subsection hold for any pivot strategy. However, if the
pivot strategy is cyclic, then Lemma 13, Lemma 14 and Lemma 15 explain
the behaviour of ay, Bk and &, during one cycle.

As we said in Section 1, the quadratic convergence can always be ex-
pected if the eigenvalues of problem (1) are simple. We will therefore use
two quadratic convergence assumptions:

(A1) The eigenvalues of the pair (A, B) are simple, i. e.

p=mn>3.

(A2) The pair (A, B) is almost diagonal, i. e.

1 - 1

) 2N

Asymptotic assumption (A2) is similar to the assumptions used in Theorem
6 and in convergence results of some other Jacobi type methods (see [4], [1]).

Assumption (A1) implies
N > 3 (63)

and
Ek = Tk, €~k:7~'lm kZ ]7 (64)



where 7, = 7(A®) By and 7, = T(/‘T(k), ﬁ(k)). We shall use the notation
i =l b= BT, k> (65)

LEMMA 10 Let v be an integer such that r > 3 and let x be a nonnegative
real number satisfiying 2xr < 1. Then the following inequalities hold:

B 12 4
(]—r{:)rgl%—?-r-m, (]+r1:)’°§]—|—§-r-r1:.

PROOF: The proof of this lemma is elementary and can be found in [4].
Q.E.D.

The following lemma shows how are the transformation parameters ay
and ﬁk from matrices Fk bounded with €.

LEMMA 11 Let the assumption (A1) hold. If for some k> 1 holds

2

Er < 3—N5, (66)
then
()2 + (i)’

5
PROOF: Suppose that for some & > 1 the relation (66) holds. Then Theorem
1 and Corollary 2 hold for the pair (A®), B%*)) as well. The assumption (A1)
and the relations (63), (64) and (18) imply that there exists an ordering of
the eigenvalues of the pair (A, B)? such that
= 2
g—g < 51;;2 2]—5 < 831'5 < 0.025-4,
R O (68)

max {|ax/, [Bx]} < 0.34-

(67)

= 1

Applying twice the triangle inequality and using the definition (11) and the
relation (68), we obtain

a8, — by | = v (al? . [l b))

|‘§/m | - “mm 1l ]l s VIl “mm Ymm.
> () — XOu [ 80 — (O, [@%) 5) 1)

> 3.8-2-0.025-8=295-4. (69)

2Gince p = n, the eigenvalues can be ordered so that the matrix P from Theorem 1
and Corollary 2 is identity matrix.
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It is obvious that |\9] | # 0. This excludes cases (5a) and (5bii) of Algorithm

3. Therefore, we have

a3, 3O} (70)

.

max{|ay], |5k|} >

\,m|+F

From the Cauchy Schwarz inequality and the relations (47) and (65) we have

Ak ~(k Tk ~(k Tk
39 = AP — 5P < @y + 6PeVEhy + 60y
= V(@)? + (be)?

The same estimate holds for \s( ) and therefore

max{|SV] L [SE} < V(@)? + (b)? (71)
Since ]
(ag)® + (gk)Q < 5 g, (72)

the relations (69), (71),and (72) imply

36 = (3P p43PIH > w(z%s)?

> ¢(2.95 §)? —

The assertion (67) now follows from the relations (70), (69), (71) and the
above relation. Q.E.D.

The following Lemma gives the relation between & and &pyq. Tt is used

ol

> 2.9334 .

later in the proof of of Lemma 15.
LEMMA 12 Let the assumption (A1) hold. If for some k > 1 the relation
(66) holds, then

o< R @R, (73)
s
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PROOF: Suppose that the relation (66) holds for some & > 1. The relation
(62), together with the definition of &, implies

— (k41

St = (D A D) + S* (D B(H])Dkw) : (74)

If " .
+1) i ,+1)} :

Mgt fmm{(] yeennd,

then the relation (74) implies

ﬁH < Sz((m:T)QZ(I«H)) 4 Sz((m:T)zﬁ(kH)) _ (m:T)“ .ng . (75)
et us define vectors
a = (aﬁ 75527---7~§€)17(]§€:—17-- a;l;)l 17(];];)74-17---75;,]:5,)) )
S (a(kha k)za e 7555)/ 1755)5)14-17 .- aaq(j)m 175£§)m,+17 e 7a£n,)n) )
alT = (agkl)v a k S 751@1,17 a/@w S 7555)71,17 am-uv SR 57(71<])) )
il = (aﬁkm,ak e al al Al )y

where generally a” denotes the transposed vector a. Let @, @™, @ and @,
be row and column vectors defined in the same way, but from elements of

the matrix A" Relation (61) implies that
i AT N
Therefore,
a I =T a1’ — 12 Doz s 1112
S A S A LY I

The off diagonal elements of the matrix A®) which are changed in the trans-
formation (61), are exactly the elements of vectors @', @™, and a,, with the

(k)

exception of @’ and a(? which are annihilated. Since || Fk 2= Fk |2,
we conclude that

— (k1) <k = i - _ _ _
SPATTD) < SPHAWYL( F 3 =0 a 1P+ @ 17+ (a4 1 |17)—
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Since || Fy 2> 1 (see further in the proof), we conclude that
(k = oY -
ST <R (S7(AD) — 2ap).
By applying the similar analysis to matrix B®)_ we obtain
k o ~ ~
S BEY) < | B (57(BY) 28},

Adding two previous inequalities and using the definitions of Z;,¢ and &,
gives

S <N FeIB 2@+ 5.
Inserting this inequality into relation (75), we obtain

Fu
~2 < || ko ll2
K (Mg )

(8% —2a; + ). (76)

To complete the proof we must find the upper bound for || an I3 and the
lower bound for my;.

The relation (56) implies that

merr = min{l, (](H—]),ESH)}. (77)
Relation (6]) imp]ies that
, ~(k Sy 0% ) | F2
ay ™ = al) ol + prall), . o = B 2+ D,
di = atay +2aan vall, B = a4 2l + ),
Therefore

— (k41 (k —(k+1 ~(k 7 (k
@ = @R @Y =1+ asEE)? + (00)) +

IV

14| By || @@ + 6060 | —4 | B [Pl a®) @ 450 5| -
— 232 ala® 4 p e | (78)
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Using the relation (47) and the Cauchy Schwarz inequality in the relation
(78), we obtain

@ > 1 a1 B O | B PG 2+ 0Py — 232 (79)

Using similar argument we obtain

@ > 1 a0 L ae V@2 + 6P 252 (30)

Relations (77), (79), (80), (72) and Lemma 11 now imply

034 & [, (034 &\°| & 0.3 &\’
STTEDR P el N L I B N e BT
Mt 2 ﬂ(s[+(ﬂ(s)Jﬂ i) B

Since x is chordal metric, from the relation (11) we see that § < 1/3. The
relations (66) and (63) therefore imply

ey < 2 < 2 (82)
S9N S 97

Inserting the relation (82) and the assumption (66) into the relation (81) we
obtain

\ 0.34 &, | 034 2\’ 2 |
m’“+‘>]ﬁ'7[4'(]+(ﬁl3_fv)) 27\[+0%4\f J

Finally, taking into account that N > 3 we obtain

mi,, > wo.ow-% (83)

We shall now estimate || 4 [|2. Since
FL <N Felli - Il Fr oo
where ||Ally = max; 37, |ag;], || Allee = max; 3, |a;;] for A = (a;;), we obtain
|13 < (1 4 max{|ael, Bl })*-
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Lemma 11 and the relation (66) now imply

1B < ]+0M§£2<i]+QM§12+0M£L
Rz = N V2§ V2 3N
< 1+0m4%. (84)

The relation (73) now follows from the relations (76), (83) and (84).
Q.E.D.»

We shall now prove that if the assumptions (A1) and (A2) hold, then
Lemma 11 and Lemma 12 hold during N consecutive steps.

LEMMA 13 Let the asymptotic assumptions (A1) and (A2) hold. Then for
cach k € {1,....N} holds

s < 1 - &L < 2
Ep =~ = &1 , - .
1-03-(k— 1L 5 " 3N

PROOF: The proof is by induction. For k& =1 lemma is trivially fulfilled.
Suppose that lemma holds for some k& € {1,..., N — 1}. From the second
inequality in the induction assumption we conclude that, for the chosen k.,
Lemma 11 and Lemma 12 hold. From Lemma 12 it follows that

3 140494 - & 1 3
EZ_H < —é-ng = = EZ
1 —0.077 - & (1 —0.494%%)(1 — 0.077%)
1
(1 —0.3%)2
Hence |
G < ————— - &,
103 %
Inserting the induction assumption in this inequality we obtain
- < 1 1 -
Ek+1 > = - = - &
" 03— 1 —03(k— 1)
1-0.3(k—1)5L
1 N 1 -
< = & = ———————— &y,
1—03(k—1)5 —0.3% 1—-03-k-%



and the first assertion of the lemma is proved. From this assertion for k41,
because of the asymptotic assumption (A2), we now have

. — — <
2N 2—03 N 3N

— <
) 103 k-t ) 1—-03(N—1)

€kt - 1 o 1 1 b 1 1 2
2N
which completes the proof. Q.E.D.

LEMMA 14 [f the asymptotic assumptions (A1) and (A2) hold, then the as-
sertions (67) and (73) of Lemma 11 and Lemma 12 hold for every k €

1,... N}

PROOF: The assertion follows imidiately from second assertion of Lemma
13.
Q.E.D.

The next lemma explains behaviour of S(%T(k))j Sy(ﬁ(k)) and &y, and of
the transformation parameters a; and 3, during N consecutive steps. Let

us define the quantity
1 +0.494 - %

N 00T 2

(86)

LEMMA 15 Let the asymptotic assumptions (A1) and (A2) hold. Then:

(i) For k=1,...,N holds

S2(AGH1) S2(AM) S2(AM)
SAHBEY 1< (en)™ | S2BM) | < 1.566 | S2(BM)
2 2 2
€Lt €y €y

(i1) For any choice &y € {ay, Bk}, 1 <k<N, holds

N g2
S op < 0.426- 5—;
k=1



PROOF: (1) Because of Lemma 12 and Lemma 14, for k=1,..., N holds

B < en(E - 2(ap + b))

< en{enl&y —2(@i, + b0 ,)] - 2(a; + b))
k

< (en)'E 23 (en)F @ 4 B2, (87)

j=1

IA

From the relation (87) immediately follows
gl2<—|—1 < (CN)ké? < (CN)Ng127 k:]va (88)

Using LLemma 10 we obtain

2 12 2
-N)(1 4+ —-0.077 -
IN 1+ 7 IN

4
(en)V < (1+§-0.494- -N) < 1.566. (89)

Inserting this inequality into relation (88), we obtain
Erpr < 156627, k=1,...,N.

From the proof of Lemma 12 we se that the above estimates hold for the

quantities 92(/4 (1)) and S2(B*+1) as well. Therefore (i) is proved.
(11) Since ¢y > 1, from the relation (87) for k= N we have

N
el < ( —22 21 h2).

Since &%, > 0, this inequality implies
al 1
(@ +b) <

k=1

(en)VE? < 0.783 - 22,

DD |

The above inequality together with Lemma 11 and Lemma 14 imply

N N N
- -2 5 g 1
op < > max{a;, 3 < > 0.34% - (aj +by) - I3
k=1 k= k=1
=2 =2
€1 €1
< 0.1156 - 0.783 - 5] < 0.091 - 5]
and the lemma is proved. Q.E.D.



4.2 The proof

Here we prove that the Falk Langemeyer method is quadratically convergent
if the assumptions (A1) and (A2) are fulfilled and the pivot strategy is cyclic.
Then we prove that the quadratic convergence implies the convergence of the
sequence of pairs (42) towards the pair of diagonal matrices. At the end we
prove that the measures &, and ¢, are equivalent in the sense that ultimately
the quadratic reduction of &yn,q implies the quadratic reduction of e ni4
and vice versa.

We can now prove our paper’s central theorem.

THEOREM 16 Let the asymptotic assumptions (A1) and (A2) hold and let
the sequence ((A®), BEY k> 1) be generated with the Falk Langemeyer
method from the pair (A, B). Then for any cyclic strateqy holds

. &
Engr < \/ﬁg

PROOF: Let us fix some k € {1,..., N}. Then the pivot pair (I,m) is also
fixed. We want to know what happens with the element on this position

till the end of cycle. Therefore, we will observe the elements 5;;)7 r=k+

1,...,N. We know that 5;;7_1) — 0 and that the elements a'”) actually

Im,
change at most 2(n — 2) times. Let ri,....r,, s < 2n — 4, denote those

values of r for which 5;;) changes in the r th step. Let us introduce the
notation:
z o= antY, s=ant
2= e e m,
) = min{d”, 4} dy = w —0.077 - %?v (90)

Performing the ry th step according to Algorithm 4, gives

zZi=(0-14+a"a,),



where &,, € {a,,, 3,,} and @) is some off diagonal element of the matrix

A Since

5:W R (91)
from the relations (90), (83) and Lemma 12 follows that
50— LA e < 1@ 16, ] (@)
I R |
Further, in the ry th step, we have
= (1-%+a"o,), (93)

where ©,, € {a,.,, BTQ}7 and @) is some off diagonal element of the matrix

Alr2) The relations (93), (92) and (91) imply

11
L)< — - (— a5, |+ a5, ])-
Izlde (dNI & |+ ] =)

By induction we obtain

(ri)
|Z7|<Z 77+1

For kE=1,..., N +1 following notation is introduced:

, g=1,...,5. (94)

| ©r,

FC CI T DY = diag (@) . (95)

Matrix EN1) obviously consists of elements which have undergone the
maximal number of changes. If s(i,7) denotes the number of changes of the
element on position (7,7), then

9(777) S 277/747 7776{]7777}777&]

The quantity s(7,7) depends upon (4,7) and the pivot strategy. FElements
of the matrix KN+ can therefore be denoted as Zo(i,f)-

Having in mind relation (94), we can now write

| ENHD | < | PO &o |+ | PO s | 44 | PO [ S ).

(96)
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Here the notation | C' |= (| ¢i; |) for €' = (¢;;) is nsed. Matrix P®) consists
precisely of those elements of [(k) th and m(k) th row and column of the
matrix EF®) which already were pivot elements®, i. e. of elements which
contribute to the final estimate. All other elements of the matrix P® are
7€T0s.

Assertion (i) of Lemma 15 gives us

|| PY | |=]| PP ||< S(A®)) < V1566 - S(A1)), k=2...,N.
(91)
From the relations (96) and (97), Lemma 15 and the Cauchy Schwarz in-
equality we obtain

1 N

S(A) = O = || B € /TG - S(A0) 3 |3 |
' k=2
< S Y ) Y < (A0 [N Y S (o)
— . — wp|? < —5— - 4 . wi|? (!
= (dN)Qn74 —~ k17 = (dN)Qn74 — k

Since N > 3, from Lemma 10 follows that

] ] <1+ 2 0m 2 (n—2)
e — = _ . . n/ J—
(dn )t (1 —0.0775%)"2 7 3N

12 4 1
< 14 —=-0.077---— < 1.059.
7 3 n
Finally, inserting this inequality and assertion (77) of Lemma 15 into relation
(98), we obtain
S(ANEY < 0.4 S(AM)N - %‘

K)

Applying a similar analysis to matrices B®) vields

S(BON+Y < 0.4 S(BOWN - %‘

From the last two inequalities and the definitions of éxy1 and &7 follows

- &
Ent1 g0.4-\/ﬁ-7,

3Here (I(k), m(k)) denotes pivot pairin the k th step so this k should not be confused
with the k that was fixed at the beginning of the proof.
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and the theorem is proved. Q.E.D.

Note that in the proof of Theorem 16 it is not necessary to assume that

the affiliation is preserved, i.e. that the pairs [aff),bff)] approximate the
eigenvalues A\; for 1 = 1,...,n, & = 1,..., N. However, for large enough k
this fact follows from Theorem 17.

& From Theorem 16 and the assumptions (A1) and (A2) follows that

1 1
3 < VN -— -5 = -& < 03-&. 99
ENH1 N & 9 /—N &1 &1 ( )

Applying inductively the relation (99) we obtain

ng—H S (03)7’ . g] s r 2 1. (]00)
Therefore,
Ji_}rgogr]\f_l_] = 0. (101)

From the relation (101) and the assertion (i) of Lemma 15 we conclude that

lime, = 0. (102)

k—00

The relation (102) and Theorem 16 imply the quadratic conver-
gence of the Falk Langemeyer method according to Definition 7
if the eigenvalues are simple and the pivol strateqy is cyclic.

Next we prove that under assumptions of Theorem 16 the sequences of
matrices (A® k> 1) and (B® k> 1), generated by the Falk Langemeyer
method, converge towards diagonal matrices.

THEOREM 17 Let the assumptions of Theorem 16 hold. Then

lim A®) = Dy, | lim B® = Dg |

k—00 k—00

where Dy and Dy are diagonal matrices.

Proof. The relation (44) implies that

AW = (D)TTAB(D) B® = (D) BR(DYT L, (103)
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where diagonal matrices Dy are defined with the relations (45) and (46). Tt
is therefore sufficient to proove that the sequences (/Z(k)7 E>1), (ﬁ(k), k>
1) and ((Dg)" ", & > 1) converge towards diagonal matrices. The relation
(102) implies that the off-diagonal elements of matrices A®) and B®) tend
to zero as k — oo. Therefore, it remains to proove that for 2 = 1,...,n the
sequences (55?, k> 1) and (55?, k > 1) converge. The relation (18) and
the assumption (A1) imply that for each k& > 1 there exists an ordering of
the eigenvalues A\; = [s;,¢;], 2 =1,...,n, such that

_ 2

' cm 104
27 257 ? 777 ( )

Let us consider unit vectors [s;, ¢;]” and [ﬁ(k) g(k)]T in R% The left-hand side

of the inequality (104) is | sin c,of;k) | where c,of;k) is the angle between these two
vectors. The relations (102) and (104) imply

]imsincpf»k) = 0, 1=,1...,n.
k— 00 '

Hence, for each 7 the sequence of vectors ([ﬁ(k) 5(k)]T,k > 1) has only finite

number of accumulation points in R2. Theref’ore,ﬁit suffices to show that for
large enough k the changes in Hff) and bff) are arbitrary small. From the

relation (102) and Lemma 11 we see that & — 0 and Bk — 0 as k = oo.
(k)

Therefore, the changes in a;;” and a(f) tend to zero as k — oco. This prooves

that for each 7 € {1,...,n} limits lim;_, Hff) and limg_ee B exist.

We shall now prove that ((Dy) ',k > 1) is a convergent sequence. ook~
ing at the definition of Dy (relation (45)) we see that it suffices to prove that

for each 7 € {1,...,n} the sequence (df;k),k > 1), converges to a nonzero
number. From Proposition 9 we have

IS b\ S P=1

2 7 7 9 n

: E>2.

PURERRT

From the definiteness of pairs (A(M, B(1) and (Z(k)jﬁ(k)) we conclude that

4" and @*) are different from zero for all 7 and k. Hence it suffices to prove

that the infinite product [T}2, a

7

converges®. This product converges if and

(g 4
only if the product T];Z, (dgk)) converges. Therefore, it suffices to show that

4Since all factors in the product are nonzero the limit, if exists, is also nonzero.
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the later product is absolutely convergent. From the relation (78) we see that

(1) 4
forv e {1,...,n} and & > 2 we can write (df;k)) =1+ u™, 50 it suffices to
show that the series >°77, ugk) are absolutely convergent for all 7 € {1,...,n}.

The relation (83) of of Lemma 12 implies that

@ > 1 o077 2 =1

E>1.
57 b b

TL? -

Looking for upper bound instead of lower bound in the relation (78) and
making similar estimates as in the relation (83), we obtain

@y <1y 0.077-%, 1=1,....n. k>
Therefore,
|l = @y < 0.077-%, 1=1,....n, k>

Hence it suffices to show that the series Y77 | & converges. From the assertion
(i) of Lemma 15 we have

Ernvgi < 1.3-& N4, 1< <N, r>1

b

hence it suffices to prove the convergence of the sequence > 07 &.x41. From
the relation (100) we see that the later series is majorized by the conver-
gent series 372 (0.3)" - &. This proves the absolute convergence of the series
Yo, ugk) for i € {1,...,n} and therefore the convergence of the sequence
CARNER)

Q.E.D.

Note that the global convergence (i.e. the convergence for all definite
pairs (A, B) ) of the Falk Langemeyer method in the case of cyclic pivot
strategies is not yet proved.

We end this section by showing that our asymptotic assumptions also

imply ultimate quadratic reduction of e,n41. Indeed, for r > 1 the relation
(103) implies

1
rN+F1)\2 =~ ~
ErN+1 S ((]gn,”n )) CErN41 ErN+1 S WETN+17

(din” )2



where

D = max{d! MY gL
AT = i)

Theorem 16 implies

r ~ r N~
E(r4+1)NH1 < (dg)g,a;1)N+1))2€(r+1)N+1 < (dga;])NH))QT@zNH
J(+HON+) T2 SN VN
mar 52N+1 S c- —52N+1 \ r Z ] \
(dON+y |5 5
where ¢ is an upper bound of the convergent sequence ([dg’;ﬂ;”NH)/(dng))2]2,

r > 1). In a similar way one can prove that quadratic reduction of &,n44
ultimately implies quadratic reduction of &, n 4.

The techniques described in this section can be used for studying asymp-
totic convergence properties of various different Jacobi type algorithms.

5 Concluding remarks

In Algorithm 4 only (I,m)—restrictions of the pair (A®), B®)) are used in
each step. Therefore, parallel strategies are in fact cyclic (see [10]) and
Theorem 16 and Theorem 17 hold for them as well.

In [13] it is proved that if the assumptions of Theorem 16 hold and the
pivot strategy is serial, then

-
ENH1 S — -
)

Modified method. If the problem (1) has multiple eigenvalues, the method
can fail to be quadratically convergent. This failure occurs because when
pairs [a,(lk)7 b;,k)] and [a®) bF) T (here (1,m) is the pivot pair in the k th step)
approximate the same eigenvalue, then parameters a; and Bk can be of order
O(1) and, therefore, some previously annihilated elements can become of or-

der O(&}) again. This situation is described in detail in [7] and [13]. Simple
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omitting of these critical steps does not yield to the quadratic convergence,
even though the measure 7, = T(/‘T(k), ﬁ(k))7 k> 1, from Corollary 2 tends
to zero. The relation (16) does not imply that the off-diagonal elements of
diagonal blocks tend to zero together with 7, but merely that the diagonal
blocks become more and more proportional. Therefore, &, does not have to
tend to zero at all and the convergence of 75, can considerably slow down. If
we modify the method so that in such cases we use triangular transformation
matrices similar to the matrix from step (5a) of Algorithm 4, the quadratic
convergence persists.

Modification of the Falk Langemeyer method and the proof of quadratic
convergence of the modified method will be topics of our subsequent paper.

Numerical results. Our test program is written in FORTRAN in dou-
ble precision. Test pairs were generated in the manner that A = GTD4G
and B = GT D@, where diagonal matrices D4 and Dg are being read and
(7 is random. For elements of matrix G only numbers which are sums of the
powers of 2 were used, so the test pairs were stored as accurately as possible.

The iterative process is terminated when, after some cycle r, inequality

covnn < eps -y [AIP+ B -2N

is fulfilled, where eps is machine precision. After the end of the process, the
maximal error of the residual

me{ | BAS — a B e }
i | Jlanz + eI AFE + ) B2

is calculated. Here [af,b]] are the calculated eigenvalues of the pair (A, B)

and f! are the corresponding eigenvectors. Also the maximal absolute values
of the off-diagonal elements of matrices (F")" AF" and (F')" BF’ are calcu-
lated. Those three quantities were usually of order. Infinite eigenvalues were
represented with numbers of order of magnitude O(1/machine precision).
We observed the convergence of both measures £ and &;. Observations
confirmed all theoretical results. For starting pairs that were not almost diag-
onal, convergence was in the beginning linear and several cycles were needed
before quadratic convergence started. The asymptotic assumption (A2) ap-
pears to be very adequate because in almost all cases quadratic convergence
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started after it was fulfilled. Algorithm behaved very regularly in the sense
that the condition 3 >0, k > 1, (see assertion (i) of Proposition 3) was
always fulfilled for definite starting pairs. This condition was fulfilled even
in some cases when the starting pair was semidefinite, or slightly indefinite.

Average number of cycles for smaller matrices (n < 15) was around ten
and for larger matrices (n < 100) around fifteen. Last cycles were usually
empty, i.e. not all N steps were executed. For orientation, the approximate
duration of the process is five minutes for n = 40 and one and a half hour for
n =100 on IBM PC/AT with a coprocessor, and about thirty times shorter
on IBM 4371.

In the presence of very close eigenvalues several additional cycles were
usually needed because the quadratic convergence was delayed. The exis-
tance of additional cycles does not disagree with theoretical results since the
quantity & from the asymptotic assumption (A2) is in this case very small.

We observed that the results are generally better if increasing or decreas-
ing order of numbers defined with diagonal pairs [aff),bff)] is preserved by
interchanging pivot rows and columns if necessary. However, interchanging
must be stopped after the asymptotic assumption (A2) is fulfilled. Other-
wise some off diagonal element which was not yet annihilated can “run away”
from annihilation and therefore terminate quadratic convergence.

® Example. We give an example of the pair of order 10 generated in
the previously described manner. Flements of the matrices D4 and Dpg are

—2.1, 10, 0, —0.001, 10, 1, 5, 5, 4
and
-1, 0.1, —1, =100, —100, 0, —1, 0.1, 1, 1,

respectively, so the exact eigenvalues of the problem are
2, 10, —10, 0, 0.00001, oo, —1, 50, 5, 4.

Elements of the matrix G are uniformly distributed integers from the interval
[—10,10]. Note that both matrices A and B are indefinite, while the pair
(A, B) itself is definite (for example A — 3B > 0). In order to increase the
stability of the computation, the process started from the normalized pair
(AR,

Only upper triangles of the matrices A and B are displayed. Fach row
begins with the diagonal element. Asymptotic convergence is described as
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follows: in column CYC is the number of cycle; in column ROT is the number
of rotations performed in the cycle; columns SUMA, SUMB, SUM and SUMT
display values of S(A®)) S(B®) ¢, and &, after the cycle, respectively.

ORDER OF MATRICES N =

10

COLUMN CYCLIC PIVOT STRATEGY
STOPPING CRITERION: SUM(K) <

MATRIX A
ROW
1 .21350D+04
.44002D+03
2 .14310D+04
.29600D+03
3 .18320D+04
.38500D+03
4 .11860D+04
.49101D+03
5 .99295D+03
.90965D+02
6 .13360D+04
7 .13470D+04
8 .87292D+03
9 .88792D+03
10 .82798D+03

.41900D+03
.13750D+04
.32700D+03
.43200D+03
.28000D+03
.74500D+03
.85799D+03
.57401D+03
.68695D+03

.57298D+03
.29703D+03
.32992D+03
.40105D+03

.49D-13

.11600D+03
.20027D+02

.34200D+03

.50000D+03
.93300D+03

.58200D+03

.34099D+03

.22402D+03

.43106D+03

.10027D+02

43

.49550D+01

.11430D+04
.51903D+03
.26100D+03
.13100D+03
.64100D+03

.56100D+03

.53006D+03

.97606D+03
.67399D+03

.10490D+04

.60802D+03

.10390D+04

.91000D+03

.40001D+03

.69606D+03

.43035D+02



MATRIX

RO
1

0 0 N O,

10

W

.72420D+04
.31460D+04
.99425D+04
.79655D+04
.26020D+04
.34409D+04
.10848D+04
.83980D+03
.59091D+04
.10755D+04
.50607D+04
.72920D+04
.12938D+05
.82005D+04
.88056D+04

ASYMPTOTTIC

CYC

0 N O Ul W

o]

ROT
45
45
45
45
45
45
45
44
29

SUMA

.60D+00
.72D+00
.57D+00
.31D+00
.18D-01
.39D-02
.56D-04
.18D-09
.26D-20
TOTAL NO. OF ROTATIONS

.81550D+04
.73170D+04
.50853D+04
.68774D+04
.14878D+04
.16500D+02
.15558D+04
.18888D+04
.46836D+04

.28013D+04
.82531D+04
.81476D+04
.46091D+04

.40130D+04
.83650D+04

.28814D+04
.11530D+03

.14297D+04
.39654D+04

.55260D+03

.23130D+03

.69463D+04

.26803D+04
.10050D+05

CONVERGENCE

SUMB
.35D+01
.32D+00
.28D+00
.21D+00
.23D-01
.13D-01
.15D-03
.61D-09
.19D-20

388

44

SUM SUMT
.35D+01 .18D+01
.79D+00 .12D+01
.64D+00 .72D+00
.38D+00 .24D+00
.30D-01 .25D-01
.13D-01 .93D-02
.16D-03 .92D-04
.63D-09 .19D-09
.32D-20 .93D-20
TIME(sec)

.20630D+04
.27080D+04
.28007D+04
.79841D+04
.63790D+03

.20896D+04

.41948D+04

.62826D+04
.78484D+04

5.68

—.39800D+03
-.78930D+04

.93320D+03

.39712D+04

.11306D+04

-.61837D+04

.43479D+04



CALCULATED

IGENVALUES

I ACT,T) B(I) D(I)
1 .36774301D+01 .91935754D+00 .40000000000001D+01
2 .29605919D+01 .59211837D-01 .50000000000001D+02
3 .24951699D+00 .24951699D-01 .10000000000015D+02
4 .62005903D+00 .12401181D+00 .50000000000011D+01
5 .16044487D+00 .80222433D-01 .19999999999999D+01
6 .94464581D-04 .94464581D+01 .10000000000004D-04
7 .43510239D-16 .23229057D+01 .18730953468577D-16
8 .62365226D-01 .62365226D-01 —.99999999999990D+00
9 .42815492D+01 .25722206D-13 -.16645341957511D+15
10 .32339485D+01 .32339485D+00 —.99999999999999D+01
MAXIMAL(relative) ERROR = .15D-13 FOR I = 3
MAXTMAL OFF-DTAGONAL ELEMENTS:
Ft AF = .35D-14 Ft B F = .30D-13
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