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2Hermitian matrix, under the perturbations of the factor G. More precisely,the perturbed matrix H 0 is de�ned byH 0 = (G+ �G)J(G+ �G)� � G0J(G0)� ; (2)where k�Gxk2 � �kGxk2 : (3)The most common J is of the formJ = � Im 00 �Ir�m �in which case m, r �m and n � r is the number of the positive, negativeand zero eigenvalues of H, respectively. Such J appears in the inde�nitesymmetric decomposition which is the �rst step of an accurate algorithmfor the eigenreduction of real symmetric matrices [7, 5], or is used as apreconditioner for inde�nite systems [3]. The perturbation of the type (3)occurs, for example, whenever G is given with a oating-point error in thesense j�Gijj � "jGijj for all i; j:Then, as shown in [2, 6], (3) holds with� = pn"�min(B) ;where B = GD and D is a non-singular diagonal scaling. The most usual(and nearly optimal) choice is to take the diagonal elements of D as theEuclidian norms of the columns of G [2, 6].In [6] we proved that (2) and (3) imply(1� �)2 � �0k�k � (1 + �)2 ; (4)where �k and �0k are equally ordered eigenvalues of H and H 0, respectively.Our present result supplies the eigenvector counterpart of (4) and wasmentioned as an open problem in [6].y The proof of our result for thesimpler case of non-singularH is contained in the �rst author's dissertation[5].As in [1, 2, 6], our estimates contain a factor called \relative gap"between an eigenvalue and the rest of the spectrum of H. To simplify thenotation, as well as the statement and the proof of our main result, weyOur paper, although closely related to [6], does not need the latter as a prerequisite.



3assume that � is positive. Negative eigenvalues of H are considered as thepositive eigenvalues of the matrix �H. By �L and �R we denote the leftand the right neighbour of � in the spectrum �(H) of H, respectively. Therelative gap rg(�) is de�ned asrg(�) = min�1; �R � ��R + �; �� �L�+ �L� :Here the terms containing �L, �R appear in the expression above, if �L,�R exist and are positive, respectively. In this way very close eigenval-ues may have large relative gaps, if they are absolutely small and, thus,our perturbation estimates may be much less pessimistic than the usualnorm estimates. Note that our de�nition of relative gap is similar but notidentical with those from [1, 2, 6].The spectral projection belonging to a (possibly multiple) eigenvalue �of H is given by [4] P = 12�i Z�(�I �H)�1d� ; (5)where � is a curve around � which separates � from the rest of the spectrumof H. The perturbed spectral projection P 0 is obtained by interchangingH with H 0 in (5), while the integration path � remains unchanged. Thismeans that the perturbation is small enough so that the contour � doesnot intersect the spectrum ofH� = (G+ ��G)J(G+ ��G)� ; 0 � � � 1 :This assumption is, in fact, contained in the assumptions of our theorembelow and it implies that both projections P 0 and P have the same trace,that is, their ranges have the same dimension.The key technical device of our proof is the simple fact that H and itspseudoinverse have the same set of eigenprojections and that the perturba-tion of the pseudoinverse can be conveniently expressed under the condition(3). We now state our main result:Theorem 1. Let � be a positive (possibly multiple) eigenvalue of anon-singular Hermitian matrix H = GJG� from (1), and let P be the cor-responding eigenprojection. Let P 0 be the corresponding spectral projectionof the perturbed matrix H 0 from (2) and (3). ThenkP 0 � Pk2 � 4��rg(�) � 11� 3��rg(�) ; (6)where �� = �(2 + �), provided that the right hand side in (6) is positive.



4 Proof. Denoting by R, N the range and the null-space, respectively,we obviously haveR(H) = R(G) ; N (H) = N (G�) :The inequality (3) is equivalent tok�G(G�G)�1G�yk2 � �kyk2for all y 2 R(G). Note that under the conditions of the theorem bothG�G and G0�G0 are positive de�nite. We can obviously extend the aboveinequality to k�G(G�G)�1G�k2 � � : (7)The orthogonal projection P0 onto R(H) is given byP0 = G(G�G)�1G� : (8)An analogous formula holds for the perturbed projection P 00 onto R(H 0).Let H+ be the pseudoinverse of H, given byHH+ = H+H = P0 ; P0H+ = H+P0 = H+ :The spectral projection P belonging to the eigenvalue � ofH can be writtenas P = 12�i Z� S�d� ; S� = (�I �H+)�1 ; (9)where � is now a curve around 1=� which separates 1=� from the restof the spectrum of H+. An analogous formula (again with the same �)holds for the perturbed projection P 0. The proof of (9) uses the spectraldecomposition of H and is omitted. By the same way one can prove theformula H+ = G(G�G)�1J(G�G)�1G� ;which also reects the fact that (G�G)�1G� is the pseudoinverse of G.We now show thatP = 12�i Z�GT�G�d� ; T� = (�G�G� J)�1 : (10)Indeed, S�P0 = [�I � G(G�G)�1J(G�G)�1G�]�1G(G�G)�1G�= G[�I � (G�G)�1J(G�G)�1G�G]�1(G�G)�1G�= G(�G�G� J)�1G� = GT�G� : (11)



5Using this, (9) and the obvious identityPP0 = P0P = P ;we obtain (10). The similar identities for P 0 are obtained analogously.Now P 0 � P = 12�i Z�(G0T 0�G0� � GT�G�)d� ; (12)where G0T 0�G0� �GT�G� = G(T 0� � T�)G� + �� = �GT 0�G� + GT 0��G� + �GT 0��G� : (13)Further,G(T 0� � T�)G� = GT�(T�1� � (T 0�)�1)T 0�G� = GT��	T 0�G� ;where 	 = ��G�G�G��G� �G��G :Using (11) and (8), we haveG(T 0� � T�)G� = �S�P0�GT 0�G� ; (14)where (see also (7))� = G(G�G)�1	(G�G)�1G� = ���1P0 � P0�1 ���1�1�1 = �G(G�G)�1G� ; k�1k2 � �k�k2 � �� = 2� + �2 : (15)From (10), (11) and (15), it followsGT 0�G� = G[�(G� + �G�)(G + �G)� J ]�1G�= G(T�1� � �	)�1G� = G(I � �T�	)�1T�G�= G[I � �(G�G)�1G�GT�G�G(G�G)�1	]�1(G�G)�1G�GT�G�= G(G�G)�1G�(I � �GT�G��)�1S�P0= P0(I � �S�P0�)�1S�P0 :Thus, kGT 0�G�k2 � z1� ��w ; (16)



6where w = max�2� k�S�P0k2 ; z = max�2� kS�P0k2 : (17)From (13), (15) and (16) we obtaink�k2 � k�1GT 0�G�k2 + kGT 0�G���1k2 + k�1GT 0�G���1k2� ��kGT 0�G�k2 � �� z1� ��w : (18)Combining (13), (14), (15) and (16-18), we obtainkG0T 0�G0� �GT�G�k2 � kG(T 0� � T�)G�k2 + k�k2� k�P0S��GT 0�G�k2 + ��kGT 0�G�k2� �� 1 +w1� ��w : (19)Taking � as a circle of radius r around 1=�, (12) and (19) givekP 0 � Pk2 � rz�� 1 +w1� ��w ; (20)so it remains to estimate z and w. We havew = max�2� k�S�P0k2 = max�2� max�2�(H+)� 6=0 j�jj�� �j ;z = max�2� kS�P0k2 = max�2� max�2�(H+)� 6=0 1j�� �j :The non-vanishing eigenvalues of H+ are the inverses of the non-vanishingeigenvalues of H. Note the remarkable fact that, due to the presence ofthe projection P0, zero eigenvalues do not enter the above formulae for wand z. Since � is a circle, the maxima in the above relations are attainedfor �'s which lie on the real axis.If �R exists, then we choose r asr = 12 min� 1� � 1�R ; 1�L � 1�� ;and if �R does not exist, then we choose r asr = 12 min� 1�; 1�L � 1�� :



7It is easy to see that we always have z = 1=r. Since � = 1=�� r, we havew = max� 1=�� r1=�� r � 1=�R ; 1=�+ rr ; 1=�+ r1=�L � 1=�� r� :Now if r = (1=�� 1=�R)=2, thenw = 1 + 2�R � ��R � 1 + 2rg(�) � 3rg(�) ;and (6) follows by inserting this and z = 1=r into (20).If r = (1=�L � 1=�)=2, thenw = �� �L�+ �L � 1rg(�) ;and (6) follows by inserting this and z = 1=r into (20).Finally, if r = 1=(2�) (�R does not exist), then w = 3 and (6) followsby inserting this and z = 1=r into (20).Positivity of the right hand side of (6) justi�es, in turn, our choice ofthe same � in the de�nitions of P and P 0 in (12) as follows: (4) impliesthat 1=�R can increase to at most 1=(�R(1 � �)2), 1=�L can decrease toat least 1=(�L(1 + �)2) and the eigenvalues of (H 0)+ which correspond to1=� remain in the interval [1=(�(1 + �)2); 1=(�(1� �)2)]. Positivity of theright hand side of (6) always implies rg(�) > 6�. This, together with ourchoice of r, implies that � contains no points of the spectrum of (H 0)+ andthat the interior of � contains exactly those eigenvalues of (H 0)+ whichcorrespond to 1=�.Remark 2. It is possible to prove theorem similar to Theorem 1 for acluster of eigenvalues, as well. All eigenvalues of the cluster must be eitherpositive or negative. The relative gap for the cluster is then de�ned using�L (�R) and the leftmost (rightmost) member of the cluster, respectively.The r � z term of (20) is then larger than 1, and smaller than the inverse ofthe relative gap of the cluster.We conclude the paper by giving the perturbation bounds for the eigen-vectors corresponding to simple eigenvalues. Suppose that the assumptionsof Theorem 1 are ful�lled, and that � and �0 are both simple and non-zero(that is, they have the same sign). Let v and v0 = v + �v be the corre-sponding unit eigenvectors, and let � be the angle between them. ThenP = vv� , P 0 = v0(v0)�, and P 0�P is a matrix of rank 2 with the non-trivial



8eigenvalues, say, 1 and 2. Since Tr (P 0�P ) = 0, we have j1j = j2j � .Now 22 = Tr [(P 0 � P )(P 0 � P )] = 2 sin2 � ;so that kP 0 � Pk2 = j sin�j :This �nally impliesk�vk2 = 2j sin(�=2)j � p2kP 0 � Pk2 :Combining the above relation with (6), we obtain the bound on k�vk2. Weexpect this bound to compare favourably to the corresponding bounds from[1, 2] since it does not contain the factors (n�1) or (n�1)1=2, respectively.REFERENCES1 J. Barlow, J. Demmel, Computing Accurate Eigensystems of ScaledDiagonally Dominant Matrices, SIAM J. Numer. Anal., Vol. 27, No.3, (762-791) 1990.2 J. Demmel, K. Veseli�c, Jacobi's method is more accurate than QR,SIAM J. Matr. Anal. Appl., Vol. 13, No. 4, (1204-1245) 1992.3 P. H. Gill, W. Murray, D. B Poncele�on, M. A. Saunders, Precon-ditioners for Inde�nite Systems Arising in Optimization, SIAM J.Matr. Anal. Appl., Vol. 13, No. 1, (292-311) 1992.4 T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin,1966.5 I. Slapni�car, Accurate Symmetric Eigenreduction by a Jacobi Method,Ph. D. Thesis, Fernuniversit�at, Hagen 1992.6 K. Veseli�c, I. Slapni�car, Floating-point perturbations of Hermitianmatrices, Seminarberichte aus dem Fachbereich Mathematik und In-formatik Nr. 41, Fernuniversit�at, Hagen 1991, submitted to Lin. Alg.Appl.7 K. Veseli�c, A Jacobi eigenreduction algorithm for de�nite matrixpairs, to appear in Numer. Math.


