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ABSTRACT

We give the perturbation bounds for the eigenprojections of a Her-
mitian matrix H = GJG*, where G has a full column rank and J is non-
singular, under the perturbations of the factor G. Our bounds hold, for
example, when G is given with elementwise relative error. Our bounds
contain relative gaps between the eigenvalues and may, thus, be much less
pessimistic than the standard norm estimates.

In this paper we give the perturbation bounds for the eigenprojections
of a Hermitian matrix

H=GJG" (1)

where GG is a n x r matrix of the full column rank, and J is a non-singular
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Hermitian matrix, under the perturbations of the factor G. More precisely,
the perturbed matrix H' is defined by

H' = (G+6G)J(G+6G) =G (G, (2)

where

16G]|2 < nl|Gal]s . (3)

The most common J 1s of the form

I 0
=]

in which case m, r — m and n — r is the number of the positive, negative
and zero eigenvalues of H, respectively. Such J appears in the indefinite
symmetric decomposition which is the first step of an accurate algorithm
for the eigenreduction of real symmetric matrices [7, 5], or is used as a
preconditioner for indefinite systems [3]. The perturbation of the type (3)
occurs, for example, whenever (G 1s given with a floating-point error in the
sense

[6G5;| < |Gyl for all ¢, j.
Then, as shown in [2, 6], (3) holds with

_ e
= Umzn(B) ’
where B = GD and D is a non-singular diagonal scaling. The most usual
(and nearly optimal) choice is to take the diagonal elements of D as the
Fuclidian norms of the columns of G [2, 6].
In [6] we proved that (2) and (3) imply

L ES

(1-n)?<E < (1497, (4)

where Ay and A}, are equally ordered eigenvalues of H and H’, respectively.
Our present result supplies the eigenvector counterpart of (4) and was
mentioned as an open problem in [6].1 The proof of our result for the
simpler case of non-singular H is contained in the first author’s dissertation
As in [1, 2, 6], our estimates contain a factor called “relative gap”
between an eigenvalue and the rest of the spectrum of H. To simplify the
notation, as well as the statement and the proof of our main result, we

tOur paper, although closely related to [6], does not need the latter as a prerequisite.



assume that A is positive. Negative eigenvalues of H are considered as the
positive eigenvalues of the matrix —H. By Ap and Ar we denote the left
and the right neighbour of A in the spectrum o(H ) of H, respectively. The
relative gap rg(A) is defined as

. ArR—A A=)
rg(A) = mm{l, Py /\+/\L} .
Here the terms containing Az, Ar appear in the expression above, if A,
Agr exist and are positive, respectively. In this way very close eigenval-
ues may have large relative gaps, if they are absolutely small and, thus,
our perturbation estimates may be much less pessimistic than the usual
norm estimates. Note that our definition of relative gap is similar but not
identical with those from [1, 2, 6].
The spectral projection belonging to a (possibly multiple) eigenvalue A
of H is given by [4]
p=_L (M — H)™tdA (5)
27 Jp ’
where I'1s a curve around A which separates A from the rest of the spectrum
of H. The perturbed spectral projection P’ is obtained by interchanging
H with H' in (5), while the integration path T remains unchanged. This
means that the perturbation is small enough so that the contour I' does
not intersect the spectrum of

H, = (G+&8G)J (G + réG)" | 0<k<1.

This assumption is, in fact, contained in the assumptions of our theorem
below and it implies that both projections P’ and P have the same trace,
that is, their ranges have the same dimension.

The key technical device of our proof is the simple fact that H and its
pseudoinverse have the same set of eigenprojections and that the perturba-
tion of the pseudoinverse can be conveniently expressed under the condition
(3). We now state our main result:

THEOREM 1. Let A be a positive (possibly multiple) eigenvalue of a
non-singular Hermitian matriz H = GJG* from (1), and let P be the cor-
responding eigenprojection. Let P’ be the corresponding spectral projection

of the perturbed matriz H' from (2) and (3). Then
47 1
. __ 6
rg(A) 1— 37 ©)
rg(A)

where 7 = n(2 + 1), provided that the right hand side in (6) is positive.

1P" = Pll2 <




Proof. Denoting by R, N the range and the null-space, respectively,
we obviously have

R(H)=R(G), N(H)=N(G") .
The inequality (3) is equivalent to
[6G(GG)T G yll2 < nllyll

for all y € R(G). Note that under the conditions of the theorem both
G*G and G*G’ are positive definite. We can obviously extend the above
inequality to

16G(G™ )Gz < 1 7
The orthogonal projection Py onto R(H) is given by

Py = G(G*G)~1G* . (8)

An analogous formula holds for the perturbed projection P} onto R(H').
Let H* be the pseudoinverse of H, given by

HH+:H+H:P0, PHT=HtP,=Ht .

The spectral projection P belonging to the eigenvalue A of H can be written
as

1
P=_— d =(ul—HT)™!
s S Se=ur—ay o)

where T' is now a curve around 1/A which separates 1/A from the rest
of the spectrum of H*. An analogous formula (again with the same T')
holds for the perturbed projection P’. The proof of (9) uses the spectral
decomposition of H and is omitted. By the same way one can prove the
formula

HY = GGGy L IGra)~tar

which also reflects the fact that (G*G)~1G* is the pseudoinverse of .
We now show that

1
P=— / GT,G*dp | T, =(uGG-J)"t . (10)
2w Jr

Indeed,
SyPy = [pl -GG (GGG GGG TG
= Gpl - (GGGt era GGy iGr
= GuG*G-J)'G" = GT,G* . (11)



Using this, (9) and the obvious identity
PPy=PP=P,

we obtain (10). The similar identities for P’ are obtained analogously.
Now

P —pP= ! (G T' G™ — GT,G")du , (12)
2mi r
where
G/TLG/* -G1,G" = G(TL -T,)G"+ @
P = 6GTLG* + GTL&G* + 6GTL6G* . (13)
Further,

G(T), — TG = GTu (T, — (1) )T,G* = GT,pVT,G*

where

¥ =—-6G"G—G"6G — §G*6G .
Using (11) and (8), we have

G(T, = T,)G* = Sy Py AGTLG™ (14)

where (see also (7))

A = GGG)™(GG)TIGT = —=ATPy — PyAL — ATA,
A = GGTG)TGT |A][2 <7
1Al < G=2n+9". (15)

From (10), (11) and (15), it follows

GT,G" = GG +6G)(G+6G)—J] G
= GI;' = p¥)'GT = G — T, ) T,G7
= Gl - p(G*G) G GT, G G(G*G) "]~ {(G*G) " G*GT,G*
= G(G*G)'G*(I — pGT,G*A)'S, Py
= Po(I = pSuPoA)™1S, Py .

Thus,

IGTLG 2 <

— fw
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where
w = max|[uSy Pollz ¢ = max||S, Pollz -

From (13), (15) and (16) we obtain

1]l

IN

[ALGTLG 2 + [|GTLGAT |l + (| A GTL G ATy
MGTLG" |2 < 715

A

—ﬁw'

Combining (13), (14), (15) and (16-18), we obtain

|GG = GTLG |l < G(T = T)G |2 + ([ @2
< IPySUAGTLG? |l + TIGTLG
ey
1—nw

Taking T’ as a circle of radius » around 1/A, (12) and (19) give

14w
|P" = Pl < refe——,
1—nw
so 1t remains to estimate z and w. We have
_ _ |1l
w = max|/uS, Pl = max max ,
nel HED veo(at) |/,L — I/|
v#0
1
z = max||S,Pllz = max max —— .
per Hel ves(Hh) lp—v|

(20)

The non-vanishing eigenvalues of HT are the inverses of the non-vanishing
eigenvalues of H. Note the remarkable fact that, due to the presence of
the projection Py, zero eigenvalues do not enter the above formulae for w

and z. Since I is a circle, the maxima in the above relations are attained

for p’s which lie on the real axis.
If Ag exists, then we choose r as

R B
r_2m1n Ty
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It is easy to see that we always have z = 1/r. Since p = 1/A £ r, we have

B 1/ A—r I/ A+7r I/ A+r
CEMENIA 1R 1A —1a—r

Now if r = (1/A = 1/AR)/2, then

2 .2 3
AR =A = rg(A) T org(A)

AR

w=1+

+

and (6) follows by inserting this and z = 1/r into (20).
Ifr=(1/Ar — 1/X)/2, then

>
|
>

1
L <

and (6) follows by inserting this and z = 1/r into (20).

Finally, if » = 1/(2X) (Ar does not exist), then w = 3 and (6) follows
by inserting this and z = 1/r into (20).

Positivity of the right hand side of (6) justifies, in turn, our choice of
the same T in the definitions of P and P’ in (12) as follows: (4) implies
that 1/Ag can increase to at most 1/(Ar(1 — n)?), 1/AL can decrease to
at least 1/(Ar(1 4+ n)?) and the eigenvalues of (H’)* which correspond to
1/ remain in the interval [1/(A(1 +1)?), 1/(A(1 — n)?)]. Positivity of the
right hand side of (6) always implies rg(A) > 6. This, together with our
choice of r, implies that I' contains no points of the spectrum of (H’)* and
that the interior of T' contains exactly those eigenvalues of (H')* which
correspond to 1/A. W

REMARK 2. It is possible to prove theorem similar to Theorem 1 for a
cluster of eigenvalues, as well. All eigenvalues of the cluster must be either
positive or negative. The relative gap for the cluster is then defined using
Az (Ar) and the leftmost (rightmost) member of the cluster, respectively.
The r -z term of (20) is then larger than 1, and smaller than the inverse of
the relative gap of the cluster.

We conclude the paper by giving the perturbation bounds for the eigen-
vectors corresponding to simple eigenvalues. Suppose that the assumptions
of Theorem 1 are fulfilled, and that A and A’ are both simple and non-zero
(that is, they have the same sign). Let v and v = v + §v be the corre-
sponding unit eigenvectors, and let ¢ be the angle between them. Then
P =wvv*, P/ =¢'(v')*, and P/ — P is a matrix of rank 2 with the non-trivial
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eigenvalues, say, 71 and y2. Since Tr (P’ — P) = 0, we have |y1| = |y2]| = 7.
Now

292 = Tr [(P' — P)(P' — P)] = 2sin ¢ ,

so that
||[P" — P|la = |sing]| .

This finally implies
[80]]2 = 2|sin(¢/2)] < V2||P' = P|2 .

Combining the above relation with (6), we obtain the bound on ||6v||;. We
expect this bound to compare favourably to the corresponding bounds from
[1, 2] since it does not contain the factors (n—1) or (n—1)*/?, respectively.
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