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Monday, July 20

Time: 9-10am

Title: Relatively Robust Representations of tridiagonals

Speaker: B.N. Parlett

Abstract:

Let T���I = L�O�Lt denote the 'Cholesky' factorization of a real symmetric unreduced tridiagonal
matrix. In general O is a signed symmetric permutation (SSP) matrix but we assume that it is diag(+/-
1). Our question is whether the small eigenvalues are determined to high relative accuracy by bidiagonal
L? Let (s; � � � ) represent a typical eigenpair with jjsjj = 1. The vector that governs the answer is f
=Lt � s and the relative condition number is jjf jj2=j�� � j. We study this question as � varies. We show
that the smallest eigenvalue in magnitude is always determined to high relative accuracy by L. Using
this Dhillon and I have shown that, in the presence of roundo� error, our algorithm delivers a computed
approximation to s with error angle O( macheps/relgap ) whenever the eigenpair is determined to high
relative accuracy by L. This result leads us to focus on values of � close to clusters of close eigenvalues
because relgap is a function of � . I will give detailed numerical examples to illustrate the results.

Time: 10:30-11:30am

Title: QR Factorization with Complete Pivoting and Accurate Computation of the SVD

Speaker: Nicholas J. Higham

Abstract:

A new algorithm of Demmel et al. for computing the singular value decomposition (SVD) to high
relative accuracy begins by computing a rank-revealing decomposition by Gaussian elimination with
complete pivoting (GECP). We investigate the use of QR factorization with complete pivoting (that
is, column pivoting together with row sorting or row pivoting) as an alternative to GECP for graded
matrices. We show that a faster SVD algorithm results. We derive a new row and column-wise
backward error result for Householder QR factorization and combine it with the theory of Demmel et
al. to show when high accuracy in the computed SVD can be expected. Numerical experiments con�rm
the theoretical predictions.

Time: 11:30-12:30pm

Title: Relative perturbation theory for Hermitian matrices

Speaker: Ivan Slapni�car

Abstract:

Relative perturbation theory essentially gives bounds for relative changes in eigenvalues of a given
matrix in the case when the matrix or its elements are perturbed in some relative sense. Such pertur-
bations are important since they typically occur during numerical computations, and to ask how many
digits can be or are accurately computed is a very natural question. Although derived by applying
classical perturbation results, relative perturbation bounds are often much sharper then their classical
counterparts in the case of relative perturbations. Numerous results of this kind can be grouped ac-
cording to the structure of the matrix. So, there exist bounds for positive de�nite matrices and singular
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values, Hermitian matrices, normal matrices, diagonalizable matrices, and certain matrix pairs. Nat-
urally, the stronger the matrix structure, the better and more easily applicable are the bounds which
can be obtained.

This talk deals primarily with Hermitian matrices. The types of perturbations H ! H + �H that
are being considered are:

� elementwise relative perturbation j�Hijj � "jHijj;

� perturbation of a graded matrix H = D�AD where �H = D��AD;

� perturbation of a matrix in factorized form where H = GAG� is perturbed through G! G+�G.

The relative perturbation bounds are derived in two ways: one approach uses the scaled spectral absolute
value of H (the positive de�nite polar factor of H); the other approach is based on Birkho�'s lemma.
Several relative perturbation bounds, residual bound, and quadratic residual bound are given for the
eigenvalues. The corresponding eigenvector bounds are given in terms of normwise perturbation bounds
for the di�erence of projections onto invariant subspaces. These subspace bounds are essentially relative
variants of the sin � theorems by Davis and Kahan. Most of our bound are readily computable and
can be applied at little extra cost to estimate the accuracy of the eigensolution which is computed by
certain highly accurate algorithms.

Time: 2-3pm

Title: Rank-Revealing factorizations are High Accuracy factorizations.

Speaker: Ming Gu

Abstract:

In this talk, we discuss recent development in the existence and computation of rank-revealing QR,
Cholesky, and LU factorizations. We further show that both absolute error and relative error bounds
similar to those for the SVD can be obtained for these rank-revealing factorizations. Such bounds are
not available for the conventional QR, Cholesky, and LU factorizations.

Time: 4:30-5pm

Title: Reduction to banded form: Eigenvalues and the Lyapunov equation e= ndtitle

Speaker: Eugene L. Wachspress

Abstract:

Any real nonsymmetric square matrix may be reduced to banded upper Hessen berg form with a
succession of permutation and elementary gaussian transformations. The rows and columns are reduced
in succession from the head to tail of the matrix. Bandwidth is governed by a prescribed bound on the
magnitude of elements added to the unreduced part of the matrix by a proposed gaussian reduction.
A matrix of order n is reduced in around 8

3
n3 ops. Eigenvalues of the reduced matrix are then com-

puted with shifted inverse iteration and deation which preserves the banded structure. This requires
O(400n2) ops when eigenvalue accuracy of around 10�6 is prescribed. When solving the Lyapunov
matrix equation, AX + XA> = 3DC, the transformation matrix G�1 and the transformed right-hand
side F are stored along with the reduced matrix S, where S = 3DGAG�1 and F = 3DGCG>. This
increases the reductio n ops from 8

3
n3 to 8n3. There are matrices for which more than one pass is used
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in the reduction with a relaxed gaussian tolerance for each pass. This can on rare occasions increase
the reduction ops by a factor of two or three. ADI solution of the reduced equation SY +Y S> = 3DF
requires around 500n2 ops. Recovery of X = 3DG�1 � Y � (G�1)! = p uses another 2n3 ops. The
total ops for solution of the Lyapunov matrix equation is thus around 10n3 + 900n2 when only one
reduction pass is needed and may grow to around 20n3 + 1000n2 for some problems . This may be
compared with the Bartels-Stewart algorithm which requires around 25� 30n3 ops.

Time: 5-5:30pm

Title: Backward error and Condition Number of Quadratic Eigenvalue Problems

Speaker: Fran�coise Tisseur

Abstract:

We de�ne and evaluate backward errors and condition numbers for the quadratic eigenvalue problem.
We consider normwise measures as well as componentwise measures. The common practice when
solving the quadratic eigenvalue problem is to reformulate it as a generalized eigenvalue problem of
twice the order. They are many ways of performing this transformation. We investigate the sensitivity
of a given eigenvalue of the quadratic eigenvalue problem to perturbations in each of the generalized
eigenvalue problem formulations. We show that there can be great variation in sensitivity. The analysis
is illustrated by numerical experiments.

Time: 5:30-6pm

Title: Perturbation of the Inde�nite QR Factorization

Speaker: Sanja Singer, Sa�sa Singer

Abstract:

Let G 2 Cm�n, m � n and J 2 Cm�m, J = diag(j11; : : : ; jmm), jii 2 f�1; 1g are given. If matrix
A = G�JG is regular then exists a factorization of G

G = P
1
Q

�
R
0

�
P �
2

; Q�P �
1
JP1Q = P �

1
JP1;

where P1 and P2 are permutation matrices and R is block upper triangular with diagonal blocks of
order 1 or 2. Matrix Q is P �

1
JP1{unitary matrix. This factorization is a generalization of well{known

QR factorization and it is called the inde�nite QR factorization according to the given J .
For some problems matricesG and J are naturally given, i.e. for matricesA of formA = L�L�M�M .
Accurate one{sided Jacobi algorithm for diaginalization of A works on G� which usually has more

rows then columns. In our case G� has more colums then rows and we have two possibilities.

1. Multiplication of G�JG and then symmetric inde�nite factorization of G�JG gives square factor
R0 and signature matrix J 0

1
(smaller then J).

2. Inde�nite QR factorization of G gives another square factor R and signature matrix J1.

In some cases inde�nite QR factorization of G can be more accurate then multiplication and factor-
ization strategy.

We prove the following theorem:
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Theorem.

Let �
R
0

�
= Q�1P �

1
GP

2
; Q�J1Q = J1 ; J1 = P �

1
JP

1
;

be exact inde�nite factorization of G, with upper triangular R. If matrix eR is upper triangular and
computed in oating{point arithmetic, then eR is considered as a matrix given by exact inde�nite QR
factorization of some perturbed matrix eG = G+E,� eR

0

�
= eQ�1P �

1
(G+E)P

2
; eQ�J1 eQ = J1 ; J1 = P �

1
JP

1

where

kP �
1
EP

2
ekk2 � k�1kP �

1
GP

2
ekk2

kX
i=1

err(pi);

err(pi) = eH (1 + eG)pi +  [(1 + eG)pi � 1] :

pi, � and  are constants and eG, eH depend on " (accuracy of the basic oating{point operations).
This perturbation bound gives

j�Aijj � (2� + �2)!i!j

q
jAiijjAjjj

where

� = n�1
nX
i=1

err(pn) ; kgkk = !k

q
je�kG

�JGekj

which �ts into the standard relative perturbation theory for eigenvalues.
Superior accuracy of inde�nite QR algorithm (in some cases) will be illustrated by selected numerical

examples.
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Tuesday, July 21

Time: 9-10am

Title: TBA

Speaker: James Demmel

Abstract:

Time: 10:30-11:30am

Title: Absolute and Relative Perturbation Bounds for Invariant Subspaces of Diagonalis-

able Matrices

Speaker: Ilse C. F. Ipsen

Abstract:

We derive absolute and relative bounds for angles between invariant subspaces of a diagonalisable
matrix A and a perturbed matrix A + E, in the two-norm and in the Frobenius norm. Our absolute
bounds are extensions of Davis and Kahan's sin � theorem to diagonalisable matrices and invariant
subspaces of any dimension. When the perturbed subspace has dimension one, our relative bound
is implied by the absolute bound. Thus, relative bounds for invariant subspaces are not necessarily
stronger than absolute bounds.

Our relative bounds are more general than existing bounds because they place no restrictions on
the perturbed matrix and they hold for the larger class of diagonalisable matrices. Moreover they are
simple and easy to interpret.

Time: 11:30-12pm

Title: On constructing matrices with prescribed singular values and eigenvalues

Speaker: Alicja Smoktunowicz

Abstract:

We propose an e�cient algorithm for computing a unit lower triangular matrix A with prescribed
singular values �1 � �2 � : : : � �n such that �1�2 : : :�n = 1. This is a solution of the question raised
by N.J.Higham.
The singular values of A are the positive square roots of the eigenvalues of A�A. Due to A.Horn theorem
such matrix A exists if and only if the Weyl conditions are satis�ed: �1�2 : : :�i�1 � 1 for i = 2; : : : ; n
and �1�2 : : :�n = 1.
The main transformation in our algorithm is reduced to �nd a stable singular value decomposition of a
triangular 2� 2 matrix. We construct a sequence of unitarily equivalent lower trangular matrices with
diagonal matrix diag(�1; �2; : : : ; �n). We consider also a general case for arbitrary triangular matrices.
This is joint work with C.-K. Li and R. Mathias.

The second part of our talk jointly with J. G luchowska { Jastrzebska and A. Grabarski treats on
numerical properties of several algorithms for improving the computed eigenvalues or singular values
of some matrices. These algorithms are some variants of Newton's method for �nding roots of the
functions.

6



Time: 12-12:30pm

Title: A Hybrid Scheme to Improve Jacobi-Davidson Method On Eigenvalue Problems

Speaker: Yong Sun

Abstract:

The Jacobi-Davidson (JD) iterative method has been proposed as an e�cient and parallelizable
algorithm for solving various types of large eigenproblems because no matrix inversion is required. In
our application of the JD method to standard linear eigenproblems, it is recognized that if the starting
vector for the JD iteration is not close enough to the actual eigenvector, as is usually the case, the
subspace expansion by solving the Jacobi Orthogonal Component Correction equation (JOCC) often
leads to unsatisfactory convergence behavior. As an improvement, we suggest that the JD iteration
be carried out only after we obtain a fairly good approximation of the desired eigenvector by some
less accurate but faster algorithm, which can be some kind of Krylov subspace method. We will show
some examples of such a method. The results from our implementations thus far indicate that the
hybrid scheme consistently outperforms the original JD method. We expect the scheme to be readily
extendable to other types of eigenproblems as well.
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Wednesday, July 22

Time: 9-10am

Title: Accuracy for the eigensolution for inde�nite Hermitian matrices.

Speaker: Kresimir Vesel�c

Abstract:

First results on high relative accuracy concern mostly positive de�nite matrices and their natural
pendant - the singular value decomposition. This also covers most applications. Inde�nite matrices
are another world. Here too the factorized pendant exists, the so called hyperbolic singular value
decomposition. This time the relation between the two is more complicated and less straightforward
but nontrivial and relevant. The applications include dicretized Sturm-Liouville problems with inde�nite
potentials as well as quaside�nite matrices.

Time: 10:30-11:30am

Title: New Variational Characterizations for Trapping Eigenvalues

Speaker: Christopher Beattie

Abstract:

Eigenvalue estimates that are optimal in some sense have self-evident appeal and leave estimators
with a sense of virtue and economy. Often such estimates may be viewed as natural outcomes of
various variational characterizations of the original eigenvalues | the \min-max" principle being the
most common example. We'll review a variety of results related to obtaining optimal bounds | some
results are well-known; others are less known; and a few are new. Included in the pantheon are Ritz and
harmonic Ritz values; right- and left-de�nite variants of Lehmann (and Kahan) bounds; and a new class
of bounds that could be termed \relative Lehmann" bounds which originate from a novel variational
characterization of eigenvalues. We'll see how this helps explain why the Hope Diamond is blue and
why, sadly, \optimal" does not necessarily mean \good".

Time: 11:30-12:30pm

Title: Accuracy of computed eigenvalues: backward errors and pseudospectra

Speaker: V. Toumazou

Abstract:

We show that backward errors and pseudospectra combined together are useful tools to assess the
validity of a computed eigenvalue.

1. Given a set � of admissible perturbations �A on a matrixA and a norm on � (relative or absolute),
the backward error BE(z) for z as a candidate eigenvalue of A, is the smallest size of perturbation
�A such that z is an exact eigenvalue of A+ �A.

2. The pseudospectrum associated with a backward error of level " is �"(A) = fz 2 C; BE(z) � "g.
It contains all the points z which are seen as eigenvalues within an accuracy tolerance of ".

In this talk we present two practical classes of application:

8



a) Given A, � is the set of all �A with scaled norm �k�Ak. Therefore BE(z) = �=k(A � zI)�1k.
Often � = 1=kAk.

b) Given A and E, � is the set of perturbations �A = tE, t 2 C with scaled norm jtj�. Therefore
BE(z) = �=�(E(A � zI)�1). Often � = kEk=kAk.

Time: 2-3pm

Title: Inexact Symmetric Lanczos Methods for Eigenproblems with Applications

Speaker: H. Zha

Abstract:

At each step of the Lanczos iteration, a matrix-vector multiplication needs to be performed. Here
are two possible ways that these multiplications are not computed accurately: i) the operation involves
solving a large linear system, and an iterative method is used for its solution; ii) the matrix is de-
liberately replaced by a simpler matrix to reduce computational complexity. In either case, there is
need to understand how Lanczos methods behave when the matrix-vector multiplications are computed
inexactly. We develop a method based on some structured perturbation analysis of tridiagonal matrices
to explain the behaviors of inexact Lanczos methods, and show how the insights can be used to control
the solution accuracy in an inner-outer iteration of inexact Lanczos methods. Numerical examples from
several applications will also be discussed.

Time: 4:30-5pm

Title: Accurate computation of singular values of long products of matrices

Speaker: David Stewart

Abstract:

The di�culty is in computing the smaller singular values of the product to high relative accuracy. A
number of methods are available to compute the eigenvalues with small backward error for the product;
that is, the computed eigenvalues are the exact eigenvalues of the product

(At + Et)(At�1 +Et�1) � � � (A2 + E2)(A1 +E1):

Are the relative perturbations of the singular values ��i=�i small? The answer is \not always"; a
complete answer requires greater understanding of dynamical systems theory. However, it is often
possible to obtain highly accurate singular values even when the ratio of the smallest to the largest
singular values is, say, 10�1000.

Time: 5-5:30pm

Title: The relative error in Pruess method for Sturm{Liouville problems
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Speaker: Przemys law Kosowski

Abstract:

We consider numerical methods for eigenvalue problems of Sturm{Liouville operator. We will look
more closely at Pruess method as the one which gives better bounds for the errors of eigenvalues. The
talk will focus on the relative spectral continuity of Sturm{Liouville operator and searching suitable
approximation.

Numerical examples will be provided which show the behaviour of the relative accuracy of Pruess
method.

Time: 5:30-6pm

Title: A Graphical Approach to Design a Parallel Matrix Transformation Algorithm

Speaker: Suely Oliveira

Abstract:

Lately graph theory and other data structures have played a special role in the development of
algorithms for various problems in computational science. In this talk I will present a graph theoretical
approach for transforming an arrowhead matrix in tridiagonal formula in a more parallelizable way.
The graph theoretical approach has been used to show that certain structures maintain the accuracy
of eigenvalues. The same approach can be used here.

Based on a algorithm used by Zha, we designed a new chasing algorithm for transforming arrow
matrices into tridiagonal form using a graphic-theoretical approach. Although this algorithm has the
same sequential computational complexity and backward error properties as the old algorithms, it
is better suited for a pipelined approach. I will present the parallel algorithm for this new chasing
method, and its performance results on mesh and hypercube architecures. Remarks on the accuracy of
the methods will be made.
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Thursday, July 23

Time: 9-10am

Title: Singular vectors as solutions of triangular systems of equations

Speaker: Zlatko Drma�c

Abstract:

Let A be a triangular matrix that is well{conditioned with respect to inversion and let A = U�V �

be the SVD of A. In the oating{point Jacobi SVD algorithm we compute the decomposition

~U ~� = (A + �A)V̂ ; (1)

where �A is the backward error, ~U approximates the left singular vectors of A, ~� approximates the
singular values of A and V̂ is exact product of certain exact Jacobi rotations. The right singular vectors
ofA are approximated by the computed product V � V̂ of oating{point Jacobi rotations. The question
is whether or not we can restore V or V̂ a posteriori, using only the matrices A, ~U and ~�, and the fact
that V = A�U��1 = A�1U�. It is known that the formula V = A�U��1 does not give satisfactory
results. On the other hand, we show that the formula V = A�1U� performs surprisingly well. More
precisely, if ~V is the oating{point approximation of A�1 ~U ~�, then ~V = (I +A�1�A)V̂ , where A�1�A
is small if k jA�1j � jAj k2 is moderate. (Here the matrix absolute value is de�ned element{wise and k �k2
is the spectral matrix norm.) An important feature of the derived bound is that it is invariant under
row scalings of A because of a special structure of the perturbation matrices �A and �A. We combine
this technique with the Cholesky SVD of Fernando and Parlett to obtain an new implementation of
the Jacobi SVD algorithm that reaches the e�ciency of the bidiagonalization based QR algorithm. We
also discuss some interesting details related to e�cient implementation of the Jacobi SVD algorithm.

Time: 10:30-11am

Title: Weyl-type relative perturbation bounds for eigenvalues of hermitian matrices

Speaker: Juan M. Molera

Abstract:

We present a Weyl-type relative bound for eigenvalues of additive hermitian perturbations of (not
necessarily de�nite) hermitian matrices. This bound, which was already known in the de�nite case, is
shown to be also valid in the nonde�nite case. The size of the perturbations for which the bound holds
is discussed and we show that the bound cannot be valid for perturbations of arbitrary size without
additional assumptions. Some connections with previous bounds in the literature are discussed, together
with an interpretation of the perturbation bound in terms of matrix di�erential calculus, as an upper
bound of a �rst derivative of a function of the unperturbed matrix.

Time: 11:11:30am

Title: Accuracy and Orthogonality in the Restarted Lanczos Method

Speaker: J. Wu.

Abstract:
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For real symmetric eigenvalue problems, the Lanczos algorithm is an e�ective method. One way of
using it with limited amount of memory is to restart, i.e., use the Lanczos algorithm to build a Krylov
subspace basis until the allowed memory is �lled then reduce the basis to a smaller size so that the
Lanczos iterations may continue again. When the Lanczos algorithm is implemented in exact arithmetic,
the basis vectors are orthogonal to each other. However, in �nite precision arithmetic, the basis vectors
may lose orthogonality. This loss of orthogonality may cause the Lanczos method to generated spurious
solutions. To correct this problem, the Gram-Schmidt orthogonalization procedure is invoked in addition
to the orthogonalization operations in the Lanczos algorithm. Since the Gram-Schmidt procedure is
relatively expensive, we would like to minimize the number of times it is performed. When the Lanczos
algorithm does not restart, it can compute accurate eigenvalues by only maintaining semi-orthogonality
among the Lanczos vectors. This talk will exam the relation between orthogonality of the basis vectors
and the accuracy of the solutions for a particular restarted Lanczos method, the thick-restart Lanczos
method. We will show how to maintain semi-orthogonality among the basis vectors and demonstrate
that the solutions can be computed accurately when semi-orthogonality is maintained.

Time: 11:30-12pm

Title: A Characterization of the Multiplicity of Real Eigenvalues of General Matrices

Speaker: H.D. Scolnik

Abstract:

We prove that if H is a real n� n upper Hessenberg matrix without zeroes in the subdiagonal and
B(�) = H � �I, then the projection of the n{th column of B onto the orthogonal subspace to the one
spanned by the remaining columns is zero when � is any real eigenvalue of H. This result leads to
algorithms based on the variable projections method for computing real eigenvalues.

We also present new results for computing multiplicities of real eigenvalues: one is based on new
analytical expressions for the high order derivatives of pseudoinverses and projections, and the other on
a new theorem concerning a general formula for the eigenvectors of a given eigenvalue. These results
may be particularly useful for structural vibration design and control system design problems.

Time:12-12:30

Title: On the solution of generalized quadratic eigenvalue problems

Speaker: Louis Komzsik

Abstract:

Generalized eigenvalue problems appearing in industrial applications usually contain two or three
matrices. On the other hand, most eigenvalue algorithms described in the scienti�c journals only deal
with a single matrix case, sometimes with the two matrix pencil and almost never with the 3 matrix
case of the quadratic eigenvalue problems.
The topic of this paper is to discuss the speci�c issues one faces when solving an industrial quadratic
eigenvalue problem. These issues include the transformation to the canonical form which will be the basis
of the mathematical solution, the recovery and the analysis of the physical solution. The transformation
to a canonical form of twice the size of the original problem is never explicitly executed in commercial
environments. The paper will describe a very e�cient method of implicitly executing the canonical
operator update. Some practical results from large industrial quadratic eigenvalue problems solved by
MSC/NASTRAN will also be presented.
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