
GAWK(1) Utility Commands GAWK(1)

NAME
gawk − pattern scanning and processing language

SYNOPSIS
gawk [POSIXor GNU style options]−f program-file [−−] fi le .. .
gawk [POSIXor GNU style options] [−−] program-textfile . . .

pgawk [POSIXor GNU style options]−f program-file [−−] fi le .. .
pgawk [POSIXor GNU style options] [−−] program-textfile . . .

DESCRIPTION
Gawk is theGNU Project’s implementation of theAWK programming language. It conforms to the defini-
tion of the language in thePOSIX1003.2 Command Language And Utilities Standard.This version in turn
is based on the description inThe AWK Programming Language, by Aho, Kernighan, and Weinberger, with
the additional features found in the System V Release 4 version ofUNIX awk. Gawk also provides more
recent Bell Laboratoriesawk extensions, and a number ofGNU-specific extensions.

Pgawkis the profiling version ofgawk. It is identical in every way togawk, except that programs run more
slowly, and it automatically produces an execution profile in the fileawkprof.out when done. See the
−−profile option, below.

The command line consists of options togawk itself, theAWK program text (if not supplied via the−f or
−−file options), and values to be made available in theARGC andARGV pre-definedAWK variables.

OPTION FORMAT
Gawkoptions may be either traditionalPOSIXone letter options, orGNU style long options.POSIXoptions
start with a single “−”, while long options start with “−−”. Long options are provided for bothGNU-spe-
cific features and forPOSIX-mandated features.

Following thePOSIX standard,gawk-specific options are supplied via arguments to the−W option. Multi-
ple −W options may be supplied Each−W option has a corresponding long option, as detailed below.
Arguments to long options are either joined with the option by an= sign, with no intervening spaces, or
they may be provided in the next command line argument. Longoptions may be abbreviated, as long as the
abbreviation remains unique.

OPTIONS
Gawkaccepts the following options, listed alphabetically.

−F fs
−−field-separator fs

Use fs for the input field separator (the value of theFS predefined variable).

−v var=val
−−assignvar=val

Assign the value val to the variablevar, before execution of the program begins. Suchvariable
values are available to theBEGIN block of anAWK program.

−f program-file
−−file program-file

Read theAWK program source from the fileprogram-file, instead of from the first command line
argument. Multiple−f (or −−file) options may be used.

−mf NNN
−mr NNN

Set various memory limits to the valueNNN. The f flag sets the maximum number of fields, and
the r flag sets the maximum record size. These two flags and the−m option are from the Bell
Laboratories research version ofUNIX awk. They are ignored bygawk, since gawk has no pre-
defined limits.

−W compat

Free Software Foundation Apr16 2002 1

GAWK(1) Utility Commands GAWK(1)

−W traditional
−−compat
−−traditional

Run incompatibilitymode. Incompatibility mode,gawk behaves identically toUNIX awk; none
of the GNU-specific extensions are recognized. The use of−−traditional is preferred over the
other forms of this option. SeeGNU EXTENSIONS, below, for more information.

−W copyleft
−W copyright
−−copyleft
−−copyright

Print the short version of theGNU copyright information message on the standard output and exit
successfully.

−W dump-variables[=file]
−−dump-variables[=file]

Print a sorted list of global variables, their types and final values tofile. If no file is provided,
gawkuses a file namedawkvars.outin the current directory.

Having a list of all the global variables is a good way to look for typographical errors in your pro-
grams. You would also use this option if you have a large program with a lot of functions, and you
want to be sure that your functions don’t inadvertently use global variables that you meant to be
local. (Thisis a particularly easy mistake to make with simple variable names like i, j , and so on.)

−W help
−W usage
−−help
−−usage

Print a relatively short summary of the available options on the standard output. (Per theGNU
Coding Standards, these options cause an immediate, successful exit.)

−W lint [=fatal]
−−lint [=fatal]

Provide warnings about constructs that are dubious or non-portable to otherAWK implementa-
tions. With an optional argument offatal, lint warnings become fatal errors. This may be drastic,
but its use will certainly encourage the development of cleanerAWK programs.

−W lint−old
−−lint−old

Provide warnings about constructs that are not portable to the original version of Unixawk.

−W gen−po
−−gen−po

Scan and parse theAWK program, and generate aGNU .po format file on standard output with
entries for all localizable strings in the program. The program itself is not executed. SeetheGNU
gettext distribution for more information on.po files.

−W non−decimal−data
−−non−decimal−data

Recognize octal and hexadecimal values in input data.Use this option with great caution!

−W posix
−−posix

This turns oncompatibilitymode, with the following additional restrictions:

• \x escape sequences are not recognized.

• Only space and tab act as field separators whenFS is set to a single space, newline does not.

• You cannot continue lines after? and:.

Free Software Foundation Apr16 2002 2

GAWK(1) Utility Commands GAWK(1)

• The synonymfunc for the keyword function is not recognized.

• The operators** and**= cannot be used in place ofˆ andˆ=.

• Thefflush() function is not available.

−W profile[=prof_file]
−−profile[=prof_file]

Send profiling data toprof_file. The default isawkprof.out. When run withgawk, the profile is
just a “pretty printed” version of the program. When run withpgawk, the profile contains execu-
tion counts of each statement in the program in the left margin and function call counts for each
user-defined function.

−W re−interval
−−re−interval

Enable the use ofinterval expressionsin regular expression matching (seeRegular Expressions,
below). Interval expressions were not traditionally available in theAWK language. ThePOSIX
standard added them, to make awk and egrep consistent with each other. Howev er, their use is
likely to break oldAWK programs, sogawk only provides them if they are requested with this
option, or when−−posix is specified.

−W source program-text
−−sourceprogram-text

Use program-text as AWK program source code. This option allows the easy intermixing of
library functions (used via the−f and−−file options) with source code entered on the command
line. It is intended primarily for medium to largeAWK programs used in shell scripts.

−W version
−−version

Print version information for this particular copy of gawk on the standard output. This is useful
mainly for knowing if the current copy of gawkon your system is up to date with respect to what-
ev er the Free Software Foundation is distributing. Thisis also useful when reporting bugs. (Per
theGNU Coding Standards, these options cause an immediate, successful exit.)

−− Signal the end of options. This is useful to allow further arguments to theAWK program itself to
start with a “−”. This is mainly for consistency with the argument parsing convention used by
most otherPOSIXprograms.

In compatibility mode, any other options are flagged as invalid, but are otherwise ignored.In normal opera-
tion, as long as program text has been supplied, unknown options are passed on to theAWK program in the
ARGV array for processing.This is particularly useful for runningAWK programs via the “#!” executable
interpreter mechanism.

AWK PROGRAM EXECUTION
An AWK program consists of a sequence of pattern-action statements and optional function definitions.

pattern { action statements}
function name(parameter list) { statements}

Gawkfirst reads the program source from theprogram-file(s) if specified, from arguments to−−source, or
from the first non-option argument on the command line.The−f and−−sourceoptions may be used multi-
ple times on the command line.Gawk reads the program text as if all theprogram-files and command line
source texts had been concatenated together. This is useful for building libraries ofAWK functions, without
having to include them in each new AWK program that uses them. It also provides the ability to mix library
functions with command line programs.
The environment variableAWKPATH specifies a search path to use when finding source files named with
the −f option. If this variable does not exist, the default path is".:/usr/local/share/awk" . (The actual
directory may vary, depending upon how gawk was built and installed.) If a file name given to the −f
option contains a “/” character, no path search is performed.
Gawk executesAWK programs in the following order. First, all variable assignments specified via the−v
option are performed.Next, gawk compiles the program into an internal form.Then,gawk executes the
code in theBEGIN block(s) (if any), and then proceeds to read each file named in theARGV array. If
there are no files named on the command line,gawkreads the standard input.

Free Software Foundation Apr16 2002 3

GAWK(1) Utility Commands GAWK(1)

If a filename on the command line has the formvar=val it is treated as a variable assignment. The variable
var will be assigned the valueval. (This happens after any BEGIN block(s) have been run.) Command
line variable assignment is most useful for dynamically assigning values to the variablesAWK uses to con-
trol how input is broken into fields and records.It is also useful for controlling state if multiple passes are
needed over a single data file.
If the value of a particular element ofARGV is empty (""), gawkskips over it.
For each record in the input,gawk tests to see if it matches any patternin theAWK program. For each pat-
tern that the record matches, the associatedaction is executed. Thepatterns are tested in the order they
occur in the program.
Finally, after all the input is exhausted,gawkexecutes the code in theEND block(s) (if any).

VARIABLES, RECORDS AND FIELDS
AWK variables are dynamic; they come into existence when they are first used. Their values are either
floating-point numbers or strings, or both, depending upon how they are used.AWK also has one dimen-
sional arrays; arrays with multiple dimensions may be simulated.Several pre-defined variables are set as a
program runs; these will be described as needed and summarized below.

Records
Normally, records are separated by newline characters.You can control how records are separated by
assigning values to the built-in variableRS. If RS is any single character, that character separates records.
Otherwise,RS is a regular expression. Text in the input that matches this regular expression separates the
record. However, in compatibility mode, only the first character of its string value is used for separating
records. IfRS is set to the null string, then records are separated by blank lines.WhenRS is set to the null
string, the newline character always acts as a field separator, in addition to whatever valueFS may have.

Fields
As each input record is read,gawk splits the record intofields, using the value of theFS variable as the
field separator. If FS is a single character, fields are separated by that character. If FS is the null string,
then each individual character becomes a separate field.Otherwise,FS is expected to be a full regular
expression. Inthe special case thatFS is a single space, fields are separated by runs of spaces and/or tabs
and/or newlines. (Butsee the discussion of−−posix, below). NOTE: The value ofIGNORECASE (see
below) also affects how fields are split whenFS is a regular expression, and how records are separated
whenRS is a regular expression.
If the FIELDWIDTHS variable is set to a space separated list of numbers, each field is expected to have
fixed width, andgawksplits up the record using the specified widths. The value ofFS is ignored.Assign-
ing a new value toFS overrides the use ofFIELDWIDTHS , and restores the default behavior.
Each field in the input record may be referenced by its position,$1, $2, and so on.$0 is the whole record.
Fields need not be referenced by constants:

n = 5
print $n

prints the fifth field in the input record.
The variableNF is set to the total number of fields in the input record.
References to non-existent fields (i.e. fields after$NF) produce the null-string.However, assigning to a
non-existent field (e.g.,$(NF+2) = 5) increases the value ofNF, creates any intervening fields with the null
string as their value, and causes the value of$0 to be recomputed, with the fields being separated by the
value of OFS. References to negative numbered fields cause a fatal error. DecrementingNF causes the
values of fields past the new value to be lost, and the value of$0 to be recomputed, with the fields being
separated by the value ofOFS.
Assigning a value to an existing field causes the whole record to be rebuilt when$0 is referenced.Simi-
larly, assigning a value to$0causes the record to be resplit, creating new values for the fields.

Built-in Variables
Gawk’s built-in variables are:
ARGC The number of command line arguments (does not include options togawk, or the pro-

gram source).
ARGIND The index in ARGV of the current file being processed.
ARGV Array of command line arguments. Thearray is indexed from 0 toARGC − 1. Dynam-

ically changing the contents ofARGV can control the files used for data.

Free Software Foundation Apr16 2002 4

GAWK(1) Utility Commands GAWK(1)

BINMODE On non-POSIX systems, specifies use of “binary” mode for all file I/O. Numeric values
of 1, 2, or 3, specify that input files, output files, or all files, respectively, should use
binary I/O. String values of"r" , or "w" specify that input files, or output files, respec-
tively, should use binary I/O. String values of"rw" or "wr" specify that all files should
use binary I/O.Any other string value is treated as"rw" , but generates a warning mes-
sage.

CONVFMT The conversion format for numbers,"%.6g" , by default.
ENVIRON An array containing the values of the current environment. Thearray is indexed by the

environment variables, each element being the value of that variable (e.g.,ENVI-
RON["HOME"] might be /home/arnold). Changingthis array does not affect the
environment seen by programs whichgawkspawns via redirection or thesystem()func-
tion.

ERRNO If a system error occurs either doing a redirection forgetline, during a read forgetline,
or during aclose(), thenERRNO will contain a string describing the error. The value is
subject to translation in non-English locales.

FIELDWIDTHS A white-space separated list of fieldwidths.When set,gawkparses the input into fields
of fixed width, instead of using the value of theFS variable as the field separator.

FILENAME The name of the current input file. If no files are specified on the command line, the
value of FILENAME is “−”. However, FILENAME is undefined inside theBEGIN
block (unless set bygetline).

FNR The input record number in the current input file.
FS The input field separator, a space by default. SeeFields, above.
IGNORECASE Controls the case-sensitivity of all regular expression and string operations.If

IGNORECASE has a non-zero value, then string comparisons and pattern matching in
rules, field splitting withFS, record separating withRS, regular expression matching
with ˜ and !˜, and thegensub(), gsub(), index(), match(), split(), and sub() built-in
functions all ignore case when doing regular expression operations.NOTE: Array sub-
scripting isnot affected, nor is theasort() function.

Thus, if IGNORECASE is not equal to zero,/aB/ matches all of the strings"ab" ,
"aB" , "Ab" , and "AB" . As with all AWK variables, the initial value ofIGNORE-
CASE is zero, so all regular expression and string operations are normally case-sensi-
tive. Under Unix, the full ISO 8859-1 Latin-1 character set is used when ignoring case.

LINT Provides dynamic control of the−−lint option from within anAWK program. When
true,gawkprints lint warnings. When false, it does not.When assigned the string value
"fatal" , lint warnings become fatal errors, exactly like −−lint=fatal . Any other true
value just prints warnings.

NF The number of fields in the current input record.
NR The total number of input records seen so far.
OFMT The output format for numbers,"%.6g" , by default.
OFS The output field separator, a space by default.
ORS The output record separator, by default a newline.
PROCINFO The elements of this array provide access to information about the runningAWK pro-

gram. On some systems, there may be elements in the array, "group1" through
"group n" for somen, which is the number of supplementary groups that the process
has. Usethe in operator to test for these elements. The following elements are guaran-
teed to be available:
PROCINFO["egid"] the value of thegetegid(2) system call.
PROCINFO["euid"] the value of thegeteuid(2) system call.
PROCINFO["FS"] "FS" if field splitting with FS is in effect, or "FIELD-

WIDTHS" if field splitting with FIELDWIDTHS is in
effect.

PROCINFO["gid"] the value of thegetgid(2) system call.
PROCINFO["pgrpid"] the process group ID of the current process.

Free Software Foundation Apr16 2002 5

GAWK(1) Utility Commands GAWK(1)

PROCINFO["pid"] the process ID of the current process.
PROCINFO["ppid"] the parent process ID of the current process.
PROCINFO["uid"] the value of thegetuid(2) system call.

RS The input record separator, by default a newline.
RT The record terminator. GawksetsRT to the input text that matched the character or reg-

ular expression specified byRS.
RSTART The index of the first character matched bymatch(); 0 if no match. (Thisimplies that

character indices start at one.)
RLENGTH The length of the string matched bymatch(); −1 if no match.
SUBSEP The character used to separate multiple subscripts in array elements, by default"\034" .
TEXTDOMAIN The text domain of theAWK program; used to find the localized translations for the pro-

gram’s strings.
Arrays

Arrays are subscripted with an expression between square brackets ([and]). If the expression is an expres-
sion list (expr, expr . . .) then the array subscript is a string consisting of the concatenation of the (string)
value of each expression, separated by the value of theSUBSEPvariable. Thisfacility is used to simulate
multiply dimensioned arrays.For example:

i = " A"; j = " B"; k = " C"
x[i, j, k] = "hello, world\n"

assigns the string"hello, world\n" to the element of the arrayx which is indexed by the string
"A\034B\034C" . All arrays inAWK are associative, i.e. indexed by string values.
The special operatorin may be used in anif or while statement to see if an array has an index consisting of
a particular value.

if (val in array)
print array[val]

If the array has multiple subscripts, use(i, j) in array .
The in construct may also be used in afor loop to iterate over all the elements of an array.
An element may be deleted from an array using thedeletestatement. Thedeletestatement may also be
used to delete the entire contents of an array, just by specifying the array name without a subscript.

Variable Typing And Conversion
Variables and fields may be (floating point) numbers, or strings, or both.How the value of a variable is
interpreted depends upon its context. If used in a numeric expression, it will be treated as a number, if used
as a string it will be treated as a string.
To force a variable to be treated as a number, add 0 to it; to force it to be treated as a string, concatenate it
with the null string.
When a string must be converted to a number, the conversion is accomplished usingstrtod(3). A number is
converted to a string by using the value ofCONVFMT as a format string forsprintf(3), with the numeric
value of the variable as the argument. However, even though all numbers inAWK are floating-point, inte-
gral values arealwaysconverted as integers. Thus,given

CONVFMT = "%2.2f"
a = 12
b = a " "

the variableb has a string value of"12" and not"12.00" .
Gawk performs comparisons as follows: If two variables are numeric, they are compared numerically. If
one value is numeric and the other has a string value that is a “numeric string,” then comparisons are also
done numerically. Otherwise, the numeric value is converted to a string and a string comparison is per-
formed. Two strings are compared, of course, as strings. Note that the POSIX standard applies the concept
of “numeric string” everywhere, even to string constants.However, this is clearly incorrect, andgawkdoes
not do this. (Fortunately, this is fixed in the next version of the standard.)
Note that string constants, such as"57" , are not numeric strings, they are string constants. The idea of
“numeric string” only applies to fields,getline input,FILENAME , ARGV elements,ENVIRON elements
and the elements of an array created bysplit() that are numeric strings. The basic idea is thatuser input,
and only user input, that looks numeric, should be treated that way.
Uninitialized variables have the numeric value 0 and the string value "" (the null, or empty, string).

Free Software Foundation Apr16 2002 6

GAWK(1) Utility Commands GAWK(1)

Octal and Hexadecimal Constants
Starting with version 3.1 ofgawk ,you may use C-style octal and hexadecimal constants in your AWK pro-
gram source code.For example, the octal value011 is equal to decimal9, and the hexadecimal value0x11
is equal to decimal 17.

String Constants
String constants inAWK are sequences of characters enclosed between double quotes ("). Within strings,
certainescape sequencesare recognized, as in C. These are:
\\ A l iteral backslash.
\a The “alert” character; usually theASCII BEL character.
\b backspace.
\f form-feed.
\n newline.
\r carriage return.
\t horizontal tab.
\v vertical tab.
\xhex digits

The character represented by the string of hexadecimal digits following the\x. As in ANSI C, all fol-
lowing hexadecimal digits are considered part of the escape sequence.(This feature should tell us
something about language design by committee.) E.g.,"\x1B" is theASCII ESC(escape) character.

\ddd The character represented by the 1-, 2-, or 3-digit sequence of octal digits.E.g.,"\033" is theASCII
ESC(escape) character.

\c The literal characterc.
The escape sequences may also be used inside constant regular expressions (e.g.,/[\t\f\n\r\v]/ matches
whitespace characters).
In compatibility mode, the characters represented by octal and hexadecimal escape sequences are treated
literally when used in regular expression constants. Thus,/a\52b/ is equivalent to/a*b/.

PATTERNS AND ACTIONS
AWK is a line-oriented language.The pattern comes first, and then the action. Action statements are
enclosed in{ and }. Either the pattern may be missing, or the action may be missing, but, of course, not
both. If the pattern is missing, the action is executed for every single record of input.A missing action is
equivalent to

{ print }
which prints the entire record.
Comments begin with the “#” character, and continue until the end of the line. Blank lines may be used to
separate statements.Normally, a statement ends with a newline, however, this is not the case for lines end-
ing in a “,”, {, ?, :, && , or ||. Lines ending indo or elsealso have their statements automatically continued
on the following line.In other cases, a line can be continued by ending it with a “\”, in which case the new-
line will be ignored.
Multiple statements may be put on one line by separating them with a “;”.This applies to both the state-
ments within the action part of a pattern-action pair (the usual case), and to the pattern-action statements
themselves.

Patterns
AWK patterns may be one of the following:

BEGIN
END
/regular expression/
relational expression
pattern&& pattern
pattern|| pattern
pattern? pattern: pattern
(pattern)
! pattern
pattern1, pattern2

BEGIN andEND are two special kinds of patterns which are not tested against the input.The action parts

Free Software Foundation Apr16 2002 7

GAWK(1) Utility Commands GAWK(1)

of all BEGIN patterns are merged as if all the statements had been written in a singleBEGIN block. They
are executed before any of the input is read.Similarly, all the END blocks are merged, and executed when
all the input is exhausted (or when anexit statement is executed). BEGIN andEND patterns cannot be
combined with other patterns in pattern expressions.BEGIN andEND patterns cannot have missing action
parts.
For /regular expression/ patterns, the associated statement is executed for each input record that matches
the regular expression. Regular expressions are the same as those inegrep(1), and are summarized below.
A relational expressionmay use any of the operators defined below in the section on actions. These gener-
ally test whether certain fields match certain regular expressions.
The&& , ||, and ! operators are logical AND, logical OR, and logical NOT, respectively, as in C. They do
short-circuit evaluation, also as in C, and are used for combining more primitive pattern expressions. Asin
most languages, parentheses may be used to change the order of evaluation.
The?: operator is like the same operator in C. If the first pattern is true then the pattern used for testing is
the second pattern, otherwise it is the third. Only one of the second and third patterns is evaluated.
Thepattern1, pattern2form of an expression is called arange pattern. It matches all input records starting
with a record that matchespattern1, and continuing until a record that matchespattern2, inclusive. It does
not combine with any other sort of pattern expression.

Regular Expressions
Regular expressions are the extended kind found inegrep. They are composed of characters as follows:
c matches the non-metacharacterc.
\c matches the literal characterc.
. matches any characterincludingnewline.
ˆ matches the beginning of a string.
$ matches the end of a string.
[abc. . .] character list, matches any of the charactersabc. . ..
[ˆabc. . .] negated character list, matches any character exceptabc. . ..
r1|r2 alternation: matches eitherr1 or r2.
r1r2 concatenation: matchesr1, and thenr2.
r + matches one or morer ’s.
r * matches zero or morer ’s.
r ? matches zero or oner ’s.
(r) grouping: matchesr .
r {n}
r {n,}
r {n,m} One or two numbers inside braces denote aninterval expression. If there is one number in the

braces, the preceding regular expressionr is repeatedn times. If there are two numbers sepa-
rated by a comma,r is repeatedn to m times. If there is one number followed by a comma,
thenr is repeated at leastn times.

Interval expressions are only available if either−−posix or −−re−interval is specified on the
command line.

\y matches the empty string at either the beginning or the end of a word.

\B matches the empty string within a word.

\< matches the empty string at the beginning of a word.

\> matches the empty string at the end of a word.

\w matches any word-constituent character (letter, digit, or underscore).

\W matches any character that is not word-constituent.

\‘ matches the empty string at the beginning of a buffer (string).

\’ matches the empty string at the end of a buffer.

The escape sequences that are valid in string constants (see below) are also valid in regular expressions.

Character classesare a new feature introduced in thePOSIX standard. Acharacter class is a special

Free Software Foundation Apr16 2002 8

GAWK(1) Utility Commands GAWK(1)

notation for describing lists of characters that have a specific attribute, but where the actual characters
themselves can vary from country to country and/or from character set to character set.For example, the
notion of what is an alphabetic character differs in the USA and in France.

A character class is only valid in a regular expressioninside the brackets of a character list.Character
classes consist of[: , a keyword denoting the class, and:] . The character classes defined by thePOSIXstan-
dard are:

[:alnum:] Alphanumeric characters.

[:alpha:] Alphabetic characters.

[:blank:] Space or tab characters.

[:cntrl:] Control characters.

[:digit:] Numeric characters.

[:graph:] Characters that are both printable and visible. (A space is printable, but not visible, while ana
is both.)

[:lower:] Lower-case alphabetic characters.

[:print:] Printable characters (characters that are not control characters.)

[:punct:] Punctuation characters (characters that are not letter, digits, control characters, or space charac-
ters).

[:space:] Space characters (such as space, tab, and formfeed, to name a few).

[:upper:] Upper-case alphabetic characters.

[:xdigit:] Characters that are hexadecimal digits.

For example, before thePOSIX standard, to match alphanumeric characters, you would have had to write
/[A−Za−z0−9]/. If your character set had other alphabetic characters in it, this would not match them, and
if your character set collated differently fromASCII, this might not even match theASCII alphanumeric
characters. With thePOSIX character classes, you can write/[[:alnum:]]/ , and this matches the alphabetic
and numeric characters in your character set.

Tw o additional special sequences can appear in character lists. These apply to non-ASCII character sets,
which can have single symbols (calledcollating elements) that are represented with more than one charac-
ter, as well as several characters that are equivalent for collating, or sorting, purposes. (E.g., in French, a
plain “e” and a grave-accented e` are equivalent.)

Collating Symbols
A collating symbol is a multi-character collating element enclosed in[. and.]. For example, ifch
is a collating element, then[[.ch.]] is a regular expression that matches this collating element,
while [ch] is a regular expression that matches eitherc or h.

Equivalence Classes
An equivalence class is a locale-specific name for a list of characters that are equivalent. The
name is enclosed in[= and=]. For example, the namee might be used to represent all of “e,” “ é,”
and “è.” I n this case,[[=e=]] is a regular expression that matches any of e, é, or è.

These features are very valuable in non-English speaking locales. The library functions thatgawkuses for
regular expression matching currently only recognizePOSIXcharacter classes; they do not recognize collat-
ing symbols or equivalence classes.

The \y, \B, \<, \>, \w, \W, \‘ , and \’ operators are specific togawk; they are extensions based on facilities in
theGNU regular expression libraries.

The various command line options control howgawk interprets characters in regular expressions.

No options
In the default case,gawkprovide all the facilities ofPOSIX regular expressions and theGNU regu-
lar expression operators described above. Howev er, interval expressions are not supported.

Free Software Foundation Apr16 2002 9

GAWK(1) Utility Commands GAWK(1)

−−posix
Only POSIX regular expressions are supported, theGNU operators are not special.(E.g., \w
matches a literalw). Interval expressions are allowed.

−−traditional
Traditional Unixawk regular expressions are matched.The GNU operators are not special, inter-
val expressions are not available, and neither are thePOSIX character classes ([[:alnum:]] and so
on). Charactersdescribed by octal and hexadecimal escape sequences are treated literally, even if
they represent regular expression metacharacters.

−−re−interval
Allow interval expressions in regular expressions, even if −−traditional has been provided.

Actions
Action statements are enclosed in braces,{ and}. Action statements consist of the usual assignment, condi-
tional, and looping statements found in most languages.The operators, control statements, and input/out-
put statements available are patterned after those in C.

Operators
The operators inAWK, in order of decreasing precedence, are

(. . .) Grouping

$ Field reference.

++ −− Increment and decrement, both prefix and postfix.

ˆ Exponentiation (** may also be used, and**= for the assignment operator).

+ − ! Unary plus, unary minus, and logical negation.

* / % Multiplication, division, and modulus.

+ − Addition and subtraction.

space String concatenation.

< >
<= >=
!= == The regular relational operators.

˜ !˜ Regular expression match, negated match.NOTE: Do not use a constant regular expression
(/foo/) on the left-hand side of ãor !˜. Only use one on the right-hand side. The expression
/foo/ ˜ exp has the same meaning as(($0 ˜ /foo/) ˜ exp). This is usuallynot what was
intended.

in Array membership.

&& Logical AND.

|| Logical OR.

?: The C conditional expression. Thishas the formexpr1 ? expr2 : expr3. If expr1 is true, the
value of the expression isexpr2, otherwise it isexpr3. Only one ofexpr2 andexpr3 is evalu-
ated.

= += −=
*= /= %= ˆ= Assignment. Bothabsolute assignment(var = value) and operator-assignment (the other

forms) are supported.

Control Statements
The control statements are as follows:

if (condition) statement[elsestatement]
while (condition) statement
do statementwhile (condition)
for (expr1; expr2; expr3) statement

Free Software Foundation Apr16 2002 10

GAWK(1) Utility Commands GAWK(1)

for (var in array) statement
break
continue
deletearray[index]
deletearray
exit [expression]
{ statements}

I/O Statements
The input/output statements are as follows:

close(file [, how]) Close file, pipe or co-process. The optionalhow should only be used when closing
one end of a two-way pipe to a co-process.It must be a string value, either"to" or
"from" .

getline Set$0 from next input record; setNF, NR, FNR.

getline <file Set$0 from next record offile; setNF.

getlinevar Setvar from next input record; setNR, FNR.

getlinevar < file Setvar from next record offile.

command| getline [var]
Runcommandpiping the output either into$0or var, as above.

command|& getline [var]
Run commandas a co-process piping the output either into$0 or var, as above. Co-
processes are agawkextension.

next Stop processing the current input record. The next input record is read and processing
starts over with the first pattern in theAWK program. Ifthe end of the input data is
reached, theEND block(s), if any, are executed.

nextfile Stop processing the current input file.The next input record read comes from the next
input file. FILENAME andARGIND are updated,FNR is reset to 1, and processing
starts over with the first pattern in theAWK program. If the end of the input data is
reached, theEND block(s), if any, are executed.

print Prints the current record.The output record is terminated with the value of theORS
variable.

print expr-list Prints expressions. Eachexpression is separated by the value of theOFS variable.
The output record is terminated with the value of theORS variable.

print expr-list > file
Prints expressions onfile. Each expression is separated by the value of theOFS vari-
able. Theoutput record is terminated with the value of theORS variable.

printf fmt, expr-list Format and print.

printf fmt, expr-list> file
Format and print onfile.

system(cmd-line) Execute the commandcmd-line, and return the exit status. (This may not be available
on non-POSIXsystems.)

fflush([file]) Flush any buffers associated with the open output file or pipefile. If file is missing,
then standard output is flushed.If file is the null string, then all open output files and
pipes have their buffers flushed.

Additional output redirections are allowed forprint andprintf .

Free Software Foundation Apr16 2002 11

GAWK(1) Utility Commands GAWK(1)

print . . . >> file
appends output to thefile.

print . . . |command
writes on a pipe.

print . . . |& command
sends data to a co-process.

Thegetline command returns 0 on end of file and −1 on an error. Upon an error, ERRNO contains a string
describing the problem.

NOTE: If using a pipe or co-process togetline, or from print or printf within a loop, youmustuseclose()
to create new instances of the command.AWK does not automatically close pipes or co-processes when
they return EOF.

The printf Statement
The AWK versions of theprintf statement andsprintf() function (see below) accept the following conver-
sion specification formats:

%c An ASCII character. If the argument used for%c is numeric, it is treated as a character and
printed. Otherwise,the argument is assumed to be a string, and the only first character of that
string is printed.

%d , %i A decimal number (the integer part).

%e , %E A floating point number of the form[−]d.dddddde[+ −]dd. The%E format usesE instead of
e.

%f A floating point number of the form[−]ddd.dddddd.

%g , %G Use %e or %f conversion, whichever is shorter, with nonsignificant zeros suppressed.The
%G format uses%E instead of%e.

%o An unsigned octal number (also an integer).

%u An unsigned decimal number (again, an integer).

%s A character string.

%x , %X An unsigned hexadecimal number (an integer). The%X format usesABCDEF instead of
abcdef.

%% A single% character; no argument is converted.

Optional, additional parameters may lie between the% and the control letter:

count$ Use thecount’th argument at this point in the formatting.This is called apositional specifierand
is intended primarily for use in translated versions of format strings, not in the original text of an
AWK program. Itis agawkextension.

− The expression should be left-justified within its field.

space For numeric conversions, prefix positive values with a space, and negative values with a minus
sign.

+ The plus sign, used before the width modifier (see below), says to always supply a sign for
numeric conversions, even if the data to be formatted is positive. The+ overrides the space modi-
fier.

Use an “alternate form” for certain control letters.For %o, supply a leading zero.For %x , and
%X , supply a leading0x or 0X for a nonzero result.For %e, %E , and %f , the result always con-
tains a decimal point.For %g, and%G , trailing zeros are not removed from the result.

0 A leading0 (zero) acts as a flag, that indicates output should be padded with zeroes instead of
spaces. Thisapplies even to non-numeric output formats. This flag only has an effect when the
field width is wider than the value to be printed.

Free Software Foundation Apr16 2002 12

GAWK(1) Utility Commands GAWK(1)

width The field should be padded to this width. The field is normally padded with spaces. If the0 flag
has been used, it is padded with zeroes.

.prec A number that specifies the precision to use when printing.For the%e, %E , and %f formats, this
specifies the number of digits you want printed to the right of the decimal point.For the%g, and
%G formats, it specifies the maximum number of significant digits.For the %d , %o, %i , %u ,
%x , and %X formats, it specifies the minimum number of digits to print.For %s, it specifies the
maximum number of characters from the string that should be printed.

The dynamicwidth and prec capabilities of theANSI C printf() routines are supported.A * in place of
either thewidth or prec specifications causes their values to be taken from the argument list toprintf or
sprintf() . To use a positional specifier with a dynamic width or precision, supply thecount$ after the* in
the format string.For example,"%3$*2$.*1$s" .

Special File Names
When doing I/O redirection from eitherprint or printf into a file, or viagetline from a file,gawk recog-
nizes certain special filenames internally. These filenames allow access to open file descriptors inherited
from gawk’s parent process (usually the shell). These file names may also be used on the command line to
name data files. The filenames are:

/dev/stdin The standard input.

/dev/stdout The standard output.

/dev/stderr The standard error output.

/dev/fd/n The file associated with the open file descriptorn.

These are particularly useful for error messages.For example:

print "You blew it!" > "/dev/stderr"

whereas you would otherwise have to use

print "You blew it!" | "cat 1>&2"

The following special filenames may be used with the|& co-process operator for creating TCP/IP network
connections.

/inet/tcp/lport/rhost/rport File for TCP/IP connection on local portlport to remote hostrhost on remote
port rport. Use a port of0 to have the system pick a port.

/inet/udp/lport/rhost/rport Similar, but use UDP/IP instead of TCP/IP.

/inet/raw/lport/rhost/rport Reserved for future use.

Other special filenames provide access to information about the runninggawk process.These filenames
are now obsolete. Use thePROCINFO array to obtain the information they provide. Thefilenames are:

/dev/pid Reading this file returns the process ID of the current process, in decimal, terminated with a
newline.

/dev/ppid Reading this file returns the parent process ID of the current process, in decimal, terminated
with a newline.

/dev/pgrpid
Reading this file returns the process group ID of the current process, in decimal, terminated
with a newline.

/dev/user Reading this file returns a single record terminated with a newline. Thefields are separated
with spaces.$1 is the value of thegetuid(2) system call,$2 is the value of thegeteuid(2) sys-
tem call,$3 is the value of thegetgid(2) system call, and$4 is the value of thegetegid(2) sys-
tem call. If there are any additional fields, they are the group IDs returned bygetgroups(2).
Multiple groups may not be supported on all systems.

Free Software Foundation Apr16 2002 13

GAWK(1) Utility Commands GAWK(1)

Numeric Functions
AWK has the following built-in arithmetic functions:

atan2(y, x) Returns the arctangent ofy/x in radians.

cos(expr) Returns the cosine ofexpr, which is in radians.

exp(expr) The exponential function.

int(expr) Truncates to integer.

log(expr) The natural logarithm function.

rand() Returns a random number between 0 and 1.

sin(expr) Returns the sine ofexpr, which is in radians.

sqrt(expr) The square root function.

srand([expr]) Usesexpr as a new seed for the random number generator. If no expr is provided, the time
of day is used. The return value is the previous seed for the random number generator.

String Functions
Gawkhas the following built-in string functions:

asort(s [, d]) Returns the number of elements in the source arrays. The contents ofs are sorted
usinggawk’s normal rules for comparing values, and the indexes of the sorted val-
ues ofs are replaced with sequential integers starting with 1. If the optional destina-
tion arrayd is specified, thens is first duplicated intod, and thend is sorted, leav-
ing the indexes of the source arrays unchanged.

gensub(r, s, h [, t]) Search the target stringt for matches of the regular expressionr . If h is a string
beginning withg or G, then replace all matches ofr with s. Otherwise,h is a num-
ber indicating which match ofr to replace.If t is not supplied,$0 is used instead.
Within the replacement text s, the sequence\n, wheren is a digit from 1 to 9, may
be used to indicate just the text that matched then’th parenthesized subexpression.
The sequence\0 represents the entire matched text, as does the character& . Unlike
sub() andgsub(), the modified string is returned as the result of the function, and
the original target string isnot changed.

gsub(r, s [, t]) For each substring matching the regular expressionr in the stringt, substitute the
strings, and return the number of substitutions.If t is not supplied, use$0. An &
in the replacement text is replaced with the text that was actually matched.Use\&
to get a literal& . (This must be typed as"\\&" ; seeGAWK: Effective AWK Pro-
grammingfor a fuller discussion of the rules for&’s and backslashes in the replace-
ment text ofsub(), gsub(), andgensub().)

index(s, t) Returns the index of the stringt in the strings, or 0 if t is not present. (This implies
that character indices start at one.)

length([s]) Returns the length of the strings, or the length of$0 if s is not supplied.

match(s, r [, a]) Returns the position ins where the regular expressionr occurs, or 0 ifr is not
present, and sets the values ofRSTART andRLENGTH . Note that the argument
order is the same as for the˜ operator:str ˜ re. If array a is provided, a is cleared
and then elements 1 throughn are filled with the portions ofs that match the corre-
sponding parenthesized subexpression inr . The 0’th element ofa contains the por-
tion of s matched by the entire regular expressionr .

split(s, a [, r]) Splits the strings into the arraya on the regular expressionr , and returns the num-
ber of fields. If r is omitted,FS is used instead. The arraya is cleared first.Split-
ting behaves identically to field splitting, described above.

Free Software Foundation Apr16 2002 14

GAWK(1) Utility Commands GAWK(1)

sprintf(fmt, expr-list)
Printsexpr-list according tofmt, and returns the resulting string.

strtonum(str) Examinesstr, and returns its numeric value. If str begins with a leading0, str-
tonum() assumes thatstr is an octal number. If str begins with a leading0x or 0X,
strtonum() assumes thatstr is a hexadecimal number.

sub(r, s [, t]) Just likegsub(), but only the first matching substring is replaced.

substr(s, i [, n]) Returns the at mostn-character substring ofs starting ati . If n is omitted, the rest
of s is used.

tolower(str) Returns a copy of the stringstr, with all the upper-case characters instr translated
to their corresponding lower-case counterparts. Non-alphabetic characters are left
unchanged.

toupper(str) Returns a copy of the stringstr, with all the lower-case characters instr translated
to their corresponding upper-case counterparts. Non-alphabetic characters are left
unchanged.

Time Functions
Since one of the primary uses ofAWK programs is processing log files that contain time stamp information,
gawkprovides the following functions for obtaining time stamps and formatting them.

mktime(datespec)
Rurnsdatespecinto a time stamp of the same form as returned bysystime(). The datespecis a
string of the formYYYY MM DD HH MM SS[DST]. The contents of the string are six or seven
numbers representing respectively the full year including century, the month from 1 to 12, the
day of the month from 1 to 31, the hour of the day from 0 to 23, the minute from 0 to 59, and the
second from 0 to 60, and an optional daylight saving flag. The values of these numbers need not
be within the ranges specified; for example, an hour of −1 means 1 hour before midnight.The
origin-zero Gregorian calendar is assumed, with year 0 preceding year 1 and year −1 preceding
year 0. The time is assumed to be in the local timezone.If the daylight saving flag is positive,
the time is assumed to be daylight saving time; if zero, the time is assumed to be standard time;
and if negative (the default), mktime() attempts to determine whether daylight saving time is in
effect for the specified time.If datespecdoes not contain enough elements or if the resulting
time is out of range,mktime() returns −1.

strftime([format[, timestamp]])
Formats timestampaccording to the specification informat. The timestampshould be of the
same form as returned bysystime(). If timestampis missing, the current time of day is used.If
format is missing, a default format equivalent to the output ofdate(1) is used. See the specifica-
tion for thestrftime() function in ANSI C for the format conversions that are guaranteed to be
available. Apublic-domain version ofstrftime(3) and a man page for it come withgawk; if that
version was used to build gawk, then all of the conversions described in that man page are avail-
able togawk.

systime() Returns the current time of day as the number of seconds since the Epoch (1970-01-01 00:00:00
UTC onPOSIXsystems).

Bit Manipulations Functions
Starting with version 3.1 ofgawk, the following bit manipulation functions are available. They work by
converting double-precision floating point values tounsigned longintegers, doing the operation, and then
converting the result back to floating point. The functions are:

and(v1, v2) Return the bitwise AND of the values provided byv1andv2.

compl(val) Return the bitwise complement ofval.

lshift(val, count) Return the value ofval, shifted left bycountbits.

Free Software Foundation Apr16 2002 15

GAWK(1) Utility Commands GAWK(1)

or(v1, v2) Return the bitwise OR of the values provided byv1andv2.

rshift(val, count) Return the value ofval, shifted right bycountbits.

xor(v1, v2) Return the bitwise XOR of the values provided byv1andv2.

Internationalization Functions
Starting with version 3.1 ofgawk, the following functions may be used from within your AWK program for
translating strings at run-time.For full details, seeGAWK: Effective AWK Programming.

bindtextdomain(directory[, domain])
Specifies the directory wheregawk looks for the.mo files, in case they will not or cannot be
placed in the ‘‘standard’’ l ocations (e.g., during testing). It returns the directory wheredomainis
‘‘ bound.’’

The default domain is the value of TEXTDOMAIN . If directory is the null string (""), then
bindtextdomain() returns the current binding for the given domain.

dcgettext(string [, domain[, category]])
Returns the translation ofstring in text domaindomainfor locale category category. The default
value for domain is the current value of TEXTDOMAIN . The default value forcategory is
"LC_MESSAGES" .

If you supply a value forcategory, it must be a string equal to one of the known locale categories
described inGAWK: Effective AWK Programming. You must also supply a text domain.Use
TEXTDOMAIN if you want to use the current domain.

dcngettext(string1, string2, number[, domain[, category]])
Returns the plural form used fornumberof the translation ofstring1 and string2 in text domain
domain for locale category category. The default value fordomain is the current value of
TEXTDOMAIN . The default value forcategoryis "LC_MESSAGES" .

If you supply a value forcategory, it must be a string equal to one of the known locale categories
described inGAWK: Effective AWK Programming. You must also supply a text domain.Use
TEXTDOMAIN if you want to use the current domain.

USER-DEFINED FUNCTIONS
Functions inAWK are defined as follows:

function name(parameter list) { statements}

Functions are executed when they are called from within expressions in either patterns or actions.Actual
parameters supplied in the function call are used to instantiate the formal parameters declared in the func-
tion. Arraysare passed by reference, other variables are passed by value.

Since functions were not originally part of theAWK language, the provision for local variables is rather
clumsy: They are declared as extra parameters in the parameter list. The convention is to separate local
variables from real parameters by extra spaces in the parameter list.For example:

function f(p, q, a,b) # a and b are local
{

. . .
}

/abc/ { . . . ; f(1, 2) ; .. . }

The left parenthesis in a function call is required to immediately follow the function name, without any
intervening white space. This is to avoid a syntactic ambiguity with the concatenation operator. This
restriction does not apply to the built-in functions listed above.

Functions may call each other and may be recursive. Function parameters used as local variables are ini-
tialized to the null string and the number zero upon function invocation.

Usereturn expr to return a value from a function.The return value is undefined if no value is provided, or

Free Software Foundation Apr16 2002 16

GAWK(1) Utility Commands GAWK(1)

if the function returns by “falling off” the end.

If −−lint has been provided,gawkwarns about calls to undefined functions at parse time, instead of at run
time. Callingan undefined function at run time is a fatal error.

The wordfunc may be used in place offunction.

DYNAMICALL Y L OADING NEW FUNCTIONS
Beginning with version 3.1 ofgawk, you can dynamically add new built-in functions to the runninggawk
interpreter. The full details are beyond the scope of this manual page; seeGAWK: Effective AWK Program-
mingfor the details.

extension(object, function)
Dynamically link the shared object file named byobject, and invoke function in that object, to
perform initialization. These should both be provided as strings. Returns the value returned by
function.

This function is provided and documented inGAWK: Effective AWK Programming, but everything
about this feature is likely to change in the next release. We STRONGLY r ecommend that you do not
use this feature for anything that you aren’t willing to redo.

SIGNALS
pgawkaccepts two signals. SIGUSR1causes it to dump a profile and function call stack to the profile file,
which is eitherawkprof.out, or whatever file was named with the−−profile option. It then continues to
run. SIGHUP causes it to dump the profile and function call stack and then exit.

EXAMPLES
Print and sort the login names of all users:

BEGIN { FS = ":" }
{ print $1 | "sort" }

Count lines in a file:

{ nlines++ }
END { print nlines }

Precede each line by its number in the file:

{ print FNR, $0 }

Concatenate and line number (a variation on a theme):

{ print NR, $0 }

INTERN ATIONALIZATION
String constants are sequences of characters enclosed in double quotes. In non-English speaking environ-
ments, it is possible to mark strings in theAWK program as requiring translation to the native natural lan-
guage. Such strings are marked in theAWK program with a leading underscore (“_”).For example,

gawk ’BEGIN { print "hello, world" }’

always printshello, world. But,

gawk ’BEGIN { print _"hello, world" }’

might printbonjour, monde in France.

There are several steps involved in producing and running a localizableAWK program.

Free Software Foundation Apr16 2002 17

GAWK(1) Utility Commands GAWK(1)

1. Add a BEGIN action to assign a value to theTEXTDOMAIN variable to set the text domain to a
name associated with your program.

BEGIN { TEXTDOMAIN = "myprog" }

This allows gawk to find the.mo file associated with your program.Without this step,gawk uses the
messagestext domain, which likely does not contain translations for your program.

2. Markall strings that should be translated with leading underscores.

3. If necessary, use thedcgettext()and/orbindtextdomain() functions in your program, as appropriate.

4. Rungawk −−gen−po −f myprog.awk > myprog.poto generate a.po file for your program.

5. Provide appropriate translations, and build and install a corresponding.mo file.

The internationalization features are described in full detail inGAWK: Effective AWK Programming.

POSIX COMPATIBILITY
A primary goal forgawk is compatibility with thePOSIX standard, as well as with the latest version of
UNIX awk. To this end,gawk incorporates the following user visible features which are not described in
theAWK book, but are part of the Bell Laboratories version ofawk, and are in thePOSIXstandard.

The book indicates that command line variable assignment happens whenawk would otherwise open the
argument as a file, which is after theBEGIN block is executed. However, in earlier implementations, when
such an assignment appeared before any file names, the assignment would happenbeforetheBEGIN block
was run. Applicationscame to depend on this “feature.” Whenawk was changed to match its documenta-
tion, the−v option for assigning variables before program execution was added to accommodate applica-
tions that depended upon the old behavior. (This feature was agreed upon by both the Bell Laboratories
and theGNU developers.)

The−W option for implementation specific features is from thePOSIXstandard.

When processing arguments,gawkuses the special option “−−” to signal the end of arguments. Incompat-
ibility mode, it warns about but otherwise ignores undefined options. In normal operation, such arguments
are passed on to theAWK program for it to process.

The AWK book does not define the return value ofsrand(). The POSIX standard has it return the seed it
was using, to allow keeping track of random number sequences.Thereforesrand() in gawkalso returns its
current seed.

Other new features are: The use of multiple−f options (from MKSawk); theENVIRON array; the\a, and
\v escape sequences (done originally ingawk and fed back into the Bell Laboratories version); the
tolower() andtoupper() built-in functions (from the Bell Laboratories version); and theANSI C conversion
specifications inprintf (done first in the Bell Laboratories version).

HISTORICAL FEATURES
There are two features of historicalAWK implementations thatgawk supports. First,it is possible to call
the length() built-in function not only with no argument, but even without parentheses! Thus,

a = length #Holy Algol 60, Batman!

is the same as either of

a = length()
a = length($0)

This feature is marked as “deprecated” in thePOSIX standard, andgawk issues a warning about its use if
−−lint is specified on the command line.

The other feature is the use of either thecontinue or thebreak statements outside the body of awhile, for ,
or do loop. TraditionalAWK implementations have treated such usage as equivalent to thenext statement.
Gawksupports this usage if−−traditional has been specified.

Free Software Foundation Apr16 2002 18

GAWK(1) Utility Commands GAWK(1)

GNU EXTENSIONS
Gawk has a number of extensions toPOSIX awk. They are described in this section. All the extensions
described here can be disabled by invoking gawkwith the−−traditional option.

The following features ofgawkare not available inPOSIXawk.

• No path search is performed for files named via the−f option. Thereforethe AWKPATH environment
variable is not special.

• The\x escape sequence. (Disabled with−−posix.)

• Thefflush() function. (Disabledwith −−posix.)

• The ability to continue lines after? and:. (Disabled with−−posix.)

• Octal and hexadecimal constants in AWK programs.

• TheARGIND , BINMODE , ERRNO, LINT , RT andTEXTDOMAIN variables are not special.

• TheIGNORECASE variable and its side-effects are not available.

• TheFIELDWIDTHS variable and fixed-width field splitting.

• ThePROCINFO array is not available.

• The use ofRSas a regular expression.

• The special file names available for I/O redirection are not recognized.

• The |& operator for creating co-processes.

• The ability to split out individual characters using the null string as the value ofFS, and as the third argu-
ment tosplit().

• The optional second argument to theclose()function.

• The optional third argument to thematch() function.

• The ability to use positional specifiers withprintf andsprintf() .

• The use ofdeletearray to delete the entire contents of an array.

• The use ofnextfile to abandon processing of the current input file.

• Theand(), asort(), bindtextdomain(), compl(), dcgettext(), gensub(), lshift() , mktime(), or(), rshift() ,
strftime() , strtonum(), systime()andxor() functions.

• Localizable strings.

• Adding new built-in functions dynamically with theextension()function.

The AWK book does not define the return value of theclose()function. Gawk’s close()returns the value
from fclose(3), or pclose(3), when closing an output file or pipe, respectively. It returns the process’s exit
status when closing an input pipe. The return value is −1 if the named file, pipe or co-process was not
opened with a redirection.

Whengawk is invoked with the−−traditional option, if the fs argument to the−F option is “t”, thenFS is
set to the tab character. Note that typinggawk −F\t .. . simply causes the shell to quote the “t,”, and does
not pass “\t” to the−F option. Sincethis is a rather ugly special case, it is not the default behavior. This
behavior also does not occur if−−posix has been specified.To really get a tab character as the field separa-
tor, it is best to use single quotes:gawk −F’\t’

ENVIRONMENT VARIABLES
TheAWKPATH environment variable can be used to provide a list of directories thatgawksearches when
looking for files named via the−f and−−file options.

If POSIXLY_CORRECT exists in the environment, thengawk behaves exactly as if−−posix had been
specified on the command line.If −−lint has been specified,gawk issues a warning message to this effect.

Free Software Foundation Apr16 2002 19

GAWK(1) Utility Commands GAWK(1)

SEE ALSO
egrep(1), getpid(2), getppid(2), getpgrp(2), getuid(2), geteuid(2), getgid(2), getegid(2), getgroups(2)

The AWK Programming Language, Alfred V. Aho, Brian W. Kernighan, Peter J. Weinberger, Addison-Wes-
ley, 1988. ISBN0-201-07981-X.

GAWK: Effective AWK Programming, Edition 3.0, published by the Free Software Foundation, 2001.

BUGS
The −F option is not necessary given the command line variable assignment feature; it remains only for
backwards compatibility.

Syntactically invalid single character programs tend to overflow the parse stack, generating a rather unhelp-
ful message. Such programs are surprisingly difficult to diagnose in the completely general case, and the
effort to do so really is not worth it.

AUTHORS
The original version ofUNIX awk was designed and implemented by Alfred Aho, Peter Weinberger, and
Brian Kernighan of Bell Laboratories. Brian Kernighan continues to maintain and enhance it.

Paul Rubin and Jay Fenlason, of the Free Software Foundation, wrotegawk, to be compatible with the orig-
inal version ofawk distributed in Seventh EditionUNIX . John Woods contributed a number of bug fixes.
David Trueman, with contributions from Arnold Robbins, madegawk compatible with the new version of
UNIX awk. Arnold Robbins is the current maintainer.

The initial DOS port was done by Conrad Kwok and Scott Garfinkle. Scott Deifik is the current DOS
maintainer. Pat Rankin did the port to VMS, and Michal Jaegermann did the port to the Atari ST. The port
to OS/2 was done by Kai Uwe Rommel, with contributions and help from Darrel Hankerson. FredFish
supplied support for the Amiga, Stephen Davies provided the Tandem port, and Martin Brown provided the
BeOS port.

VERSION INFORMATION
This man page documentsgawk, version 3.1.0.

BUG REPORTS
If you find a bug ingawk, please send electronic mail tobug-gawk@gnu.org. Please include your operat-
ing system and its revision, the version ofgawk (from gawk −−version), what C compiler you used to
compile it, and a test program and data that are as small as possible for reproducing the problem.

Before sending a bug report, please do two things. First,verify that you have the latest version ofgawk.
Many bugs (usually subtle ones) are fixed at each release, and if yours is out of date, the problem may
already have been solved. Second,please read this man page and the reference manual carefully to be sure
that what you think is a bug really is, instead of just a quirk in the language.

Whatever you do, doNOT post a bug report incomp.lang.awk. While thegawk developers occasionally
read this newsgroup, posting bug reports there is an unreliable way to report bugs. Instead,please use the
electronic mail addresses given above.

ACKNOWLEDGEMENTS
Brian Kernighan of Bell Laboratories provided valuable assistance during testing and debugging. We thank
him.

COPYING PERMISSIONS
Copyright © 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2001, 2002 Free Software
Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual page provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual page under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permis-
sion notice identical to this one.

Permission is granted to copy and distribute translations of this manual page into another language, under

Free Software Foundation Apr16 2002 20

GAWK(1) Utility Commands GAWK(1)

the above conditions for modified versions, except that this permission notice may be stated in a translation
approved by the Foundation.

Free Software Foundation Apr16 2002 21

